Academic literature on the topic 'Fly; Excretory system; Embryonic development'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fly; Excretory system; Embryonic development.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fly; Excretory system; Embryonic development"

1

Schuchardt, A., V. D'Agati, V. Pachnis, and F. Costantini. "Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development." Development 122, no. 6 (June 1, 1996): 1919–29. http://dx.doi.org/10.1242/dev.122.6.1919.

Full text
Abstract:
The c-ret gene encodes a receptor tyrosine kinase that is expressed in the Wolffian duct and ureteric bud of the developing excretory system. Newborn mice homozygous for a mutation in c-ret displayed renal agenesis or severe hypodysplasia, suggesting a critical role for this gene in metanephric kidney development. To investigate the embryological basis of these defects, we characterized the early development of the excretory system in mutant homozygotes, and observed a range of defects in the formation, growth and branching of the ureteric bud, which account for the spectrum of renal defects seen at birth. Co-culture of isolated ureteric buds and metanephric mesenchyme show that the primary defect is intrinsic to the ureteric bud. While the mutant bud failed to respond to induction by wild-type mesenchyme, mutant mesenchyme was competent to induce the growth and branching of the wild-type bud. Furthermore, the mutant metanephric mesenchyme displayed a normal capacity to differentiate into nephric tubules when co-cultured with embryonic spinal cord. These findings suggest a model in which c-ret encodes the receptor for a (yet to be identified) factor produced by the metanephric mesenchyme, which mediates the inductive effects of this tissue upon the ureteric bud. This factor appears to stimulate the initial evagination of the ureteric bud from the Wolffian duct, as well as its subsequent growth and branching.
APA, Harvard, Vancouver, ISO, and other styles
2

Yan, Ying, Megan E. Williamson, and Maxwell J. Scott. "Using Moderate Transgene Expression to Improve the Genetic Sexing System of the Australian Sheep Blow Fly Lucilia cuprina." Insects 11, no. 11 (November 13, 2020): 797. http://dx.doi.org/10.3390/insects11110797.

Full text
Abstract:
The sterile insect technique (SIT) is a promising strategy to control the Australian sheep blow fly Lucilia cuprina, a major pest of sheep. We have previously developed a transgenic embryonic sexing system (TESS) for this pest to facilitate the potential SIT application. TESS carry two transgenes, a tetracycline transactivator (tTA) driver and a tTA-activated pro-apoptotic effector. TESS females die at the embryonic stage unless tetracycline is supplied in the diet. However, undesired female sterility was observed in some TESS strains without tetracycline due to expression of tTA in ovaries. Here we investigate if TESS that combine transgenes with relatively low/moderate expression/activity improves the fertility of TESS females. tTA driver lines were evaluated for tTA expression by quantitative real time PCR and/or by crossing with a tTA-activated RFPex effector line. Fertility and lethality tests showed that a TESS strain containing a driver line with moderate tTA expression and an effector line showing moderate pro-apoptotic activity could recover the fertility of parental females and eliminated all female offspring at the embryonic stage. Consequently, such a strain could be further evaluated for an SIT program for L. cuprina, and such a “moderate strategy” could be considered for the TESS development in other pest species.
APA, Harvard, Vancouver, ISO, and other styles
3

Leuzinger, S., F. Hirth, D. Gerlich, D. Acampora, A. Simeone, W. J. Gehring, R. Finkelstein, K. Furukubo-Tokunaga, and H. Reichert. "Equivalence of the fly orthodenticle gene and the human OTX genes in embryonic brain development of Drosophila." Development 125, no. 9 (May 1, 1998): 1703–10. http://dx.doi.org/10.1242/dev.125.9.1703.

Full text
Abstract:
Members of the orthodenticle gene family are essential for embryonic brain development in animals as diverse as insects and mammals. In Drosophila, mutational inactivation of the orthodenticle gene results in deletions in anterior parts of the embryonic brain and in defects in the ventral nerve cord. In the mouse, targeted elimination of the homologous Otx2 or Otx1 genes causes defects in forebrain and/or midbrain development. To determine the morphogenetic properties and the extent of evolutionary conservation of the orthodenticle gene family in embryonic brain development, genetic rescue experiments were carried out in Drosophila. Ubiquitous overexpression of the orthodenticle gene rescues both the brain defects and the ventral nerve cord defects in orthodenticle mutant embryos; morphology and nervous system-specific gene expression are restored. Two different time windows exist for the rescue of the brain versus the ventral nerve cord. Ubiquitous overexpression of the human OTX1 or OTX2 genes also rescues the brain and ventral nerve cord phenotypes in orthodenticle mutant embryos; in the brain, the efficiency of morphological rescue is lower than that obtained with overexpression of orthodenticle. Overexpression of either orthodenticle or the human OTX gene homologs in the wild-type embryo results in ectopic neural structures. The rescue of highly complex brain structures in Drosophila by either fly or human orthodenticle gene homologs indicates that these genes are interchangeable between vertebrates and invertebrates and provides further evidence for an evolutionarily conserved role of the orthodenticle gene family in brain development.
APA, Harvard, Vancouver, ISO, and other styles
4

Leon Hughes, R., and Leslie S. Hall. "Early development and embryology of the platypus." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 353, no. 1372 (July 29, 1998): 1101–14. http://dx.doi.org/10.1098/rstb.1998.0269.

Full text
Abstract:
Information on the pre–hatching development of the platypus, Ornithorhynchus anatinus , is reliant on a small number of specimens, whose precise age is unknown. Material collected for J. P. Hill and now housed in the Hubrecht International Embryological Laboratory, Utrecht, contributes a major source of specimens. This paper presents new observations on developmental stages from the Hill collection, which allow for a more complete description of pre–hatching development. A feature of the pre–embryonic development of the platypus is the incomplete meroblastic cleavage. A column of fine yolk spheres extends from beneath the embryonic blastodisc towards the centre of a yolky vitellus, as seen in birds. The major expansion of extra–embryonic membranes occurs after the formation of the primitive streak. The primitive streak develops within an embryonal area as part of the superficial wall of the yolk–sac, a feature also shared with marsupials, birds and reptiles. The full–term, subspheroidal, intrauterine egg of the platypus has a major axis of about 17 mm and contains a flat, 19 to 20 somite, neurula–stage embryo which has prominent trigeminal ganglion primordia. The embryo at this stage is in a period of rapid modelling of the major early organ primordia of the nervous system, cardiovascular system, excretory system, and somite–derived components of the body wall. Soon after laying, five primary brain vesicles are present, the trigeminal ganglia CN5 as well as CN7, CN8, CN9, CN10, CN11 and CN12 are well developed. The alimentary system has an expanded stomach, pancreatic primordia and a gall bladder. Mesonephric tubules are associated with patent mesonephric ducts, which empty laterally into the cloaca. Extra–embryonic membranes at this stage show an extensive chorioamniotic connection that extends through the greater part of the caudal half of fused amniotic folds. The vascularized yolk–sac consists of a superficial yolk–sac omphalopleura and a deep yolk–sac splanchnopleure. The non–vascularized yolk–sac comprises one–quarter of the aboembryonal pole. Some distinctive monotreme features have developed by the mid–incubation period. The head is bent at an acute angle to the main body axis. The blunt upturned snout marks the site of the future oscaruncle and on the maxilla there is a median primordial papilla representing the egg tooth. The eye is open with a partly pigmented retinal ring. The forelimbs have partly separated digits, and the hindfeet are paddles. Just before hatching the upturned snout contains an oscaruncle and a sharp recurved median egg tooth. Forelimbs are pronated with separate digits possessing claw primordia. Portions of the highly vascularized extra–embryonic membranes are attached to the umbilical region and the flattened vesicular allantois has a distal region fused with the chorion. Prominent features of the hatchling are the presence of a bluntly conical oscaruncle and a translucent, horn–like egg tooth. These structures are thought to enable the hatchling to extricate itself from the egg shell. At hatching, the forelimbs exhibit clawed digits and are capable of digitopalmar prehension. Hindlimbs are still paddles with digital rays. A prominent yolk–sac navel is present. The newly hatched platypus has an external form similar to that of a new–born marsupial. The early development of the platypus has many major differences to the developmental sequence for humans, which has been categorized by the use of Carnegie Stages. The rate of somitogenesis of the platypus is faster in relation to the central nervous system morphogenesis than seen in humans, and the size of the early platypus embryonal area is massive in relation to that of humans. The unique morphology and function of extra–embryonic membranes in the platypus defies comparative staging with human development. Structures adapted for altricial survival of the platypus hatchling require the acquisition of functional competence at an earlier stage of organogenesis than seen in eutherians, although they are reminiscent of those found in new–born marsupials.
APA, Harvard, Vancouver, ISO, and other styles
5

Houston, Brendan J., Manon S. Oud, Daniel M. Aguirre, D. Jo Merriner, Anne E. O’Connor, Ozlem Okutman, Stéphane Viville, Richard Burke, Joris A. Veltman, and Moira K. O’Bryan. "Programmed Cell Death 2-Like (Pdcd2l) Is Required for Mouse Embryonic Development." G3: Genes|Genomes|Genetics 10, no. 12 (October 14, 2020): 4449–57. http://dx.doi.org/10.1534/g3.120.401714.

Full text
Abstract:
Globozoospermia is a rare form of male infertility where men produce round-headed sperm that are incapable of fertilizing an oocyte naturally. In a previous study where we undertook a whole exome screen to define novel genetic causes of globozoospermia, we identified homozygous mutations in the gene PDCD2L. Two brothers carried a p.(Leu225Val) variant predicted to introduce a novel splice donor site, thus presenting PDCD2L as a potential regulator of male fertility. In this study, we generated a Pdcd2l knockout mouse to test its role in male fertility. Contrary to the phenotype predicted from its testis-enriched expression pattern, Pdcd2l null mice died during embryogenesis. Specifically, we identified that Pdcd2l is essential for post-implantation embryonic development. Pdcd2l−/− embryos were resorbed at embryonic days 12.5-17.5 and no knockout pups were born, while adult heterozygous Pdcd2l males had comparable fertility to wildtype males. To specifically investigate the role of PDCD2L in germ cells, we employed Drosophila melanogaster as a model system. Consistent with the mouse data, global knockdown of trus, the fly ortholog of PDCD2L, resulted in lethality in flies at the third instar larval stage. However, germ cell-specific knockdown with two germ cell drivers did not affect male fertility. Collectively, these data suggest that PDCD2L is not essential for male fertility. By contrast, our results demonstrate an evolutionarily conserved role of PDCD2L in development.
APA, Harvard, Vancouver, ISO, and other styles
6

Meier, T., F. Chabaud, and H. Reichert. "Homologous patterns in the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria and the fly Drosophila melanogaster." Development 112, no. 1 (May 1, 1991): 241–53. http://dx.doi.org/10.1242/dev.112.1.241.

Full text
Abstract:
To determine the generality of developmental mechanisms involved in the construction of the insect nervous system, the embryonic development of the peripheral nervous system in the grasshopper Schistocerca gregaria was characterized at the level of identified neurons and nerve branches and then compared to that previously described from the fly Drosophila melanogaster. For this, immunocytochemistry using a neuron-specific antibody was carried out on staged grasshopper embryos. Our results show that initially a simple peripheral nerve scaffolding is established in each segment of the animal. This scaffolding consists of a pair of intersegmental nerves that are formed by identified afferent and efferent pioneer neurons and a pair of segmental nerves that are formed by afferent pioneers situated in limb buds. Subsequently, identified sets of sensory neurons differentiate in a stereotyped spatiotemporal pattern in dorsal, lateral and ventral clusters in each segment and project their axons onto these nerves. Although segment-specific differences exist, serial homologs of the developing nerves and sensory neurons can be identified. A comparison of these results with those obtained from Drosophila shows that virtually the same pattern of peripheral nerves and sensory structures is formed in both species. This indicates that the construction of the peripheral nervous system in extremely divergent modern insects relies on conserved developmental mechanisms that evolved in ancestral insects over 300 million years ago.
APA, Harvard, Vancouver, ISO, and other styles
7

Takatsu, Yoshihiro, Makoto Nakamura, Mark Stapleton, Maria C. Danos, Kunihiro Matsumoto, Michael B. O'Connor, Hiroshi Shibuya, and Naoto Ueno. "TAK1 Participates in c-Jun N-Terminal Kinase Signaling during Drosophila Development." Molecular and Cellular Biology 20, no. 9 (May 1, 2000): 3015–26. http://dx.doi.org/10.1128/mcb.20.9.3015-3026.2000.

Full text
Abstract:
ABSTRACT Transforming growth factor β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPKKK superfamily and has been characterized as a component of the TGF-β/bone morphogenetic protein signaling pathway. TAK1 function has been extensively studied in cultured cells, but its in vivo function is not fully understood. In this study, we isolated aDrosophila homolog of TAK1 (dTAK1) which contains an extensively conserved NH2-terminal kinase domain and a partially conserved COOH-terminal domain. To learn about possible endogenous roles of TAK1 during animal development, we generated transgenic flies which express dTAK1 or the mouseTAK1 (mTAK1) gene in the fly visual system. Ectopic activation of TAK1 signaling leads to a small eye phenotype, and genetic analysis reveals that this phenotype is a result of ectopically induced apoptosis. Genetic and biochemical analyses also indicate that the c-Jun amino-terminal kinase (JNK) signaling pathway is specifically activated by TAK1 signaling. Expression of a dominant negative form of dTAK during embryonic development resulted in various embryonic cuticle defects including dorsal open phenotypes. Our results strongly suggest that in Drosophila melanogaster, TAK1 functions as a MAPKKK in the JNK signaling pathway and participates in such diverse roles as control of cell shape and regulation of apoptosis.
APA, Harvard, Vancouver, ISO, and other styles
8

Gallicchio, Lorenzo, Sam Griffiths-Jones, and Matthew Ronshaugen. "Single-cell visualization of mir-9a and Senseless co-expression during Drosophila melanogaster embryonic and larval peripheral nervous system development." G3 Genes|Genomes|Genetics 11, no. 1 (December 22, 2020): 1–11. http://dx.doi.org/10.1093/g3journal/jkaa010.

Full text
Abstract:
Abstract The Drosophila melanogaster peripheral nervous system (PNS) comprises the sensory organs that allow the fly to detect environmental factors such as temperature and pressure. PNS development is a highly specified process where each sensilla originates from a single sensory organ precursor (SOP) cell. One of the major genetic orchestrators of PNS development is Senseless, which encodes a zinc finger transcription factor (Sens). Sens is both necessary and sufficient for SOP differentiation. Senseless expression and SOP number are regulated by the microRNA miR-9a. However, the reciprocal dynamics of Senseless and miR-9a are still obscure. By coupling single-molecule FISH with immunofluorescence, we are able to visualize transcription of the mir-9a locus and expression of Sens simultaneously. During embryogenesis, we show that the expression of mir-9a in SOP cells is rapidly lost as Senseless expression increases. However, this mutually exclusive expression pattern is not observed in the third instar imaginal wing disc, where some Senseless-expressing cells show active sites of mir-9a transcription. These data challenge and extend previous models of Senseless regulation and show complex co-expression dynamics between mir-9a and Senseless. The differences in this dynamic relationship between embryonic and larval PNS development suggest a possible switch in miR-9a function. Our work brings single-cell resolution to the understanding of dynamic regulation of PNS development by Senseless and miR-9a.
APA, Harvard, Vancouver, ISO, and other styles
9

Poeck, B., A. Hofbauer, and G. O. Pflugfelder. "Expression of the Drosophila optomotor-blind gene transcript in neuronal and glial cells of the developing nervous system." Development 117, no. 3 (March 1, 1993): 1017–29. http://dx.doi.org/10.1242/dev.117.3.1017.

Full text
Abstract:
Mutations in the complex gene locus optomotor-blind (omb) can lead to defects in the development of both the optic lobes and external features of the adult fly. We describe here the expression of omb in the developing and adult nervous system using in situ hybridization. During embryogenesis, omb expression is first observed in the optic lobe anlagen. It later expands to a larger part of the developing larval brain and to the gnathal lobes. Cells in the ventral and peripheral nervous systems begin to express omb after completion of germ band extension. Later in embryonic development, expression declines and only persists in the antennomaxillary complex and in part of the brain hemispheres. During the larval and pupal stages, omb expression in the brain is confined to the developing optic lobes and contiguous regions of the central brain. At these stages, only a few cells show expression in the ventral ganglion. In the eye imaginal disc, transcript accumulation is most conspicuous in a group of presumptive glia precursor cells posterior to the morphogenetic furrow and in the optic stalk. In the adult brain, expression is prominent in several regions of the optic lobe cortex and along the border between central brain and optic lobes. In the mutation In(1)ombH31, 40 kb of regulatory DNA, downstream from the transcription unit, are removed from the omb gene. In(1)ombH31 is characterized by the lack of a set of giant interneurons from the lobula plate of the adult optic lobes. We find that, already during embryogenesis, there is a drastic difference between wild type and In(1)ombH31 in the level of the omb transcript in the optic lobe primordia. The adult mutant phenotype may thus be caused by omb misexpression during embryonic development.
APA, Harvard, Vancouver, ISO, and other styles
10

Kwon, So Yeon, Paul Badenhorst, F. Javier Martin-Romero, Bradley A. Carlson, Bruce M. Paterson, Vadim N. Gladyshev, Byeong Jae Lee, and Dolph L. Hatfield. "The Drosophila Selenoprotein BthD Is Required for Survival and Has a Role in Salivary Gland Development." Molecular and Cellular Biology 23, no. 23 (December 1, 2003): 8495–504. http://dx.doi.org/10.1128/mcb.23.23.8495-8504.2003.

Full text
Abstract:
ABSTRACT Selenium is implicated in many diseases, including cancer, but its function at the molecular level is poorly understood. BthD is one of three selenoproteins recently identified in Drosophila. To elucidate the function of BthD and the role of selenoproteins in cellular metabolism and health, we analyzed the developmental expression profile of this protein and used inducible RNA interference (RNAi) to ablate function. We find that BthD is dynamically expressed during Drosophila development. bthD mRNA and protein are abundant in the ovaries of female flies and are deposited into the developing oocyte. Maternally contributed protein and RNA persist during early embryonic development but decay by the onset of gastrulation. At later stages of embryogenesis, BthD is expressed highly in the developing salivary gland. We generated transgenic fly lines carrying an inducible gene-silencing construct, in which an inverted bthD genomic-cDNA hybrid is under the control of the Drosophila Gal4 upstream activation sequence system. Duplex RNAi induced from this construct targeted BthD mRNA for destruction and reduced BthD protein levels. We found that loss of BthD compromised salivary gland morphogenesis and reduced animal viability.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Fly; Excretory system; Embryonic development"

1

Ainsworth, Claire Elise. "The allocation of the Malpighian tubule cells of Drosophila melanogaster." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography