Academic literature on the topic 'Fock lattice'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fock lattice.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fock lattice"
YU, M., and H. Q. LIN. "PHASE SEPARATION IN THE TWO-DIMENSIONAL HUBBARD MODEL." International Journal of Modern Physics B 19, no. 01n03 (January 30, 2005): 299–302. http://dx.doi.org/10.1142/s021797920502844x.
Full textKhoromskaia, Venera, and Boris N. Khoromskij. "Block Circulant and Toeplitz Structures in the Linearized Hartree–Fock Equation on Finite Lattices: Tensor Approach." Computational Methods in Applied Mathematics 17, no. 3 (July 1, 2017): 431–55. http://dx.doi.org/10.1515/cmam-2017-0004.
Full textWelsh, Staszek, and David E. Logan. "Simple probability distributions on a Fock-space lattice." Journal of Physics: Condensed Matter 30, no. 40 (September 13, 2018): 405601. http://dx.doi.org/10.1088/1361-648x/aadd35.
Full textGilmutdinov V. F., Timirgazin M. A., and Arzhnikov A. K. "Spiral magnetic order and metal-insulator transition in the Hubbard model on a triangular lattice." Physics of the Solid State 64, no. 1 (2022): 76. http://dx.doi.org/10.21883/pss.2022.01.52492.191.
Full textQin, Mingpu. "Effect of hole doping on the 120 degree order in the triangular lattice Hubbard model: a Hartree–Fock revisit." Journal of Physics: Condensed Matter 34, no. 23 (April 5, 2022): 235603. http://dx.doi.org/10.1088/1361-648x/ac5e79.
Full textOztas, Z. "Nondiffracting wave beams in non-Hermitian Glauber–Fock lattice." Physics Letters A 382, no. 17 (May 2018): 1190–93. http://dx.doi.org/10.1016/j.physleta.2018.02.037.
Full textSurratt, G. T., R. N. Euwema, and D. L. Wilhite. "HArtree-fock lattice constant and bulk modulus of diamond." International Journal of Quantum Chemistry 7, S7 (June 18, 2009): 607–11. http://dx.doi.org/10.1002/qua.560070770.
Full textГильмутдинов, В. Ф., М. А. Тимиргазин, and А. К. Аржников. "Спиральное магнитное упорядочение и переход металл--диэлектрик в модели Хаббарда на треугольной решeтке." Физика твердого тела 64, no. 1 (2022): 79. http://dx.doi.org/10.21883/ftt.2022.01.51835.191.
Full textBendacha, M., and A. Boudjemâa. "Normal and anomalous densities in Bose–Einstein condensates with optical lattices." Canadian Journal of Physics 92, no. 5 (May 2014): 375–79. http://dx.doi.org/10.1139/cjp-2013-0396.
Full textMandal, Saptarshi, and Sanjay Gupta. "Interacting fermions in two dimension in simultaneous presence of disorder and magnetic field." Journal of Physics: Condensed Matter 34, no. 21 (March 29, 2022): 215602. http://dx.doi.org/10.1088/1361-648x/ac5d8a.
Full textDissertations / Theses on the topic "Fock lattice"
Kambili, Agapi. "Lattice dynamics and electron correlations in mesoscopic systems." Thesis, Lancaster University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310459.
Full textGouveia, José Daniel Lago da Silva Neves. "Magnetic properties of quantum electronic systems with non-trivial geometries." Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/21058.
Full textO modelo de Hubbard é um dos modelos mais simples para descrever o movimento e a interacção de electrões em sólidos. Tem sido largamente estudado pelas suas aplicações na descrição de condutores orgânicos e na procura de supercondutividade a cada vez mais altas temperaturas. O objectivo desta tese é contribuir para a melhor compreensão do comportamento do modelo de Hubbard a duas dimensões quando a geometria da rede é alterada, nomeadamente torcendo as condições de fronteira ou introduzindo frustração geométrica. Começa-se por fazer uma extensão do diagrama de fases magnéticas do modelo de Hubbard numa rede quadrada usando a aproximação de campo médio, introduzindo a possibilidade de modulação da densidade de spin, contrastando assim com estudos anteriores. Isto foi conseguido dividindo a rede quadrada em duas sub-redes, podendo as suas densidades de spin ser diferentes. Concluiu-se que, em algumas regiões do diagrama de fases, esta densidade de spin modulada permite ao sistema baixar a sua energia livre. Em segundo lugar, introduz-se uma variação da rede quadrada, a que chamamos rede helicoidal. Estas duas redes são equivalentes no limite termodinâmico, visto que apenas diferem nas condições de fronteira. É apresentado um Hamiltoniano efectivo que descreve as correcções de energia em primeira ordem devidas aos saltos transversais no limite de acoplamento forte (strong-coupling limit). Devido à introdução destes saltos, observa-se uma dinâmica de spins, mesmo no limite de interacção electrónica infinita (ou seja, sem as correcções de Heisenberg). É apresentada uma expressão analítica para a correcção energética no caso de uma lacuna e um spin invertido, bem como representações gráficas das correcções para vários spins invertidos, obtidas numericamente. Em terceiro lugar, apresenta-se uma unificação dos estados localizados de redes quadradas decoradas. Esta unificação é apresentada na forma de "regras de origami", que incluem dobrar e desdobrar estados localizados de Hamiltonianos sem interacções (tight-binding ). Mostra-se que os estados localizados das redes decoradas de Lieb, Mielke e Tasaki podem ser obtidos uns a partir dos outros aplicando estas regras. Seguidamente, dá-se ênfase às redes decoradas da classe de Lieb. Começa-se por estudar a evolução temporal dos seus estados localizados quando um campo magnético é aplicado lentamente e perpendicularmente ao plano da rede. Conclui-se que, em concordância com o teorema adiabático, o estado localizado mantém-se localizado desde que haja uma diferença energética finita entre a sua energia e o resto do espectro do Hamiltoniano. Além disto, mostra-se que a forma como o estado localizado evolui pode ser descrita por um Hamiltoniano mais simples, com apenas três níveis energéticos, cuja solução é análoga a um movimento de precessão clássico. Finalmente, introduz-se a interacção de Hubbard na rede de Lieb e, usando a aproximação de campo médio, obtém-se o diagrama de fases magnéticas desta rede, previamente inexistente na literatura. Conclui-se que, no caso de redes bipartidas com diferente número de átomos em cada sub-rede, a abordagem de campo médio tradicional não reproduz resultados correctos na situação de um electrão por sítio (half filling ). Posto isto, segue-se uma abordagem em campo médio mais complexa (Hartree-Fock generalizada), que permite que as sub-redes tenham diferentes magnetizações e densidades de carga. Com estas modificações, a nova abordagem de campo médio já reproduz correctamente os resultados exactos em half filling, dados pelo teorema de Lieb e pelo teorema da densidade uniforme.
The Hubbard model is one of the simplest models to describe the motion and interaction of electrons in solids. It has been widely studied due to its applications in the description of organic conductors and in the search for high-Tc superconductivity. The aim of this thesis is to contribute for the better understanding of the behavior of the two-dimensional Hubbard model when the geometry of the lattice is changed, namely by twisting the boundary conditions or introducing geometric frustration. We begin by extending the mean-field magnetic phase diagram of the Hubbard model in a square lattice, by adding the possibility of spin density modulation, in contrast with previous studies. This was done by considering a square lattice divided into two sublattices, which were allowed to have different spin densities. We found that, in some regions of the phase diagram, nonuniform spin density throughout the lattice leads to a lower free energy. Secondly, we introduce a variation of the square lattice, which we call the helicoidal lattice. This lattice and the square lattice are equivalent in the thermodynamic limit, as they differ only in the boundary conditions. We present an effective Hamiltonian that describes the first-order energy corrections due to transversal hoppings in the strong-coupling limit, and show that interesting spin dynamics arises, even without the Heisenberg correction, due to hole hoppings in the transversal direction. We present an analytic expression for the energy correction in the case of one hole and one inverted spin. The numerically-obtained corrections for higher number of inverted spins are also shown. Thirdly, we present a unifying picture for localized states of decorated square lattices. This unification is presented in the form of what we call the "origami rules", which include folding and unfolding localized states of tight-binding Hamiltonians. We show that localized states of decorated lattices of the Lieb, Mielke and Tasaki classes can be obtained from each other by applying these rules. We then focus on the decorated lattices of the Lieb class. We begin by studying the time evolution of its localized states when a magnetic field is slowly applied perpendicularly to the plane of the lattice. We find that, as stated by the adiabatic theorem, the localized eigenstate remains localized as long as there is an energy gap between its energy and the rest of the Hamiltonian spectrum. Furthermore, we show that the way that the localized state evolves can be described by a simple three-level toy Hamiltonian, whose solution is analogous to a classical precession motion. Lastly, we introduce the Hubbard interaction in the Lieb lattice and, using the mean-field approximation, obtain the magnetic phase diagram of this lattice, previously absent from the literature. We find that, in the case of bipartite lattices with a different number of atoms on each sublattice, the traditional mean-field approach fails to yield correct results at half-filling. Therefore, we follow a more complex (generalized Hartree-Fock) mean-field approach, which allows the sublattices to have different magnetizations and charge densities. Under these new considerations, the mean-field approach correctly reproduces the exact results at half-filling, given by Lieb’s theorem and the uniform density theorem.
Eisenbach, Markus. "Magnetic anisotropy in nanostructures." Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364862.
Full textMatsushita, Eduardo Toshio Domingues. "Condensados em redes ópticas periódicas." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-02102007-152446/.
Full textWe use the Bose-Hubbard model to study the dynamical and thermodynamical stabilities of condensates in a circular periodic optical lattice. Our main goal was to investigate the existence of metastable condensates in the system. We derive and solve the Gross-Pitaevskii equation, and from the analysis of the solutions it was possible to show that the system condenses in states with well-defined modular momentum. These states constitute a basis that diagonalizes the term of the Bose-Hubbard Hamiltonian which describes the dynamics of atomic tunneling. In the framework of Bogoliubov theory we determine, for each condensate, the effective Hamiltonian whose diagonalization give us the collective excitation spectrum of the system. We show that the mode associated to a zero eigenvalue, which is a consequence of the violation of atoms number conservation, has the same modular momentum of the condensate. The condensates with modular momentum in the 2nd and 3rd quadrants are all thermodynamically unstable whereas the dynamical stability depends on the control parameters. On the other hand, the condensates with modular momentum in the 1st and 4th quadrants are all dynamically stable whereas the thermodynamical stability depends on the control parameters. Our analysis shows that the condensate with modular momentum zero, which corresponds to a global minimum of energy, is always stable independently of the control parameters. We determine, exactly, the range on the control parameters where it is possible to detect metastability in the system. We have studied how the competition between the intensities of the tunneling and local interaction terms affects the stability of the condensates. This competition defines two distinct regimes: Rabi, where the coherence between states localized in the sites is achieved, and Fock, where this coherence is not achieved and the validity of Bogoliubov approximation is questionable.
Book chapters on the topic "Fock lattice"
Mizuno, Masataka. "Chemical Bonding Around Lattice Imperfections in 3d-Transition Metal Compounds." In Hartree-Fock-Slater Method for Materials Science, 49–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-31297-8_3.
Full textGrätzer, George. "Fork Congruences." In The Congruences of a Finite Lattice, 381–87. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29063-3_28.
Full text"One Electron in Crystal Lattice." In Photons in Fock Space and Beyond, 925–64. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814696593_0006.
Full textTiwari, Sandip. "Point perturbations." In Semiconductor Physics, 248–91. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198759867.003.0007.
Full text"The Man Who Had Scruples about a Drop of Milk—Fàrisi scrupulu di la stizza di lu latti." In The Collected Sicilian Folk and Fairy Tales of Giuseppe Pitré, 62. Routledge, 2013. http://dx.doi.org/10.4324/9780203036297-46.
Full textConference papers on the topic "Fock lattice"
Ito, Kenchi, Masahiko Hada, and Kazumi Kawamoto. "Refractive-index change of LiNbO3 by H+–Li+ exchange." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.fjj6.
Full textKeil, Robert, Armando Perez-Leija, Felix Dreisow, Matthias Heinrich, Hector Moya-Cessa, Stefan Nolte, Demetrios N. Christodoulides, and Alexander Szameit. "Displaced Fock states and photon correlations in Glauber-Fock photonic lattices." In 12th European Quantum Electronics Conference CLEO EUROPE/EQEC. IEEE, 2011. http://dx.doi.org/10.1109/cleoe.2011.5943394.
Full textPerez-Leija, Armando, Robert Keil, Hector Moya-Cessa, Demetrios Christodoulides, and Alexander Szameit. "Observation of Glauber-Fock dynamics in photonic lattices." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/qels.2011.qthd7.
Full textKeil, Robert, Armando Perez-Leija, Hector Moya-Cessa, Alexander Szameit, and Demetrios N. Christodoulides. "Observation of Bloch-like oscillations in Glauber-Fock oscillator lattices." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/qels.2012.qm1e.6.
Full textDadush, Daniel, Chris Peikert, and Santosh Vempala. "Enumerative Lattice Algorithms in any Norm Via M-ellipsoid Coverings." In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2011. http://dx.doi.org/10.1109/focs.2011.31.
Full textHaah, Jeongwan, Matthew Hastings, Robin Kothari, and Guang Hao Low. "Quantum Algorithm for Simulating Real Time Evolution of Lattice Hamiltonians." In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2018. http://dx.doi.org/10.1109/focs.2018.00041.
Full textDadush, Daniel, and Oded Regev. "Towards Strong Reverse Minkowski-Type Inequalities for Lattices." In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2016. http://dx.doi.org/10.1109/focs.2016.55.
Full textBelohlavek, Radim, and Vilem Vychodil. "Scales behind computational intelligence: exploring properties of finite lattices." In 2007 IEEE Symposium on Foundations of Computational Intelligence. IEEE, 2007. http://dx.doi.org/10.1109/foci.2007.371527.
Full textXie, Yan, Dengfeng Lu, and Jingjun Yu. "Bimaterial Micro-Structured Annulus With Zero Thermal Expansion Coefficient." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68142.
Full textZhikharev, Leviin. "Grid Based on the Sierpinski Fractal and an Assessment of the Prospects for its Application in Aircraft Parts." In 31th International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2021. http://dx.doi.org/10.20948/graphicon-2021-3027-754-761.
Full text