Journal articles on the topic 'Forchheimer flows'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Forchheimer flows.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Aulisa, Eugenio, Lidia Bloshanskaya, Yalchin Efendiev, and Akif Ibragimov. "Upscaling of Forchheimer flows." Advances in Water Resources 70 (August 2014): 77–88. http://dx.doi.org/10.1016/j.advwatres.2014.04.016.
Full textGruais, Isabelle, and Dan Poliševski. "Thermal flows in fractured porous media." ESAIM: Mathematical Modelling and Numerical Analysis 55, no. 3 (May 2021): 789–805. http://dx.doi.org/10.1051/m2an/2020087.
Full textCelik, Emine, Luan Hoang, and Thinh Kieu. "Generalized Forchheimer Flows of Isentropic Gases." Journal of Mathematical Fluid Mechanics 20, no. 1 (January 2, 2017): 83–115. http://dx.doi.org/10.1007/s00021-016-0313-2.
Full textCelik, Emine, and Luan Hoang. "Generalized Forchheimer flows in heterogeneous porous media." Nonlinearity 29, no. 3 (February 16, 2016): 1124–55. http://dx.doi.org/10.1088/0951-7715/29/3/1124.
Full textLychagin, V. V. "On Darcy–Forchheimer Flows in Porous Media." Lobachevskii Journal of Mathematics 43, no. 10 (October 2022): 2793–96. http://dx.doi.org/10.1134/s1995080222130273.
Full textWood, Brian D., Xiaoliang He, and Sourabh V. Apte. "Modeling Turbulent Flows in Porous Media." Annual Review of Fluid Mechanics 52, no. 1 (January 5, 2020): 171–203. http://dx.doi.org/10.1146/annurev-fluid-010719-060317.
Full textHoang, Luan T., and Thinh T. Kieu. "Interior Estimates for Generalized Forchheimer Flows of Slightly Compressible Fluids." Advanced Nonlinear Studies 17, no. 4 (October 1, 2017): 739–67. http://dx.doi.org/10.1515/ans-2016-6027.
Full textCelik, Emine, Luan Hoang, and Thinh Kieu. "Slightly compressible Forchheimer flows in rotating porous media." Journal of Mathematical Physics 62, no. 7 (July 1, 2021): 073101. http://dx.doi.org/10.1063/5.0047754.
Full textHoang, L. T., T. T. Kieu, and T. V. Phan. "Properties of Generalized Forchheimer Flows in Porous Media." Journal of Mathematical Sciences 202, no. 2 (September 9, 2014): 259–332. http://dx.doi.org/10.1007/s10958-014-2045-2.
Full textSkrzypacz, Piotr, and Dongming Wei. "Solvability of the Brinkman-Forchheimer-Darcy Equation." Journal of Applied Mathematics 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/7305230.
Full textStrack, O. D. L., R. J. Barnes, and A. Verruijt. "Vertically Integrated Flows, Discharge Potential, and the Dupuit-Forchheimer Approximation." Ground Water 44, no. 1 Ground Water (January 2006): 72–75. http://dx.doi.org/10.1111/j.1745-6584.2005.00173.x.
Full textParanamana, Pushpi, Eugenio Aulisa, Akif Ibragimov, and Magdalena Toda. "Fracture model reduction and optimization for Forchheimer flows in reservoirs." Journal of Mathematical Physics 60, no. 5 (May 2019): 051504. http://dx.doi.org/10.1063/1.5039743.
Full textHoang, Luan, and Thinh Kieu. "Global estimates for generalized Forchheimer flows of slightly compressible fluids." Journal d'Analyse Mathématique 137, no. 1 (March 2019): 1–55. http://dx.doi.org/10.1007/s11854-018-0064-5.
Full textKieu, Thinh. "Numerical analysis for generalized Forchheimer flows of slightly compressible fluids." Numerical Methods for Partial Differential Equations 34, no. 1 (August 18, 2017): 228–56. http://dx.doi.org/10.1002/num.22194.
Full textHoang, Luan T., Akif Ibragimov, and Thinh T. Kieu. "One-dimensional two-phase generalized Forchheimer flows of incompressible fluids." Journal of Mathematical Analysis and Applications 401, no. 2 (May 2013): 921–38. http://dx.doi.org/10.1016/j.jmaa.2012.12.055.
Full textCelik, Emine, and Luan Hoang. "Maximum estimates for generalized Forchheimer flows in heterogeneous porous media." Journal of Differential Equations 262, no. 3 (February 2017): 2158–95. http://dx.doi.org/10.1016/j.jde.2016.10.043.
Full textWang, Yueying, Jun Yao, and Zhaoqin Huang. "Parameter Effect Analysis of Non-Darcy Flow and a Method for Choosing a Fluid Flow Equation in Fractured Karstic Carbonate Reservoirs." Energies 15, no. 10 (May 15, 2022): 3623. http://dx.doi.org/10.3390/en15103623.
Full textAULISA, EUGENIO, AKIF IBRAGIMOV, PETER VALKO, and JAY WALTON. "MATHEMATICAL FRAMEWORK OF THE WELL PRODUCTIVITY INDEX FOR FAST FORCHHEIMER (NON-DARCY) FLOWS IN POROUS MEDIA." Mathematical Models and Methods in Applied Sciences 19, no. 08 (August 2009): 1241–75. http://dx.doi.org/10.1142/s0218202509003772.
Full textZARGHAMI, AHAD, SILVIA DI FRANCESCO, and CHIARA BISCARINI. "POROUS SUBSTRATE EFFECTS ON THERMAL FLOWS THROUGH A REV-SCALE FINITE VOLUME LATTICE BOLTZMANN MODEL." International Journal of Modern Physics C 25, no. 02 (February 2014): 1350086. http://dx.doi.org/10.1142/s0129183113500861.
Full textNewman, M. S. S., and X. Yin. "Lattice Boltzmann Simulation of Non-Darcy Flow In Stochastically Generated 2D Porous Media Geometries." SPE Journal 18, no. 01 (January 30, 2013): 12–26. http://dx.doi.org/10.2118/146689-pa.
Full textNi, Xiao-dong, Yu-long Niu, Yuan Wang, and Ke Yu. "Non-Darcy Flow Experiments of Water Seepage through Rough-Walled Rock Fractures." Geofluids 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/8541421.
Full textZhang, Lijun, Muhammad Mubashir Bhatti, Rahmat Ellahi, and Efstathios E. Michaelides. "Oxytactic Microorganisms and Thermo-Bioconvection Nanofluid Flow Over a Porous Riga Plate with Darcy–Brinkman–Forchheimer Medium." Journal of Non-Equilibrium Thermodynamics 45, no. 3 (July 26, 2020): 257–68. http://dx.doi.org/10.1515/jnet-2020-0010.
Full textAulisa, Eugenio, Lidia Bloshanskaya, Luan Hoang, and Akif Ibragimov. "Analysis of generalized Forchheimer flows of compressible fluids in porous media." Journal of Mathematical Physics 50, no. 10 (October 2009): 103102. http://dx.doi.org/10.1063/1.3204977.
Full textKieu, Thinh. "Solution of the mixed formulation for generalized Forchheimer flows of isentropic gases." Journal of Mathematical Physics 61, no. 8 (August 1, 2020): 081501. http://dx.doi.org/10.1063/5.0002265.
Full textHami, K., and I. Zeroual. "Numerical Approach of a Water Flow in an Unsaturated Porous Medium by Coupling Between the Navier–Stokes and Darcy–Forchheimer Equations." Latvian Journal of Physics and Technical Sciences 54, no. 6 (December 1, 2017): 54–64. http://dx.doi.org/10.1515/lpts-2017-0041.
Full textYang, Bin, Tianhong Yang, Zenghe Xu, Honglei Liu, Wenhao Shi, and Xin Yang. "Numerical simulation of the free surface and water inflow of a slope, considering the nonlinear flow properties of gravel layers: a case study." Royal Society Open Science 5, no. 2 (February 2018): 172109. http://dx.doi.org/10.1098/rsos.172109.
Full text.S.Abu Zaytoon, M., M. H.Hamdan, and Yiyun (Lisa) Xiao. "Generalized models of flow of a fluid with pressure-dependent viscosity through porous channels: channel entry conditions." International Journal of Physical Research 9, no. 2 (October 16, 2021): 84. http://dx.doi.org/10.14419/ijpr.v9i2.31744.
Full textHsu, Chin-Tsau, Huili Fu, and Ping Cheng. "On Pressure-Velocity Correlation of Steady and Oscillating Flows in Regenerators Made of Wire Screens." Journal of Fluids Engineering 121, no. 1 (March 1, 1999): 52–56. http://dx.doi.org/10.1115/1.2822010.
Full textZerihun, Yebegaeshet. "Extension of the Dupuit–Forchheimer Model for Non-Hydrostatic Flows in Unconfined Aquifers." Fluids 3, no. 2 (June 11, 2018): 42. http://dx.doi.org/10.3390/fluids3020042.
Full textIbragimov, Akif, and Thinh T. Kieu. "An expanded mixed finite element method for generalized Forchheimer flows in porous media." Computers & Mathematics with Applications 72, no. 6 (September 2016): 1467–83. http://dx.doi.org/10.1016/j.camwa.2016.06.029.
Full textKieu, Thinh. "A mixed finite element approximation for Darcy–Forchheimer flows of slightly compressible fluids." Applied Numerical Mathematics 120 (October 2017): 141–64. http://dx.doi.org/10.1016/j.apnum.2017.05.006.
Full textZhang, Jingyuan, and Hongxing Rui. "A stabilized Crouzeix-Raviart element method for coupling stokes and darcy-forchheimer flows." Numerical Methods for Partial Differential Equations 33, no. 4 (March 31, 2017): 1070–94. http://dx.doi.org/10.1002/num.22129.
Full textHoang, Luan T., Akif Ibragimov, and Thinh T. Kieu. "A family of steady two-phase generalized Forchheimer flows and their linear stability analysis." Journal of Mathematical Physics 55, no. 12 (December 2014): 123101. http://dx.doi.org/10.1063/1.4903002.
Full textChaudhary, Kuldeep, M. Bayani Cardenas, Wen Deng, and Philip C. Bennett. "The role of eddies inside pores in the transition from Darcy to Forchheimer flows." Geophysical Research Letters 38, no. 24 (December 28, 2011): n/a. http://dx.doi.org/10.1029/2011gl050214.
Full textHayat, T., H. Nazar, M. Imtiaz, and A. Alsaedi. "Darcy-Forchheimer flows of copper and silver water nanofluids between two rotating stretchable disks." Applied Mathematics and Mechanics 38, no. 12 (December 2017): 1663–78. http://dx.doi.org/10.1007/s10483-017-2289-8.
Full textAbbasi, Fahad Munir, Tasawar Hayat, Sabir Ali Shehzad, and Ahmed Alsaedi. "Impact of Cattaneo-Christov heat flux on flow of two-types viscoelastic fluid in Darcy-Forchheimer porous medium." International Journal of Numerical Methods for Heat & Fluid Flow 27, no. 9 (September 4, 2017): 1955–66. http://dx.doi.org/10.1108/hff-07-2016-0292.
Full textEswaramoorthi, Sheniyappan, S. Thamaraiselvi, and Karuppusamy Loganathan. "Exploration of Darcy–Forchheimer Flows of Non-Newtonian Casson and Williamson Conveying Tiny Particles Experiencing Binary Chemical Reaction and Thermal Radiation: Comparative Analysis." Mathematical and Computational Applications 27, no. 3 (June 20, 2022): 52. http://dx.doi.org/10.3390/mca27030052.
Full textCelik, Emine, Luan Hoang, and Thinh Kieu. "Doubly nonlinear parabolic equations for a general class of Forchheimer gas flows in porous media." Nonlinearity 31, no. 8 (June 28, 2018): 3617–50. http://dx.doi.org/10.1088/1361-6544/aabf05.
Full textCaucao, Sergio, Marco Discacciati, Gabriel N. Gatica, and Ricardo Oyarzúa. "A conforming mixed finite element method for the Navier–Stokes/Darcy–Forchheimer coupled problem." ESAIM: Mathematical Modelling and Numerical Analysis 54, no. 5 (July 28, 2020): 1689–723. http://dx.doi.org/10.1051/m2an/2020009.
Full textDehghan, Maziar, Zahra Azari Nesaz, Abolfazl Pourrajabian, and Saman Rashidi. "On the forced convective flow inside thermal collectors enhanced by porous media: from macro to micro-channels." International Journal of Numerical Methods for Heat & Fluid Flow 31, no. 8 (May 13, 2021): 2462–83. http://dx.doi.org/10.1108/hff-11-2020-0722.
Full textBuchori, L., M. D. Supardan, Y. Bindar, D. Sasongko, and IGBN Makertihartha. "The Effect Of Reynolds Number At Fluid Flow In Porous Media." REAKTOR 6, no. 2 (June 19, 2017): 48. http://dx.doi.org/10.14710/reaktor.6.2.48-55.
Full textLIN, HAO, BRIAN D. STOREY, and JUAN G. SANTIAGO. "A depth-averaged electrokinetic flow model for shallow microchannels." Journal of Fluid Mechanics 608 (July 11, 2008): 43–70. http://dx.doi.org/10.1017/s0022112008001869.
Full textKieu, Thinh T. "Analysis of expanded mixed finite element methods for the generalized forchheimer flows of slightly compressible fluids." Numerical Methods for Partial Differential Equations 32, no. 1 (August 6, 2015): 60–85. http://dx.doi.org/10.1002/num.21984.
Full textMamatha, S. U., Chakravarthula S. K. Raju, Putta Durga Prasad, K. A. Ajmath, Mahesha, and Oluwole Daniel Makinde. "Exponentially Decaying Heat Source on MHD Tangent Hyperbolic Two-Phase Flows over a Flat Surface with Convective Conditions." Defect and Diffusion Forum 387 (September 2018): 286–95. http://dx.doi.org/10.4028/www.scientific.net/ddf.387.286.
Full textEl-Sayed, M. F. "Effect of normal electric fields on Kelvin–Helmholtz instability for porous media with Darcian and Forchheimer flows." Physica A: Statistical Mechanics and its Applications 255, no. 1-2 (June 1998): 1–14. http://dx.doi.org/10.1016/s0378-4371(98)00035-1.
Full textKumar, R., R. Kumar, S. A. Shehzad, and A. J. Chamkha. "Optimal treatment of stratified Carreau and Casson nanofluids flows in Darcy-Forchheimer porous space over porous matrix." Applied Mathematics and Mechanics 41, no. 11 (September 9, 2020): 1651–70. http://dx.doi.org/10.1007/s10483-020-2655-7.
Full textAbushaikha, Ahmad, Dominique Guérillot, Mostafa Kadiri, and Saber Trabelsi. "Buckley–Leverett Theory for a Forchheimer–Darcy Multiphase Flow Model with Phase Coupling." Mathematical and Computational Applications 26, no. 3 (August 25, 2021): 60. http://dx.doi.org/10.3390/mca26030060.
Full textHdhiri, Najib, and Brahim Ben Beya. "Numerical study of laminar mixed convection flow in a lid-driven square cavity filled with porous media." International Journal of Numerical Methods for Heat & Fluid Flow 28, no. 4 (April 3, 2018): 857–77. http://dx.doi.org/10.1108/hff-04-2016-0146.
Full textRasool, Ghulam, Anum Shafiq, Sajjad Hussain, Mostafa Zaydan, Abderrahim Wakif, Ali J. Chamkha, and Muhammad Shoaib Bhutta. "Significance of Rosseland’s Radiative Process on Reactive Maxwell Nanofluid Flows over an Isothermally Heated Stretching Sheet in the Presence of Darcy–Forchheimer and Lorentz Forces: Towards a New Perspective on Buongiorno’s Model." Micromachines 13, no. 3 (February 26, 2022): 368. http://dx.doi.org/10.3390/mi13030368.
Full textDellali, Emna, François Lanzetta, Sylvie Begot, Eric Gavignet, and Jean-Yves Rauch. "Data reduction of friction factor, permeability and inertial coefficient for a compressible gas flow through a milli-regenerator." E3S Web of Conferences 313 (2021): 05002. http://dx.doi.org/10.1051/e3sconf/202131305002.
Full text