Academic literature on the topic 'Focusing wave'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Focusing wave.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Focusing wave"
Murray, D. R., and P. Öhberg. "Matter wave focusing." Journal of Physics B: Atomic, Molecular and Optical Physics 38, no. 8 (March 30, 2005): 1227–34. http://dx.doi.org/10.1088/0953-4075/38/8/012.
Full textXu, Guochun, Hongbin Hao, Qingwei Ma, and Qinqin Gui. "An Experimental Study of Focusing Wave Generation with Improved Wave Amplitude Spectra." Water 11, no. 12 (November 28, 2019): 2521. http://dx.doi.org/10.3390/w11122521.
Full textSmit, Pieter Bart, T. T. Janssen, and T. H. C. Herbers. "TOPOGRAPHY-INDUCED FOCUSING OF RANDOM WAVES." Coastal Engineering Proceedings 1, no. 33 (December 15, 2012): 6. http://dx.doi.org/10.9753/icce.v33.waves.6.
Full textVogel, K., F. Gleisberg, N. L. Harshman, P. Kazemi, R. Mack, L. Plimak, and W. P. Schleich. "Optimally focusing wave packets." Chemical Physics 375, no. 2-3 (October 2010): 133–43. http://dx.doi.org/10.1016/j.chemphys.2010.07.002.
Full textChen, Jinbing, and Dmitry E. Pelinovsky. "Rogue periodic waves of the focusing nonlinear Schrödinger equation." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, no. 2210 (February 2018): 20170814. http://dx.doi.org/10.1098/rspa.2017.0814.
Full textZhang, Zhen Fu, Xin Wu Zeng, Qing Yu Cai, and Kai Feng Han. "Numerical Simulation on Underwater Shock Wave Focusing." Applied Mechanics and Materials 105-107 (September 2011): 121–26. http://dx.doi.org/10.4028/www.scientific.net/amm.105-107.121.
Full textMerkoune, D., J. Touboul, N. Abcha, D. Mouazé, and A. Ezersky. "Focusing wave group on a current of finite depth." Natural Hazards and Earth System Sciences 13, no. 11 (November 19, 2013): 2941–49. http://dx.doi.org/10.5194/nhess-13-2941-2013.
Full textZhou, Binzhen, Kanglixi Ding, Jiahao Wang, Lei Wang, Peng Jin, and Tianning Tang. "Experimental study on the interactions between wave groups in double-wave-group focusing." Physics of Fluids 35, no. 3 (March 2023): 037118. http://dx.doi.org/10.1063/5.0142042.
Full textLiu, Mao, Haijie Yu, and Ben Wang. "Tuning and controlling antiplane shear wave propagation in elastic membranes." AIP Advances 12, no. 8 (August 1, 2022): 085319. http://dx.doi.org/10.1063/5.0103469.
Full textVines, R. E., Shin-ichiro Tamura, and J. P. Wolfe. "Surface Acoustic Wave Focusing and Induced Rayleigh Waves." Physical Review Letters 74, no. 14 (April 3, 1995): 2729–32. http://dx.doi.org/10.1103/physrevlett.74.2729.
Full textDissertations / Theses on the topic "Focusing wave"
Jendrej, Jacek. "On the dynamics of energy-critical focusing wave equations." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX029/document.
Full textIn this thesis we study the global behavior of solutions of the energy-criticalfocusing nonlinear wave equation, with a special emphasis on the description of the dynamics in the energy space. We develop a new approach, based on the energy method, to constructing unstable type II blow-up solutions. Next, we give the first example of a radial two-bubble solution of the energy-critical wave equation. By implementing this construction in the case of the equivariant wave map equation, we obtain bubble-antibubble solutions in equivariance classes k > 2. We also study the relationship between the speed of a type II blow-up and the weak limit of the solution at the blow-up time. Finally, we prove that there are no pure radial two-bubbles with opposite signs for the energy-critical wave equation
Joubert, J. R. "An investigation of the wave energy resource on the South African Coast, focusing on the spatial distribution of the South West coast." Thesis, Link to the Internet, 2008. http://hdl.handle.net/10019.1/351.
Full textAydin, Baran. "Analytical Solutions Of Shallow-water Wave Equations." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613349/index.pdf.
Full textlong waves&ndash
over one- and two-dimensional bathymetries. In one-dimensional case, the nonlinear equations are solved for a plane beach using the hodograph transformation with eigenfunction expansion or integral transform methods under different initial conditions, i.e., earthquake-generated waves, wind set-down relaxation, and landslide-generated waves. In two-dimensional case, the linear shallow-water wave equation is solved for a flat ocean bottom for initial waves having finite-crest length. Analytical verification of source focusing is presented. The role of focusing in unexpectedly high tsunami runup observations for the 17 July 1998 Papua New Guinea and 17 July 2006 Java Island, Indonesia tsunamis are investigated. Analytical models developed here can serve as benchmark solutions for numerical studies.
Kälvegren, Christian, and Tobias Sjölin. "Wave power - The future of energy supply? Focusing on its sealing solutions." Thesis, KTH, Maskinkonstruktion (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209547.
Full textEtt nytt koncept för att utvinna förnyelsebar energi har framtagits på KTH Elkraftteknik, denna gång handlar det om vågkraft. Till skillnad från flera andra vågkraftverk så öppnar detta koncepts nyframtagna generator upp för möjligheten att vara verksamt även vid låga hastigheter samtidigt som det bibehåller hög krafttäthet samt verkningsgrad. Denna lösning av generatorn är i behov av att tätas då dess ingående komponenter inte tål den omgivande havsmiljön, detta är därför syftet med projektet som genomförts. Flertalet problem existerar med de lösningar som för nuvarande finns att tillgå, varför det finns behov av att ta fram en skräddarsydd tätningslösning till detta koncept. Dessa problem är exempelvis läckage och utmattningsbrott vilka leder till att livslängden hos tätningarna blir oacceptabelt kort. De frågeställningar vilka i rapporten och projektet behandlas är ifall det finns några belastningar verkande på tätningen som är specifikt kritiska, ifall det finns något enkelt sätt att reducera just dessa, ifall det finns några lösningar som är tätare än de som finns att tillgå idag (som också har godkända egenskaper gällande hållfasthet och livslängd till följd av de krav som ställs på dem), ifall dessa lösningar skulle vara applicerbara i alla hav och ifall dessa lösningar är ekonomiskt tillämpbara. För att besvara detta har flertalet konceptgenereringar utförts med hjälp av brainstorming där potentiella lösningar utvärderats baserat på en omfattande informationssökning, för att till sist komma fram till och skissera upp de mest lovande slutkoncepten. Dessa modellerades därefter upp med hjälp av 3D-modelleringsprogrammet Solid Edge för att slutligen analyseras med programvaran Ansys. Resultaten och slutsatserna från både informationssökningen och de utförliga analyserna var att de kritiska belastningarna är de spänningar vilka uppstår till följd av kompression, expansion och böjning av bojen, vilka kan reduceras genom att skapa en inre struktur i tätningen som leder till att belastningarna sker mer jämnt. Det finns även tätningslösningar vilka är helt täta då de inkapslar den del av vågkraftskonceptet som behöver tätas, så kallade damasklösningar. Dessa lösningar är dessutom applicerbara i alla hav både ur ett perspektiv gällande material men också ett dimensioneringsmässigt sådant, där möjligheten finns att justera tätningens längd vid tillverkningen utefter den varierande våghöjden där denna ska appliceras. Gällande den sista frågan vilken behandlar den ekonomiska tillämpbarheten kunde inga tillräckligt träffsäkra resultat genereras och därav inga slutsatser dras.
Brouzet, Christophe. "Internal wave attractors : from geometrical focusing to non-linear energy cascade and mixing." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN012/document.
Full textA question of paramount importance in the dynamics of oceans is related to the energy cascade from large to small scales and its contribution to mixing. Internal wave attractors may be one of the possible mechanisms responsible for such a cascade. In this manuscript, we study experimentally internal wave attractors in a trapezoidal test tank filled with linearly stratified fluid. In such a geometry, the waves can form closed loops called attractors. We show that the attractor formation is purely linear: small scales are thus created by wave focusing. The attractor characteristics are found to only depend on the trapezoidal geometry of the tank. At the ocean scale, we show that attractors are very likely to be unstable. Indeed, internal wave attractors are prone to a triadic resonance instability, which transfers energy from the attractor to a pair of secondary waves. This instability and its main characteristics are described as a function of the geometry of the basin. For long-term experiments, the instability produces several pairs of secondary waves, creating a cascade of triadic interactions and transferring energy from large-scale monochromatic input to multi-scale internal-wave motion. We reveal, for the first time, experimental convincing signatures of internal wave turbulence. Beyond this cascade, we have a mixing regime, which appears to be independent of the trapezoidal geometry and, thus, universal. This manuscript is completed by a study on added mass and wave damping coefficient of bodies oscillating horizontally in a stratified fluid, with applications to tidal conversion
Zhao, Ningxiner. "Design and Analysis of Piecewise Assembled, Reconfigurable Acoustic Arrays for Sound Wave Focusing." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586188427835977.
Full textAnthony, Brian W. 1972. "Anisotropic wave guides-- propagation, focusing and dispersive phenomena with applications for non-destructive testing." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50067.
Full textIncludes bibliographical references (p. 60).
Acoustic Non-Destructive Testing (NDT) has a long history of applications in fatigue monitoring, fault testing, and more recently production control. A very large family of manufactured and raw materials consist of thin layers. Some examples include rolled aluminum, window glass, plywood, automobile bodies, plane wings, silicon wafers, bridge support beams, and paper. These layers can be viewed and modeled as acoustic waveguides. This thesis will present the framework in which to analyze such layers. To this end, analytic solutions to the plane wave displacement and stress fields in a single layer monoclinic material will be presented The propagation, frequency, and dispersive characteristics of transmitted signals can be analyzed to determine various elastic properties of the layer or to identify faults. Wavelet (time-frequency), Fourier (frequency), and signal matching (time) techniques will be developed to analyze and extract features and properties of signals. Several experimental examples will be presented.
S.M.
Blackhurst, Tyler D. "Numerical Investigation of Internal Wave-Vortex Dipole Interactions." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3133.
Full textSrinivas, Vivek. "Adaptive, Wave Guiding Acoustic Arrays using Circularly Symmetric Reconfigurable Structures." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587130205893861.
Full textCajko, Frantisek. "Nano-Focusing of Light: Electromagnetic Analysis and Simulation." University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1249331504.
Full textBooks on the topic "Focusing wave"
Sulem, C. The nonlinear Schrödinger equation: Self-focusing and wave collapse. New York: Springer, 1999.
Find full textSulem, Catherine, and Pirre-Louis Sulem, eds. The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/b98958.
Full textSulem, C. The nonlinear Schrödinger equation: Self-focusing and wave collapse. New York: Springer, 1999.
Find full textT, Smith F., and Langley Research Center, eds. Near-planar TS waves and longitudinal vortices in channel flow: Nonlinear interaction and focusing. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Find full textT, Smith F., and Langley Research Center, eds. Near-planar TS waves and longitudinal vortices in channel flow: Nonlinear interaction and focusing. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Find full textHall, P. Near-planar TS waves and longitudinal vortices in channel flow: Nonlinear interaction and focusing. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Find full textNye, J. F. Natural focusing and fine structure of light: Caustics and wave dislocations. Bristol: Institute of Physics Pub., 1999.
Find full textKamvissis, Spyridon. Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation. Princeton, N.J: Princeton University Press, 2003.
Find full textT-R, McLaughlin Kenneth D., and Miller Peter D, eds. Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation. Princeton, N.J: Princeton University Press, 2003.
Find full textSousa, Carole. W.A.V.E.: Wave of Asian voices emerging : a prevention curriculum for Asian youth focusing on relationships and violence. Boston: Asian Task Force Against Domestic Violence, 2003.
Find full textBook chapters on the topic "Focusing wave"
Healy, Terry R. "Wave Focusing." In Encyclopedia of Earth Sciences Series, 1858–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93806-6_346.
Full textHealy, Terry R. "Wave Focusing." In Encyclopedia of Earth Sciences Series, 1–2. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-48657-4_346-2.
Full textRitchie, William, Katherine Pond, Edward J. Anthony, George Maul, Patricia L. Wiberg, Miles O. Hayes, Andrew D. Short, et al. "Wave Focusing." In Encyclopedia of Coastal Science, 1059–60. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3880-1_346.
Full textSasoh, Akihiro. "Laser Focusing." In Experimental Methods of Shock Wave Research, 99–108. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23745-9_4.
Full textTakayama, Kazuyoshi. "Shock Wave Focusing in Gases." In Visualization of Shock Wave Phenomena, 281–360. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19451-2_5.
Full textDeutsch, W. A. K., A. Cheng, and J. D. Achenbach. "Self-Focusing Surface Wave Array." In Review of Progress in Quantitative Nondestructive Evaluation, 2077–84. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5947-4_271.
Full textKenig, Carlos. "The Focusing Energy-Critical Wave Equation." In Harmonic Analysis, Partial Differential Equations and Applications, 97–107. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52742-0_7.
Full textApazidis, Nicholas, and Veronica Eliasson. "Shock Focusing in Nature and Medicine." In Shock Wave and High Pressure Phenomena, 145–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75866-4_4.
Full textSchober, C. M. "Nonlinear Focusing and Rogue Waves in Deep Water." In Mathematical and Numerical Aspects of Wave Propagation WAVES 2003, 735–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55856-6_119.
Full textYamamoto, Hiroaki, and Kazuyoshi Takayama. "Medical Application of Miniaturized Underwater Shock Wave Focusing." In Frontiers of Shock Wave Research, 133–45. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90735-8_8.
Full textConference papers on the topic "Focusing wave"
Ramm, A. G. "Creating wave-focusing materials." In 2008 13th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). IEEE, 2008. http://dx.doi.org/10.1109/diped.2008.4671797.
Full textHayashi, Takahiro, Koichiro Kawashima, Zongqi Sun, and Joseph L. Rose. "Guided Wave Focusing Mechanics in Pipe." In ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-1850.
Full textSchmittner, Christian, Joris Brouwer, and Janou Hennig. "Application of Focusing Wave Groups in Model Testing Practice." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23949.
Full textWang, J., S. M. Calisal, J. Mikkelsen, and S. Zealand. "The Wave Focusing Effect of a Parabolic Wall." In ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/omae2004-51073.
Full textUra, Shogo, Hiroshi Sunagawa, Toshiaki Suhara, and Hiroshi Nishihara. "A Focusing Grating Coupler for Polarization Detection." In Integrated and Guided Wave Optics. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/igwo.1988.mc6.
Full textIsernia, T., D. A. M. Iero, A. F. Morabito, and L. Crocco. "Optimal wave focusing in complex environments." In 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM). IEEE, 2016. http://dx.doi.org/10.1109/antem.2016.7550237.
Full textBazargani, Farhad, and Roel Snieder. "Optimal wave focusing in elastic media." In SEG Technical Program Expanded Abstracts 2014. Society of Exploration Geophysicists, 2014. http://dx.doi.org/10.1190/segam2014-0635.1.
Full textHigginbotham, Joseph H., Morgan P. Brown, and Robert G. Clapp. "Wave equation migration velocity focusing analysis." In SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, 2008. http://dx.doi.org/10.1190/1.3063985.
Full textBrandini, Carlo, and Stéphan T. Grilli. "Three-Dimensional Wave Focusing in Fully Nonlinear Wave Models." In Fourth International Symposium on Ocean Wave Measurement and Analysis. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40604(273)112.
Full textSato, Hiroyasu, Kevin Kipruto Mutai, and Qiang Chen. "Bistatic Millimeter-Wave Imaging Using Leaky-Wave Focusing Antennas." In 2022 International Symposium on Antennas and Propagation (ISAP). IEEE, 2022. http://dx.doi.org/10.1109/isap53582.2022.9998807.
Full textReports on the topic "Focusing wave"
Rose, Joseph L., and Li Zhang. High Frequency Guided Wave Phased Array Focusing in Pipe. Fort Belvoir, VA: Defense Technical Information Center, December 2005. http://dx.doi.org/10.21236/ada444978.
Full textEsarey, E., A. Ting, and P. Sprangle. Relativistic Focusing and Beat Wave Phase Velocity Control in the Plasma Beat Wave Accelerator. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada200399.
Full textMikhail, Dorf A., Igor D. Kaganovich, Edward A. Startsev, and Ronald C. Davidson. Whistler Wave Excitation and Effects of Self-Focusing on Ion Beam Propagation through a Background Plasma along a Solenoidal Magnetic Field. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/973083.
Full textEdwards, M. Referee's report on Blast-wave diagnosis of self-focusing of an intense laser pulse in a cluster medium, by Symes et al. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/1036857.
Full textGhislandi, Simone, Raya Muttarak, Markus Sauerberg, and Benedetta Scotti. Human costs of the first wave of the COVID-19 pandemic in the major epicentres in Italy. Verlag der Österreichischen Akademie der Wissenschaften, July 2021. http://dx.doi.org/10.1553/populationyearbook2022.res2.1.
Full textAmatuni, A. Ts, S. S. Elbakian, and E. V. Sekhpossian. Coulomb field effect on plasma focusing and wake field acceleration. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10112471.
Full textFerguson, Thomas, Paul Jorgensen, and Jie Chen. The Knife Edge Election of 2020: American Politics Between Washington, Kabul, and Weimar. Institute for New Economic Thinking Working Paper Series, November 2021. http://dx.doi.org/10.36687/inetwp169.
Full textGregow, Hilppa, Antti Mäkelä, Heikki Tuomenvirta, Sirkku Juhola, Janina Käyhkö, Adriaan Perrels, Eeva Kuntsi-Reunanen, et al. Ilmastonmuutokseen sopeutumisen ohjauskeinot, kustannukset ja alueelliset ulottuvuudet. Suomen ilmastopaneeli, 2021. http://dx.doi.org/10.31885/9789527457047.
Full text