Academic literature on the topic 'Flying wing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flying wing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Flying wing"

1

Niu, Zhong-Guo, Xiang-Hui Xu, Jian-Feng Wang, Jia-Li Jiang, and Hua Liang. "Experiment on longitudinal aerodynamic characteristics of flying wing model with plasma flow control." Acta Physica Sinica 71, no. 2 (2022): 024702. http://dx.doi.org/10.7498/aps.71.20211425.

Full text
Abstract:
Horizontal tail is eliminated from the flying wing layout for improving the low observable and aerodynamic efficiency, resulting in degrading longitudinal maneuverability and fight stability. The low speed wind tunnel test study of improving the longitudinal aerodynamic characteristics of large aspect ratio flying wing model is carried out by using plasma flow control technology. The flying wing model has a leading-edge sweep angle of 34.5° and an aspect ratio of 5.79. The reasons for deteriorating the static maneuverability and stability of the flying wing model and the mechanism of plasma control of the flow field and longitudinal aerodynamic characteristics are studied by particle image velocimetry (PIV) flow visualization and static force measurement test. The control law of plasma control of the flight maneuverability and stability of the flying wing model is studied through flight test. The fact that the flow separation of the outer wing of the flying wing model occurs earlier than the inner wing and the wing is swept back can result in the forward movement of the aerodynamic center and the deterioration of the longitudinal static stability. The shock disturbance induced by plasma can suppress the flow separation of the suction surface, thereby extending the linear section of the lift curve of the model, preventing the aerodynamic center from moving forward, and improving the longitudinal static stability. When the wind speed is 50 m/s, the plasma control improves the horizontal rudder efficiency at a high angle of attack of the flying wing model, increases the maximum lift coefficient of the model by about 0.1, and postpones the stall angle of attack by more than 4° at different rudder angles. The plasma control allows the flying model to follow the command movement better while flying, increases the flying pitch limit angle from 11.5° to 15.1°, reduces the amplitude of longitudinal disturbance motion by 2°, and reduces the oscillation attenuation time from 15 to 8 s, thereby improving the longitudinal flight maneuverability and stability of the flying wing model. It can be seen that plasma flow control technology has great potential applications in improving the flight quality of flying wing layout.
APA, Harvard, Vancouver, ISO, and other styles
2

Ortega Ancel, Alejandro, Rodney Eastwood, Daniel Vogt, Carter Ithier, Michael Smith, Rob Wood, and Mirko Kovač. "Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots." Interface Focus 7, no. 1 (February 6, 2017): 20160087. http://dx.doi.org/10.1098/rsfs.2016.0087.

Full text
Abstract:
Many insects are well adapted to long-distance migration despite the larger energetic costs of flight for small body sizes. To optimize wing design for next-generation flying micro-robots, we analyse butterfly wing shapes and wing orientations at full scale using numerical simulations and in a low-speed wind tunnel at 2, 3.5 and 5 m s −1 . The results indicate that wing orientations which maximize wing span lead to the highest glide performance, with lift to drag ratios up to 6.28, while spreading the fore-wings forward can increase the maximum lift produced and thus improve versatility. We discuss the implications for flying micro-robots and how the results assist in understanding the behaviour of the butterfly species tested.
APA, Harvard, Vancouver, ISO, and other styles
3

Elenin, D. V. "CREATION OF AN EXPERIMENTAL CONTROL BODY (ELEVON) IN THE «FLYING WING» AERODYNAMIC SCHEME." System analysis and logistics 2, no. 28 (June 1, 2021): 26–32. http://dx.doi.org/10.31799/2077-5687-2021-2-26-32.

Full text
Abstract:
The article discusses the possibility of creating two schemes of an experimental control body in flight for a UAV of the "Flying Wing" scheme. The concept of creating a real prototype for an experiment in the Solidworks Flow environment and in a wind tunnel with a low incoming flow velocity is presented. Key words: wing, aerodynamic design, UAV, flying wing.
APA, Harvard, Vancouver, ISO, and other styles
4

PRISACARIU, Vasile. "UAV FLYING WING WITH A PHOTOVOLTAIC SYSTEM." Review of the Air Force Academy 17, no. 1 (May 24, 2019): 63–70. http://dx.doi.org/10.19062/1842-9238.2019.17.1.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

PEPELEA, Dumitru, Marius-Gabriel COJOCARU, Adrian TOADER, and Mihai-Leonida NICULESCU. "CFD ANALYSIS FOR UAV OF FLYING WING." SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 18, no. 1 (June 24, 2016): 171–76. http://dx.doi.org/10.19062/2247-3173.2016.18.1.22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Davenport, John. "Wing-loading, stability and morphometric relationships in flying fish (Exocoetidae) from the North-eastern Atlantic." Journal of the Marine Biological Association of the United Kingdom 72, no. 1 (February 1992): 25–39. http://dx.doi.org/10.1017/s0025315400048761.

Full text
Abstract:
‘Four-winged’ flying fish (in which both pectoral and pelvic fins are hypertrophied) reach greater maximum sizes than ‘two-winged’ forms in which only the pectoral fins are enlarged. Exocoetus obtusirostris shows negatively allometric growth in relation to standard length in terms of body mass (b=2·981), and lateral fin area (b=1·834). In consequence, wing-loading rises in positive allometric fashion with standard length (b=l·236). Pectoral fin length cannot be greater than 78–79% of standard length or swimming will be impaired, so the requirement for increased flying speed resulting from increased wing-loading during growth means that lift:drag ratios have to be improved by relatively narrowed wings and tapered wing tips; features which in turn increase wing-loading. Evidence is presented to show that hypertrophied pelvic fins in four-wingers are required to solve problems of stability in pitch, rather than to decrease wing-loading. The ‘non-flying’ flying fish, Oxyporhamphus micropterus, has very high wing-loadings, but the main reason that it cannot fly is that the centre of gravity of the fish is so far behind the pectoral fins that stalling on take-off would be inevitable. Flying fish possess reasonable quantities of red axial musculature, but no more than are used for cruising in fast-moving pelagic fish such as mackerel; it seems probable that acceleration to take-off speed in flying fish requires use of anaerobic white muscles.
APA, Harvard, Vancouver, ISO, and other styles
7

Shyy, Wei, Chang-kwon Kang, Pakpong Chirarattananon, Sridhar Ravi, and Hao Liu. "Aerodynamics, sensing and control of insect-scale flapping-wing flight." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2186 (February 2016): 20150712. http://dx.doi.org/10.1098/rspa.2015.0712.

Full text
Abstract:
There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted.
APA, Harvard, Vancouver, ISO, and other styles
8

Hou, Yu, and Fang Wang. "CPG-Based Movement Control for Bionic Flapping-Wing Mechanism." Applied Mechanics and Materials 226-228 (November 2012): 844–49. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.844.

Full text
Abstract:
Flapping-wing flying is a kind of rhythmic movement with symmetry of time and space essentially, and this movement is generated and controlled by Central Pattern Generator (CPG). A 2-DOF flapping mechanism was designed according to the flapping-wing flying principle of insects, and the flapping-wing flying CPG model was constructed by nonlinear oscillators. The system responses were studied, and the influences of the model parameters to the system characteristics were analyzed. Through the engineering simulation of flapping-wing flying control model, the first modal vibration of the system was selected, and the different flying modes of bionic aircraft were realized by adjusting system parameters. This kind of bionic control strategy promoted the movement and control ability of flapping-wing flying, and provided a new method to the generation and control of flapping-wing rhythmic movement.
APA, Harvard, Vancouver, ISO, and other styles
9

Hong, Wei Jiang, and Dong Li Ma. "Influence of Control Coupling Effect on Landing Performance of Flying Wing Aircraft." Applied Mechanics and Materials 829 (March 2016): 110–17. http://dx.doi.org/10.4028/www.scientific.net/amm.829.110.

Full text
Abstract:
As flying wing aircraft has no tail and adopts blended-wing-body design, most of flying wing aircrafts are directional unstable. Pitching moment couples seriously with rolling and yawing moment when control surfaces are deflected, bringing insecurity to landing stage. Numerical simulation method and semi-empirical equation estimate method were combined to obtain a high aspect ratio flying wing aircraft’s aerodynamic coefficients. Modeling and simulation of landing stage were established by MATLAB/Simulink. The control coupling effect on lift and drag characteristics and anti-crosswind landing capability was studied. The calculation results show that when the high aspect ratio flying wing aircraft was falling into the deceleration phase, appropriate to increase the opening angle of split drag rudder can reduce the trimming pitching moment deflection of pitch flap, thereby reduce the loss of lift caused by the deflection of pitch flaps. Flying wing aircraft can be rounded out successfully by using the pitch flap gently and steady. Both side-slip method and crabbed method can be applied to the landing of high aspect ratio flying wing aircraft in crosswind, the flying wing aircraft’s anti-crosswind landing capability was weakened by the control coupling effect of split drag rudder and elevon. Sideslip method was recommended in the crosswind landing of flying wing aircraft after calculation and analysis.
APA, Harvard, Vancouver, ISO, and other styles
10

Xie, Liang, Han, Niu, Wei, Su, and Tang. "Experimental Study on Plasma Flow Control of Symmetric Flying Wing Based on Two Kinds of Scaling Models." Symmetry 11, no. 10 (October 9, 2019): 1261. http://dx.doi.org/10.3390/sym11101261.

Full text
Abstract:
The symmetric flying wing has a simple structure and a high lift-to-drag ratio. Due to its complicated surface design, the flow field flowing through its surface is also complex and variable, and the three-dimensional effect is obvious. In order to verify the effect of microsecond pulse plasma flow control on the symmetric flying wing, two different sizes of scaling models were selected. The discharge energy was analyzed, and the force and moment characteristics of the two flying wings and the particle image velocimetry (PIV) results on their surface flow field were compared to obtain the following conclusions. The microsecond pulse surface dielectric barrier discharge energy density is independent of the actuator length but increases with the actuation voltage. After actuation, the stall angle of attack of the small flying wing is delayed by 4°, the maximum lift coefficient is increased by 30.9%, and the drag coefficient can be reduced by 17.3%. After the large flying wing is actuated, the stall angle of attack is delayed by 4°, the maximum lift coefficient is increased by 15.1%, but the drag coefficient is increased. The test results of PIV in the flow field of different sections indicate that the stall separation on the surface of the symmetric flying wing starts first from the outer side, and then the separation area begins to appear on the inner side as the angle of attack increases.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Flying wing"

1

Farrell, Joseph H. "DYNAMICALLY SCALED OBLIQUE FLYING WING." Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/192337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Haidong. "Optimal design of a flying-wing aircraft inner wing structure configuration." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7439.

Full text
Abstract:
Flying-wing aircraft are considered to have great advantages and potentials in aerodynamic performance and weight saving. However, they also have many challenges in design. One of the biggest challenges is the structural design of the inner wing (fuselage). Unlike the conventional fuselage of a tube configuration, the flying-wing aircraft inner wing cross section is limited to a noncircular shape, which is not structurally efficient to resist the internal pressure load. In order to solve this problem, a number of configurations have been proposed by other designers such as Multi Bubble Fuselage (MBF), Vaulted Ribbed Shell (VLRS), Flat Ribbed Shell (FRS), Vaulted Shell Honeycomb Core (VLHC), Flat Sandwich Shell Honeycomb Core (FLHC), Y Braced Box Fuselage and the modified fuselage designed with Y brace replaced by vaulted shell configurations. However all these configurations still inevitably have structural weight penalty compared with optimal tube fuselage layout. This current study intends to focus on finding an optimal configuration with minimum structural weight penalty for a flying-wing concept in a preliminary design stage. A new possible inner wing configuration, in terms of aerodynamic shape and structural layout, was proposed by the author, and it might be referred as ‘Wave-Section Configuration’. The methodologies of how to obtain a structurally efficient curvature of the shape, as well as how to conduct the initial sizing were incorporated. A theoretical analysis of load transmission indicated that the Wave-Section Configuration is feasible, and this was further proved as being practical by FE analysis. Moreover, initial FE analysis and comparison of the Wave-Section Configuration with two other typical configurations, Multi Bubble Fuselage and Conventional Wing, suggested that the Wave-Section Configuration is an optimal design in terms of weight saving. However, due to limitations of the author’s research area, influences on aerodynamic performances have not yet been taken into account.
APA, Harvard, Vancouver, ISO, and other styles
3

Saeed, Tariq Issam. "Conceptual design for a laminar-flying-wing aircraft." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/243926.

Full text
Abstract:
The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. In addition to boundary layer laminarisation (utilising distributed suction) and limited sweep, a standing-height passenger cabin and subcritical aerofoil flow are imposed as requirements. Subject to these constraints, this research aims to: provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty; suggesting there is little benefit in trying to maintain an optimal suction distribution through increased subsurface-chamber complexity. For representative parameter values, the minimum power associated with boundary-layer losses alone contributes some 80% - 90% of the total power requirement. To identify the viable basic design specification, a high-level exploration of the laminar-flying-wing design space is performed, with an emphasis above all on aerodynamic efficiency. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 10[superscript 6] m[superscript -1], is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. The benefit of laminarisation is manifested in a high lift-to-drag ratio, but the wing loading is low, and the structural efficiency and gust response are thus likely to be relatively poor. On the basis of this specification, a detailed conceptual design is undertaken. A 220-passenger laminar-flying-wing concept, propelled by three turboprop engines, with a cruise range of 9000 km is developed. The estimated fuel burn is 13.9 g/pax.km. For comparison, a conventional aircraft, propelled by four turboprop engines, with a high-mounted, unswept, wing is designed for the same mission specification and propulsion characteristics, and is shown to have a fuel burn of 15.0 g/pax.km. Despite significant aerodynamic efficiency gains, the fuel burn of the laminar flying wing is only marginally better as it suffers from a poor cruise engine efficiency, due to extreme differences between takeoff and cruising requirements, and is much heavier. The laminar flying wing proposed in this thesis falls short of the performance improvements expected of the concept, and is not worth the development effort. It is therefore proposed that research efforts either be focussed on improving the engine efficiency, or switching to a low aspect ratio, high sweep, design configuration.
APA, Harvard, Vancouver, ISO, and other styles
4

Levis, Errikos. "Design synthesis of advanced technology, flying wing seaplanes." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9943.

Full text
Abstract:
Over the past decades there has been increasing pressure for ever more efficient and environmentally friendly aircraft to be designed. The use of waterborne aircraft could be a means of satisfying those requirements in the future. The aim of the PhD research program presented in this thesis was to develop the methodologies necessary for the preliminary design of large passenger seaplanes and evaluate the performance of such an aircraft compared to the current state of the art. The major technological and operational constraints in designing large waterborne aircraft were identified through an extensive feasibility study. A number of subject areas necessitating further investigation were also identified. To ensure that waterborne takeoff distance requirements are met, a novel initial sizing methodology was generated, relating the aircraft's thrust and lifting characteristics to the takeoff Balanced Field Length. To allow the design of a broad family of aircraft based on a predefined baseline configuration, the seaplane geometry was fully parameterized. The aerodynamic properties of the entire aircraft were determined using a vortex-lattice potential flow solver, written specifically for the configuration being investigated, combined with other commonly used empirical methods. Novel methodologies for estimating the hydrodynamic characteristics of a broad range of parametric hulls were developed using the wealth of experimental hydrodynamic test data available. These methods can be used not only to predict the resistance and trim characteristics of a seaplane throughout the entire takeoff and landing manoeuvre but also give an initial estimate of the attitudes where hydrodynamic instabilities may be encountered. The airborne and waterborne performance characteristics of each resulting aircraft design were estimated using the aforementioned methods. The resulting design synthesis has been integrated into a single algorithm, written in FORTRAN, intended to allow the easy and prompt analysis of any parametric variant of the baseline configuration.
APA, Harvard, Vancouver, ISO, and other styles
5

Aguirre, John. "Study of 3-Dimensional Co-Flow Jet Airplane and High-Rise Building Flow Using CFD Simulation." Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_theses/181.

Full text
Abstract:
The purpose of this thesis is to design and study an aircraft which implements the Co-Flow Jet (CFJ) airfoil concept, as well as to study the CAARC standard highrise building. The design concept is verified mainly by the use of a Computational Fluid Dynamics (CFD) package. A thorough methodology for geometry and mesh generation is developed, and subsequently applied to the two cases. The first case studied is that of the CFJ Airplane (CFJA). It consists of a threedimensional, highly blended, ying wing geometry implementing the Co-Flow Jet airfoil concept. Though a thorough comparison to a baseline geometry, it is shown that usage of the CFJ airfoil cross-section greatly improves aircraft performance by increasing lift, reducing drag, and providing a source of thrust over the operational range of angles of attack. A steady state CFD simulation is used for this case, as the air ow around an airfoil cross-section is inherently steady for attached ows. CFD results are used to support the Engineless Aircraft" concept, where the CFJ airfoil is used as the sole form of propulsion. The second case studied consists of a rectangular high-rise building undergoing a wind condition with Mach number of 0:1 and a Reynolds number of 160000. Due to the non-streamlined geometry of the building cross-section, aerodynamic instabilities due to uid separation are present, and therefore an unsteady CFD analysis is necessary to fully resolve all of the ow phenomena. Preliminary steady state results are presented, and a plan is laid down for the future study of this highly complex case. Results are presented for a variety of angles of attack in the case of the CFJA, and for the main ow direction in the case of the CAARC building. Results are compared with baseline geometry in the case of the CFJ Airplane. The CFJ Airplane case is simulated using a 3rd order steady state scheme, which is sufficient to achieve valid results for the ow regime. The CAARC building, which has inherent ow separation, requires the use of high order schemes.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhu, Yan. "Longitudinal control laws design for a flying wing aircraft." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7423.

Full text
Abstract:
This research is concerned with the flight dynamic, pitch flight control and flying qualities assessment for the reference BWB aircraft. It aims to develop the longitudinal control laws which could satisfy the flying and handing qualities over the whole flight envelope with added consideration of centre of gravity (CG) variation. In order to achieve this goal, both the longitudinal stability augmentation system (SAS) and autopilot control laws are studied in this thesis. Using the pole placement method, two sets of local Linear-Time-Invariant (LTI) SAS controllers are designed from the viewpoints of flying and handing qualities assessment and wind disturbance checking. The global gain schedule is developed with the scheduling variable of dynamic pressure to transfer gains smoothly between these two trim points. In addition, the poles movement of short period mode with the varying CG position are analysed, and some approaches of control system design to address the problem of reduced stability induced by CG variation are discussed as well. To achieve the command control for the aircraft, outer loop autopilot both pitch attitude hold and altitude hold are implemented by using the root locus method. By the existing criteria in MIL-F-8785C specifications being employed to assess the augmented aircraft response, the SAS linear controller with automatic changing gains effectively improve the stability characteristic for the reference BWB aircraft over the whole envelope. Hence, the augmented aircraft equals to a good characteristic controlled object for the outer loop or command path design, which guarantee the satisfactory performance of command control for the BWB aircraft. The flight control law for the longitudinal was completed with the SAS controller and autopilot design. In particular, the SAS was achieved with Level 1 flying and handing qualities, meanwhile the autopilot system was applied to obtain a satisfactory pitch attitude and altitude tracking performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Iglesias, Sergio. "Optimum Spanloads Incorporating Wing Structural Considerations And Formation Flying." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/35718.

Full text
Abstract:
The classic minimum induced drag spanload is not necessarily the best choice for an aircraft. For a single aircraft configuration, variations from the elliptic, minimum drag optimum load distribution can produce wing weight savings that result in airplane performance benefits. For a group of aircraft flying in formation, non-elliptic lift distributions can give high induced drag reductions both for the formation and for each airplane.

For single aircraft, a discrete vortex method which performs the calculations in the Trefftz plane has been used to calculate optimum spanloads for non-coplanar multi-surface configurations. The method includes constraints for lift coefficient, pitching moment coefficient and wing root bending moment. This wing structural constraint has been introduced such that wing geometry is not changed but the modified load distributions can be related to wing weight. Changes in wing induced drag and weight were converted to aircraft total gross weight and fuel weight benefits, so that optimum spanloads that give maximum take-off gross weight reductions can be found. Results show that a reduction in root bending moment from a lift distribution that gives minimum induced drag leads to more triangular spanloads, where the loads are shifted towards the root, reducing wing weight and increasing induced drag. A slight reduction in root bending moment is always beneficial, since the initial increase in induced drag is very small compared to the wing weight decrease. Total weight benefits were studied for a Boeing 777-200IGW type configuration, obtaining take-off gross weight improvements of about 1% for maximum range missions. When performing economical, reduced-range missions, improvements can almost double. A long range, more aerodynamically driven aircraft like the Boeing 777-200IGW will experience lower benefits as a result of increasing drag. Short to medium range aircraft will profit the most from more triangular lift distributions.

Formation flight configurations can also result in large induced drag reductions for load distributions that deviate from the elliptical one. Optimum spanloads for a group of aircraft flying in an arrow formation were studied using the same discrete vortex method, now under constraints in lift, pitching moment and rolling moment coefficients. It has been shown that large general improvements in induced drag can be obtained when the spanwise and vertical distances between aircraft are small. In certain cases, using our potential flow vortex model, this results in negative (thrust) induced drag on some airplanes in the configuration. The optimum load distributions necessary to achieve these benefits may, however, correspond to a geometry that will produce impractical lift distributions if the aircraft are flying alone. Optimum separation among airplanes in this type of formation is determined by such diverse factors as the ability to generate the required optimum load distributions or the need for collision avoidance.
Master of Science

APA, Harvard, Vancouver, ISO, and other styles
8

Geyman, Matthew Kenneth. "Wing/Wall Aerodynamic Interactions in Free Flying, Maneuvering MAVs." University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1335113432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cheng, Yun. "Preliminary fuselage structural configuration of a flying-wing type airline." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7419.

Full text
Abstract:
The flying-wing is a type of configuration which is a tailless airplane accommodating all of its parts within the outline of a single airfoil. Theoretically, it has the most aerodynamic efficiency. The fuel consumption can be more efficient than the existed conventional airliner. It seems that this configuration can achieve the above mentioned requirements. According to these outstanding advantages, many aircraft companies did a great deal of projects on the flying-wing concept. However, the application was only for sport and military use; for airliner, none of them entered production. FW-11 is a flying-wing configuration airliner which is a design cooperation between Cranfield University and Aviation Industry Corporation of China (AVIC). Aiming the spatial economic and environmental needs, this 200-seat airliner would attract attention from airline companies for cost saving and environmental protection. Before start, this program is designated for a new generation commercial aircraft to compete with the existing same capability airliner, such as Airbus A320 and Boeing 767. As the first team of this program, the aim is to finish the conceptual design and prepare the relevant document for next two teams that will perform preliminary and detail design. As a member of FW-11 program and as part of the GDP, the author has been through the four conceptual design stages: engine manufacturers, aircraft family issues, structure design and the establishment of 3-D CAD model. The aim of IRP study is to focus on the initial fuselage design.
APA, Harvard, Vancouver, ISO, and other styles
10

Tonti, Jacopo. "Development of a Flight Dynamics Modelof a Flying Wing Configuration." Thesis, KTH, Aerodynamik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-159873.

Full text
Abstract:
The subject of UCAV design is an important topic nowadays and many countries have their own programmes. An international group, under the initiative of the NATO RTO AVT-201 Task group, titled “Extended Assessment of Reliable Stability & Control Prediction Methods for NATO Air Vehicles”, is currently performing intensive analysis on a generic UCAV configuration, named SACCON. In this thesis the stability and control characteristics of the SACCON are investigated, with the purpose of carrying out a comprehensive assessment of the flying qualities of the design. The study included the generation of the complete aerodynamic database of the aircraft, on the basis of the experimental data measured during TN2514 and TN2540 campaigns at DNW-NWB low speed wind tunnel. Moreover, system identification techniques were adopted for the extraction of dynamic derivatives from the time histories of forced oscillation runs. The trim of the aircraft was evaluated across the points of a reasonable test envelope, so as to define a set of plausible operative conditions, representing the reference conditions for subsequent linearization of the dynamic model. The study provided a thorough description of the stability and control characteristics and flying qualities of the unaugmented SACCON, laying the groundwork for future improvement and validation of the configuration in the next design stages.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Flying wing"

1

Robert, Reese. Flying with one wing. Los Angeles, Calif: Blue Pacific Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

David, Hands, ed. Flying wing: An autobiography. London: Stanley Paul, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Flying with a broken wing. Halifax, NS: Nimbus Publishing, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

On the wing. New York: St. Martin's Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jong, Erica. Fear of flying. New York: Penguin Books, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pears, Catherine Townsley. Flying with one wing: Memories of life in York Township. Toronto: Pro Familia Pub., 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fear of flying. New York: New American Library, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fear of flying. New York: Plume, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Copyright Paperback Collection (Library of Congress), ed. Fear of flying. New York: New Signet, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Coleman, Ted. Jack Northrop and the Flying Wing: The story behind the Stealth bomber. New York: Paragon House, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Flying wing"

1

Seebass, A. R. "Oblique Flying Wing Studies." In New Design Concepts for High Speed Air Transport, 317–36. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-2658-5_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Velden, A. "The Oblique Flying Wing Transport." In New Design Concepts for High Speed Air Transport, 291–315. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-2658-5_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sissingh, G. "Flying Qualities." In Göttinger Monograph N: German Research and Development on Rotary-Wing Aircraft (1939–1945), 135–73. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2015. http://dx.doi.org/10.2514/5.9781624102738.0135.0174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nonami, Kenzo, Farid Kendoul, Satoshi Suzuki, Wei Wang, and Daisuke Nakazawa. "Development of Autonomous Quad-Tilt-Wing (QTW) Unmanned Aerial Vehicle: Design, Modeling, and Control." In Autonomous Flying Robots, 77–93. Tokyo: Springer Japan, 2010. http://dx.doi.org/10.1007/978-4-431-53856-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sobieczky, H., P. Li, and R. Seebass. "Transonic Methods for Oblique Flying Wing SST." In IUTAM Symposium Transsonicum IV, 325–30. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0017-8_49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Jihai, Yingsong Gu, Ke Xie, and Pengtao Shi. "Flutter Modeling, Analysis and Test for Blended-Wing-Body Flying Wing." In Lecture Notes in Electrical Engineering, 979–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_78.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mardanpour, Pezhman, and Dewey H. Hodges. "Passive Morphing of Solar Powered Flying Wing Aircraft." In Fluid-Structure-Sound Interactions and Control, 351–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40371-2_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Strüber, H., and M. Hepperle. "Aerodynamic Optimisation of a Flying Wing Transport Aircraft." In New Results in Numerical and Experimental Fluid Mechanics V, 69–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33287-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fan, Lu, Yubiao Jiang, Fei Cen, and Zhenyun Guo Bowen Nie. "Flight Dynamics Analysis for the Flying-Wing Configuration Aircraft." In Lecture Notes in Electrical Engineering, 1543–55. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8155-7_129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shen, Yanjie, Chen Bu, Yanling Wang, Shuai Feng, and Hao Chen. "Experimental Study on Low-Speed Wing Rock Characteristics of Low Aspect Ratio Flying Wing." In Lecture Notes in Electrical Engineering, 102–14. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7652-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Flying wing"

1

Li, Pei, Richard Seebass, and Helmut Sobieczky. "Oblique flying wing aerodynamics." In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kharkov, Vitaliy P., Oleg A. Ovodkov, Olga S. Khalyutina, Albert O. Davidov, and Aleksey V. Altukhov. "Electric Flying Wing Design." In 2021 IEEE 22nd International Conference of Young Professionals in Electron Devices and Materials (EDM). IEEE, 2021. http://dx.doi.org/10.1109/edm52169.2021.9507700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Crenshaw, Kent, Bill Flanagan, Kent Crenshaw, and Bill Flanagan. "Testing the flying wing." In 33rd Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-3262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aihaitijiang, A., and Cagdas D. Onal. "Development and Experimental Evaluation of a Quad-Tilt-Wing Flying Robot Platform." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98500.

Full text
Abstract:
Abstract In this paper, we present the mechanical design and control system of a new indoor and outdoor Quad-Tilt-Wing flying robot. The proposed flying robot can achieve vertical takeoff, hovering, and long duration horizontal high-speed flight. All of these flight modes can be achieved by simply changing the angle of the rotors and wings by a tilt mechanism. We present the details on design and prototyping, the attitude control system, and experimental results, including wind-tunnel experiments, full flight tests, and performance tests. The experimental results show that our Quad-Tilt-Wing flying robot successfully achieves full conversion flight: vertical and rapid takeoff, high-speed cruise, and vertical landing. Performance test results show that during horizontal flight, the wings generate lift and effectively reduce energy use compared to a fixed quad rotor architecture. Consequently, the proposed platform combines unique features of multi-rotor and fixed wing systems to achieve long-duration flight with low-energy compared to a conventional multi-rotor UAV.
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Chao, and Lixin Wang. "Flying-Wing Aircraft Control Allocation." In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rustagi, Vishvendra, Mangal Kothari, and Anindya Chatterjee. "Gyroscopic Stabilization of Flying Wing Aircraft." In 2018 AIAA Atmospheric Flight Mechanics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wartojo, Bintang Samodro, and Mohammad Adhitya. "Folded wing mechanism for flying car." In RECENT PROGRESS ON: MECHANICAL, INFRASTRUCTURE AND INDUSTRIAL ENGINEERING: Proceedings of International Symposium on Advances in Mechanical Engineering (ISAME): Quality in Research 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0003757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Torenbeek, E. "Aerodynamic Performance of Wing-Body Configurations and the Flying Wing." In General, Corporate & Regional Aviation Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/911019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Czajkowski, M., Gunnar Clausen, and Branko Sarh. "Telescopic Wing of an Advanced Flying Automobile." In World Aviation Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/975602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hassairi, Walid, and Mohamed Abid. "Flying Wing Drones based on Cricket Antennas." In 18th International Conference on Informatics in Control, Automation and Robotics. SCITEPRESS - Science and Technology Publications, 2021. http://dx.doi.org/10.5220/0010436903530358.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Flying wing"

1

Roy, Arnab, and Anup Ghosh. Aerodynamic Investigation of Smart Flying Wing MAV. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ada532004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roy, Arnab. Aerodynamic Investigation of Smart Flying Wing MAV. Fort Belvoir, VA: Defense Technical Information Center, November 2009. http://dx.doi.org/10.21236/ada511003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brodsky, Peter, and Jim Luby. Flight Software Development for the Liberdade Flying Wing Glider. Fort Belvoir, VA: Defense Technical Information Center, December 2013. http://dx.doi.org/10.21236/ada602311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Staab, Janet E., Margaret A. Kolka, and Bruce S. Cadarette. Metabolic Rate and Heat Stress Associated With Flying Military Rotary-Wing Aircraft. Fort Belvoir, VA: Defense Technical Information Center, June 1998. http://dx.doi.org/10.21236/ada345641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Miller, Dorothy, John Wallin, and R. C. Wooten. Environmental Assessment Use of Golden Triangle Regional Airport by 14th Flying Training Wing Aircraft. Fort Belvoir, VA: Defense Technical Information Center, March 2004. http://dx.doi.org/10.21236/ada609295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

D'Spain, Gerald L. Flying Wing Autonomous Underwater Glider for Basic Research in Ocean Acoustics, Signal/Array Processing, Underwater Autonomous Vehicle Technology, Oceanography, Geophysics, and Marine Biological Studies. Fort Belvoir, VA: Defense Technical Information Center, March 2009. http://dx.doi.org/10.21236/ada496168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Torvik, Peter J. On the Maximum Range of Flying Wings. Fort Belvoir, VA: Defense Technical Information Center, September 1990. http://dx.doi.org/10.21236/ada229487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Larkin, Ronald. Are flying wildlife attracted to (or do they avoid) wind turbines? Office of Scientific and Technical Information (OSTI), March 2010. http://dx.doi.org/10.2172/1227698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography