Dissertations / Theses on the topic 'Focusing Nonlinear schroedinger equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 18 dissertations / theses for your research on the topic 'Focusing Nonlinear schroedinger equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ortoleva, Cecilia Maria. "Asymptotic properties of the dynamics near stationary solutions for some nonlinear Schrödinger équations." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00825627.
Full textColeman, James. "Blowup phenomena for the vector nonlinear Schroedinger equation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ63694.pdf.
Full textKhan, K. B. "The nonlocal-nonlinear-Schroedinger-equation model of superfluid '4He." Thesis, University of Exeter, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267224.
Full textDodson, Benjamin Taylor Michael Eugene. "Caustics and the indefinite signature Schroedinger equation linear and nonlinear /." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2009. http://dc.lib.unc.edu/u?/etd,2306.
Full textTitle from electronic title page (viewed Jun. 26, 2009). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics." Discipline: Mathematics; Department/School: Mathematics.
Schober, Constance Marie. "Numerical and analytical studies of the discrete nonlinear Schroedinger equation." Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/185595.
Full textCruz-Pacheco, Gustavo. "The nonlinear Schroedinger limit of the complex Ginzburg-Landau equation." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187238.
Full textBarran, Sunil Kumar. "Modulation of the harmonic soliton solutions for the defocusing nonlinear Schroedinger equation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ40028.pdf.
Full textWitt, Andy [Verfasser]. "Inducing Predefined Nonlinear Rogue Waves on Basis of Breather Solutions : Using Analytical Solutions of the Nonlinear Schroedinger Equation / Andy Witt." Berlin : epubli, 2019. http://d-nb.info/1192098285/34.
Full textMancin, Fabio. "Ultra short solutions of a higher order nonlinear Schroedinger equation stability and applicability in dispersion managed systems /." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=970076428.
Full textBorghese, Michael, and Michael Borghese. "A Proof of the Soliton Resolution Conjecture for the Focusing Nonlinear Schrödinger Equation." Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/624578.
Full textJenkins, Robert M. "Semiclassical Asymptotics of the Focusing Nonlinear Schrodinger Equation for Square Barrier Initial Data." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/193553.
Full textORTOLEVA, CECILIA MARIA. "Asymptotic properties of the dynamics near stationary solutions for some nonlinear schro dinger equations." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/41846.
Full textMauger, Sarah. "Couplage entre auto-focalisation et diffusion Brillouin stimulée pour une impulsion laser nanoseconde dans la silice." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00638962.
Full textRolle, Jérémie. "Étude de la dynamique plasma dans la filamentation laser induite dans les verres de silice en présence de rétrodiffusion Brillouin stimulée et dans les cristaux de KDP." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112195/document.
Full textIn this thesis, we study the role of an inertial plasma reponse produced by laser pulses in self-focusing regime. Self-focusing is coupled with Brillouin nonlinearities for nanosecond pulses in silica glasses. For femtosecond pulses propagating in KDP crystals, self-focusing excites various ionization chanels. First of all, we derive the propagation equations for the pump and Stokes waves, subjected to filamentation due to optical Kerr effect, stimulated Brillouin scattering and plasma generation. In the second part, we present numerical results on the nonlinear propagation of LIL laser beams. These results show that temporal distribution of the pump pulse play a key role in the competition between self-focusing and stimulated Brillouin scattering. These preliminary results valide the anti-Brillouin system opted on the MegaJoule laser (LMJ) on the basis of milimetric-size laser beam.In a third part, we present numerical and theoretical results on the filamentation in fused silica of nanosecond light pulses operating in ultraviolet and infrared range. Emphasis is put on the action of a dynamical plasma reponse on two counterpropagating waves. For a single wave, we develop a variational analysis which reproduces global propagation features for a quasistationary balance between self-focusing and plasma defocusing. However, such a quasistionary balance ceases to clean up modulational instabilites induced by plasma retroaction on the pump wave. We show that phase modulations supress both simulated Brillouin scattering and plasma instabilities. The robustness of phase modulations is evaluated in presence of random fluctuations in the input pump pulse profile.Finally, we study numerically the nonlinear propagation of femtosecond pulses in fused silica and KDP. First, we show that the presence of defects involving less photons for exciting electrons from the valence band to the conduction band promotes higher filamentation intensity levels. Then, we compare the filamentation dynamic in silica and KDP crystal. The ionization model for KDP crystal takes into account the presence of defects and the electron-hole dynamics. We show that the propagation dynamics in silica and KDP are almost identical at equivalent ratios of input power over the critical power self-focusing.The summary of this thesis recalls the original results obtained and discusses the possibility of future developments
Eisner, Adam. "A numerical exploration of the statistical behavior of the discretized nonlinear Schroedinger equation." 2004. https://scholarworks.umass.edu/dissertations/AAI3152688.
Full textMancin, Fabio [Verfasser]. "Ultra short solutions of a higher order nonlinear Schroedinger equation : stability and applicability in dispersion managed systems / vorgelegt von Fabio Mancin." 2004. http://d-nb.info/970076428/34.
Full text"Global Behavior Of Finite Energy Solutions To The Focusing Nonlinear Schrödinger Equation In d Dimension." Doctoral diss., 2011. http://hdl.handle.net/2286/R.I.9026.
Full textDissertation/Thesis
Ph.D. Mathematics 2011
MARCUCCI, GIULIA. "Complex extreme nonlinear waves: classical and quantum theory for new computing models." Doctoral thesis, 2020. http://hdl.handle.net/11573/1353250.
Full text