To see the other types of publications on this topic, follow the link: Fluxonium.

Journal articles on the topic 'Fluxonium'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fluxonium.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rastelli, Gianluca, Mihajlo Vanević, and Wolfgang Belzig. "Coherent dynamics in long fluxonium qubits." New Journal of Physics 17, no. 5 (May 18, 2015): 053026. http://dx.doi.org/10.1088/1367-2630/17/5/053026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moskalenko, I. N., I. S. Besedin, I. A. Tsitsilin, G. S. Mazhorin, N. N. Abramov, A. Grigor’ev, I. A. Rodionov, et al. "Planar Architecture for Studying a Fluxonium Qubit." JETP Letters 110, no. 8 (October 2019): 574–79. http://dx.doi.org/10.1134/s0021364019200074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Manucharyan, V. E., J. Koch, L. I. Glazman, and M. H. Devoret. "Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets." Science 326, no. 5949 (October 1, 2009): 113–16. http://dx.doi.org/10.1126/science.1175552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Moskalenko, I. N., I. S. Besedin, I. A. Simakov, and A. V. Ustinov. "Tunable coupling scheme for implementing two-qubit gates on fluxonium qubits." Applied Physics Letters 119, no. 19 (November 8, 2021): 194001. http://dx.doi.org/10.1063/5.0064800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Spilla, Samuele, Fabian Hassler, Anna Napoli, and Janine Splettstoesser. "Dephasing due to quasiparticle tunneling in fluxonium qubits: a phenomenological approach." New Journal of Physics 17, no. 6 (June 16, 2015): 065012. http://dx.doi.org/10.1088/1367-2630/17/6/065012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Yuchen, Zhongtao Shen, Xing Zhu, Ziqi Wang, Gengyan Zhang, Jingwei Zhou, Xun Jiang, Chunqing Deng, and Shubin Liu. "FPGA-based electronic system for the control and readout of superconducting quantum processors." Review of Scientific Instruments 93, no. 7 (July 1, 2022): 074701. http://dx.doi.org/10.1063/5.0085467.

Full text
Abstract:
Electronic systems for qubit control and measurement serve as a bridge between quantum programming language and quantum information processors. With the rapid development of superconducting quantum circuit technology, synchronization in a large-scale system, low-latency execution, and low noise are required for electronic systems. Here, we present a field-programmable gate array (FPGA)-based electronic system with a distributed synchronous clock and trigger architecture. The system supports synchronous control of qubits with jitters of ∼5 ps. We implement a real-time digital signal processing system in the FPGA, enabling precise timing control, arbitrary waveform generation, in-phase and quadrature demodulation for qubit state discrimination, and the generation of real-time qubit-state-dependent trigger signals for feedback/feedforward control. The hardware and firmware low-latency design reduces the feedback/feedforward latency of the electronic system to 125 ns, significantly less than the decoherence times of the qubit. Finally, we demonstrate the functionalities and low-noise performance of this system using a fluxonium quantum processor.
APA, Harvard, Vancouver, ISO, and other styles
7

Gusenkova, Daria, Francesco Valenti, Martin Spiecker, Simon Günzler, Patrick Paluch, Dennis Rieger, Larisa-Milena Pioraş-Ţimbolmaş, et al. "Operating in a deep underground facility improves the locking of gradiometric fluxonium qubits at the sweet spots." Applied Physics Letters 120, no. 5 (January 31, 2022): 054001. http://dx.doi.org/10.1063/5.0075909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Groszkowski, Peter, and Jens Koch. "Scqubits: a Python package for superconducting qubits." Quantum 5 (November 17, 2021): 583. http://dx.doi.org/10.22331/q-2021-11-17-583.

Full text
Abstract:
scqubits is an open-source Python package for simulating and analyzing superconducting circuits. It provides convenient routines to obtain energy spectra of common superconducting qubits, such as the transmon, fluxonium, flux, cos(2ϕ) and the 0-π qubit. scqubits also features a number of options for visualizing the computed spectral data, including plots of energy levels as a function of external parameters, display of matrix elements of various operators as well as means to easily plot qubit wavefunctions. Many of these tools are not limited to single qubits, but extend to composite Hilbert spaces consisting of coupled superconducting qubits and harmonic (or weakly anharmonic) modes. The library provides an extensive suite of methods for estimating qubit coherence times due to a variety of commonly considered noise channels. While all functionality of scqubits can be accessed programatically, the package also implements GUI-like widgets that, with a few clicks can help users both create relevant Python objects, as well as explore their properties through various plots. When applicable, the library harnesses the computing power of multiple cores via multiprocessing. scqubits further exposes a direct interface to the Quantum Toolbox in Python (QuTiP) package, allowing the user to efficiently leverage QuTiP's proven capabilities for simulating time evolution.
APA, Harvard, Vancouver, ISO, and other styles
9

Raissi, F., and J. E. Nordman. "Josephson fluxonic diode." Applied Physics Letters 65, no. 14 (October 3, 1994): 1838–40. http://dx.doi.org/10.1063/1.112859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Milošević, M. V., G. R. Berdiyorov, and F. M. Peeters. "Fluxonic cellular automata." Applied Physics Letters 91, no. 21 (November 19, 2007): 212501. http://dx.doi.org/10.1063/1.2813047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dobrovolskiy, Oleksandr V. "Abrikosov fluxonics in washboard nanolandscapes." Physica C: Superconductivity and its Applications 533 (February 2017): 80–90. http://dx.doi.org/10.1016/j.physc.2016.07.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hammond, Phillip J., Paul D. Beer, Clare Dudman, Ian P. Danks, C. Dennis Hall, John Knychala, and Martin C. Grossel. "Fluxonial cryptands containing metallocene units." Journal of Organometallic Chemistry 306, no. 3 (June 1986): 367–74. http://dx.doi.org/10.1016/s0022-328x(00)98998-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Raissi, F. "Josephson Fluxonic Bipolar Junction Transistor." IEEE Transactions on Appiled Superconductivity 14, no. 1 (March 2004): 87–93. http://dx.doi.org/10.1109/tasc.2004.824337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Raissi, F., and A. Erfanian. "Disappearance of Fiske Steps in Josephson Fluxonic Diode and Josephson Fluxonic Bipolar Junction Transistor." IEEE Transactions on Appiled Superconductivity 15, no. 3 (September 2005): 3831–35. http://dx.doi.org/10.1109/tasc.2005.850535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kadin, A. M. "Duality and fluxonics in superconducting devices." Journal of Applied Physics 68, no. 11 (December 1990): 5741–49. http://dx.doi.org/10.1063/1.346969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

ROGALLA, H. "Fluxonics and Superconducting Electronics in Europe." IEICE Transactions on Electronics E91-C, no. 3 (March 1, 2008): 272–79. http://dx.doi.org/10.1093/ietele/e91-c.3.272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Shainline, Jeffrey M. "Fluxonic Processing of Photonic Synapse Events." IEEE Journal of Selected Topics in Quantum Electronics 26, no. 1 (January 2020): 1–15. http://dx.doi.org/10.1109/jstqe.2019.2927473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Raissi, F. "Modeling of the josephson fluxonic diode." IEEE Transactions on Appiled Superconductivity 13, no. 3 (September 2003): 3817–20. http://dx.doi.org/10.1109/tasc.2003.817638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dobrovolskiy, Oleksandr V., and Andrii V. Chumak. "Nonreciprocal magnon fluxonics upon ferromagnet/superconductor hybrids." Journal of Magnetism and Magnetic Materials 543 (February 2022): 168633. http://dx.doi.org/10.1016/j.jmmm.2021.168633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kunert, Juergen, Oliver Brandel, Sven Linzen, Olaf Wetzstein, Hannes Toepfer, Thomas Ortlepp, and Hans-Georg Meyer. "Recent Developments in Superconductor Digital Electronics Technology at FLUXONICS Foundry." IEEE Transactions on Applied Superconductivity 23, no. 5 (October 2013): 1101707. http://dx.doi.org/10.1109/tasc.2013.2265496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Raissi, F., and J. E. Nordman. "Comparison of simulation and experiment for a Josephson fluxonic diode." IEEE Transactions on Appiled Superconductivity 5, no. 2 (June 1995): 2943–46. http://dx.doi.org/10.1109/77.403209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dobrovolskiy, Oleksandr V., Michael Huth, and Valerij A. Shklovskij. "Alternating current-driven microwave loss modulation in a fluxonic metamaterial." Applied Physics Letters 107, no. 16 (October 19, 2015): 162603. http://dx.doi.org/10.1063/1.4934487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Fernández-Pacheco, Amalio, Luka Skoric, José María De Teresa, Javier Pablo-Navarro, Michael Huth, and Oleksandr V. Dobrovolskiy. "Writing 3D Nanomagnets Using Focused Electron Beams." Materials 13, no. 17 (August 26, 2020): 3774. http://dx.doi.org/10.3390/ma13173774.

Full text
Abstract:
Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures.
APA, Harvard, Vancouver, ISO, and other styles
24

Mehrara, Hamed, and Farshid Raissi. "Selective Capacitive Anodization Process for the Fabrication of Josephson Fluxonic Devices." Journal of Superconductivity and Novel Magnetism 34, no. 4 (February 24, 2021): 1141–46. http://dx.doi.org/10.1007/s10948-021-05838-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Fisher, M. A., E. J. Cukauskas, and L. H. Allen. "Thin film Y-Ba-Cu-O/Ag composites for fluxonic devices." IEEE Transactions on Appiled Superconductivity 7, no. 1 (March 1997): 1–6. http://dx.doi.org/10.1109/77.585880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fomin, Vladimir M., and Oleksandr V. Dobrovolskiy. "A Perspective on superconductivity in curved 3D nanoarchitectures." Applied Physics Letters 120, no. 9 (February 28, 2022): 090501. http://dx.doi.org/10.1063/5.0085095.

Full text
Abstract:
In recent years, superconductivity and vortex matter in curved 3D nanoarchitectures have turned into a vibrant research avenue because of the rich physics of the emerging geometry- and topology-induced phenomena and their prospects for applications in (electro)magnetic field sensing and information technology. While this research domain is still in its infancy, numerous theoretical predictions await their experimental examination. In this Perspective, after a brief introduction to the topical area, we outline experimental techniques capable of fabrication of curved 3D nanostructures and review selected own results on the intertwined dynamics of Meissner currents, Abrikosov vortices, and slips of the phase of the superconducting order parameter therein. We share our vision regarding prospect directions and current challenges in this research domain, arguing that curved 3D nanoarchitectures open up a direction in superconductors' research and possess great potential for magnetic field sensing, bolometry, and fluxonic devices.
APA, Harvard, Vancouver, ISO, and other styles
27

Fisher, Michael A., Laura H. Allen, and Edward J. Cukauskas. "YBa2Cu3O7/noble metal composite thin films for applications in fluxonic and flux-flow devices." Applied Superconductivity 3, no. 11-12 (November 1995): 607–14. http://dx.doi.org/10.1016/0964-1807(96)00003-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Dobrovolskiy, O. V., M. Huth, and V. A. Shklovskij. "Fluxonic Properties of Vortices in a Washboard Pinning Potential Fabricated by Focused Particle Beam Techniques." Acta Physica Polonica A 121, no. 1 (January 2012): 82–84. http://dx.doi.org/10.12693/aphyspola.121.82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Vafadarali, Hadi, Farshid Raissi, and Alireza Erfanian. "Nonlinear response of Josephson fluxonic diode to radiation based on geometry and incident radiation point." Chinese Journal of Physics 56, no. 1 (February 2018): 125–30. http://dx.doi.org/10.1016/j.cjph.2017.12.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Mehrara, Hamed, Farshid Raissi, and Alireza Erfanian. "Josephson Fluxonic Diode as a Pixel with Radiation Pumping of Fluxons in Gigahertz Imaging Systems." Journal of Superconductivity and Novel Magnetism 32, no. 6 (November 10, 2018): 1645–52. http://dx.doi.org/10.1007/s10948-018-4897-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mehrara, Hamed, Farshid Raissi, Alireza Erfanian, S. Hossein Mohseni Armaki, and Soheil Abdollahi. "Dynamic Microwave Impedance of Dc-Biased Josephson Fluxonic Diode in the Presence of Magnetic Field and RF Drive." IEEE Transactions on Applied Superconductivity 28, no. 5 (August 2018): 1–8. http://dx.doi.org/10.1109/tasc.2018.2807759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Mehrara, Hamed, Farshid Raissi, and Alireza Erfanian. "Vortex–Antivortex Pair Interaction With Microwave Standing Waves: A Chaos Analysis of Josephson Fluxonic Diode for Microwave Applications." IEEE Transactions on Applied Superconductivity 29, no. 7 (October 2019): 1–7. http://dx.doi.org/10.1109/tasc.2019.2899550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Raissi, F. "Simulation Results on Submillimeter Wave Detection by Josephson Fluxonic Diode and a Method to Address Its Focal Plane Array." IEEE Transactions on Applied Superconductivity 16, no. 1 (March 2006): 38–42. http://dx.doi.org/10.1109/tasc.2005.863520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Aichner, Bernd, Benedikt Müller, Max Karrer, Vyacheslav R. Misko, Fabienne Limberger, Kristijan L. Mletschnig, Meirzhan Dosmailov, et al. "Ultradense Tailored Vortex Pinning Arrays in Superconducting YBa2Cu3O7−δ Thin Films Created by Focused He Ion Beam Irradiation for Fluxonics Applications." ACS Applied Nano Materials 2, no. 8 (July 10, 2019): 5108–15. http://dx.doi.org/10.1021/acsanm.9b01006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Di Paolo, Agustin, Thomas E. Baker, Alexandre Foley, David Sénéchal, and Alexandre Blais. "Efficient modeling of superconducting quantum circuits with tensor networks." npj Quantum Information 7, no. 1 (January 27, 2021). http://dx.doi.org/10.1038/s41534-020-00352-4.

Full text
Abstract:
AbstractWe use a tensor network method to compute the low-energy excitations of a large-scale fluxonium qubit up to a desired accuracy. We employ this numerical technique to estimate the pure-dephasing coherence time of the fluxonium qubit due to charge noise and coherent quantum phase slips from first principles, finding an agreement with previously obtained experimental results. By developing an accurate single-mode theory that captures the details of the fluxonium device, we benchmark the results obtained with the tensor network for circuits spanning a Hilbert space as large as 15180. Our algorithm is directly applicable to the wide variety of circuit-QED systems and may be a useful tool for scaling up superconducting quantum technologies.
APA, Harvard, Vancouver, ISO, and other styles
36

Moskalenko, Ilya N., Ilya A. Simakov, Nikolay N. Abramov, Alexander A. Grigorev, Dmitry O. Moskalev, Anastasiya A. Pishchimova, Nikita S. Smirnov, Evgeniy V. Zikiy, Ilya A. Rodionov, and Ilya S. Besedin. "High fidelity two-qubit gates on fluxoniums using a tunable coupler." npj Quantum Information 8, no. 1 (November 8, 2022). http://dx.doi.org/10.1038/s41534-022-00644-x.

Full text
Abstract:
AbstractSuperconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale superconductor-based quantum computing due to their better coherence and larger anharmonicity. A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture with high-fidelity single-qubit and two-qubit gates, single-shot readout, and state initialization. Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element. We experimentally demonstrate fSim-type and controlled-Z-gates with 99.55 and 99.23% fidelities, respectively. The residual ZZ interaction is suppressed down to the few kHz levels. Using a galvanically coupled flux control line, we implement high-fidelity single-qubit gates and ground state initialization with a single arbitrary waveform generator channel per qubit.
APA, Harvard, Vancouver, ISO, and other styles
37

Cheng, Jia Ming, Yongchang Zhang, Xiang-Fa Zhou, and Zheng-Wei Zhou. "Enhancing quantum coherence of a fluxonium qubit by employing flux modulation with tunable-complex-amplitude." New Journal of Physics, December 19, 2022. http://dx.doi.org/10.1088/1367-2630/acacbd.

Full text
Abstract:
Abstract We propose to protect fluxonium qubits that are away from half flux quantum against environmental noises, especially 1/f flux noise, by adopting a modulated flux with tunable-complex-amplitude. Using open-system Floquet theory, we derive a Lindblad equation and extract decoherent rates for pure-dephasing, excitation and relaxation. After examining intrinsic attributes of the flux driven fluxonium qubit, we put forward an analytic manner to locate dynamical sweet spots for fast and weak driving. Dynamical sweet curves are found in the parameter plane of relative amplitude factor and relative phase. Around dynamical sweet curves or between two dynamical sweet curves, there exist continuous regions with long coherent times that exceed 100 μs. Taking advantage of the two noise insensitive channels: relative amplitude factor and relative phase, a flux driven fluxonium qubit can become immune to flux noises from both the dc and ac flux amplitudes. And the optimal driving amplitudes are no longer isolated at a certain driving frequency, but become continuous. This is in sharp contrast to the usual schemes based on flux modulation with real-amplitude. As a result, there are plenty of manipulating flexibility in our flux driving scheme with tunable-complex-amplitude, which may be useful in logical operations among flux driven fluxonium qubits or other flux qubits.
APA, Harvard, Vancouver, ISO, and other styles
38

Stefanski, Taryn V., and Christian Kraglund Andersen. "Flux-pulse-assisted readout of a fluxonium qubit." Physical Review Applied 22, no. 1 (July 30, 2024). http://dx.doi.org/10.1103/physrevapplied.22.014079.

Full text
Abstract:
Much attention has focused on the transmon architecture for large-scale superconducting quantum devices; however, the fluxonium qubit has emerged as a possible successor. With a shunting inductor in parallel to a Josephson junction, the fluxonium offers larger anharmonicity and stronger protection against dielectric loss, leading to higher coherence times as compared to conventional transmon qubits. The interplay between the inductive and Josephson energy potentials of the fluxonium qubit leads to a rich dispersive-shift landscape when tuning the external flux. Here, we propose to exploit the features in the dispersive shift to improve qubit readout. Specifically, we report on theoretical simulations showing improved readout times and error rates by performing the readout at a flux-bias point with large dispersive shift. We expand the scheme to include different error channels and show that with an integration time of 155 ns, flux-pulse-assisted readout offers about a 5-times improvement in the signal-to-noise ratio. Moreover, we show that the performance improvement persists in the presence of finite measurement efficiency combined with quasistatic flux noise and also when considering the increased Purcell rate at the flux-pulse-assisted readout point. We suggest a set of reasonable energy parameters for the fluxonium architecture that will allow for the implementation of our proposed flux-pulse-assisted readout scheme. Published by the American Physical Society 2024
APA, Harvard, Vancouver, ISO, and other styles
39

Nguyen, Long B., Yen-Hsiang Lin, Aaron Somoroff, Raymond Mencia, Nicholas Grabon, and Vladimir E. Manucharyan. "High-Coherence Fluxonium Qubit." Physical Review X 9, no. 4 (November 25, 2019). http://dx.doi.org/10.1103/physrevx.9.041041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hazard, T. M., A. Gyenis, A. Di Paolo, A. T. Asfaw, S. A. Lyon, A. Blais, and A. A. Houck. "Nanowire Superinductance Fluxonium Qubit." Physical Review Letters 122, no. 1 (January 10, 2019). http://dx.doi.org/10.1103/physrevlett.122.010504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Stephens, Marric. "Fluxonium Qubits Under Control." Physics 17 (May 2, 2024). http://dx.doi.org/10.1103/physics.17.s55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pita-Vidal, Marta, Arno Bargerbos, Chung-Kai Yang, David J. van Woerkom, Wolfgang Pfaff, Nadia Haider, Peter Krogstrup, Leo P. Kouwenhoven, Gijs de Lange, and Angela Kou. "Gate-Tunable Field-Compatible Fluxonium." Physical Review Applied 14, no. 6 (December 14, 2020). http://dx.doi.org/10.1103/physrevapplied.14.064038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Rieger, D., S. Günzler, M. Spiecker, P. Paluch, P. Winkel, L. Hahn, J. K. Hohmann, A. Bacher, W. Wernsdorfer, and I. M. Pop. "Granular aluminium nanojunction fluxonium qubit." Nature Materials, December 8, 2022. http://dx.doi.org/10.1038/s41563-022-01417-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dogan, Ebru, Dario Rosenstock, Loïck Le Guevel, Haonan Xiong, Raymond A. Mencia, Aaron Somoroff, Konstantin N. Nesterov, Maxim G. Vavilov, Vladimir E. Manucharyan, and Chen Wang. "Two-Fluxonium Cross-Resonance Gate." Physical Review Applied 20, no. 2 (August 4, 2023). http://dx.doi.org/10.1103/physrevapplied.20.024011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mizel, Ari, and Yariv Yanay. "Right-sizing fluxonium against charge noise." Physical Review B 102, no. 1 (July 27, 2020). http://dx.doi.org/10.1103/physrevb.102.014512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Catelani, Gianluigi. "Fluxonium Steps up to the Plate." Physics 12 (November 25, 2019). http://dx.doi.org/10.1103/physics.12.131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Viola, Giovanni, and Gianluigi Catelani. "Collective modes in the fluxonium qubit." Physical Review B 92, no. 22 (December 21, 2015). http://dx.doi.org/10.1103/physrevb.92.224511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wright, Katherine. "Long(er) Live the Fluxonium Qubit." Physics 16 (June 29, 2023). http://dx.doi.org/10.1103/physics.16.s92.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sorokanich, Stephen, Max Hays, and Neill C. Warrington. "Exact and approximate fluxonium array modes." Physical Review B 110, no. 12 (September 4, 2024). http://dx.doi.org/10.1103/physrevb.110.125404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chen, Yinqi, Konstantin N. Nesterov, Vladimir E. Manucharyan, and Maxim G. Vavilov. "Fast Flux Entangling Gate for Fluxonium Circuits." Physical Review Applied 18, no. 3 (September 12, 2022). http://dx.doi.org/10.1103/physrevapplied.18.034027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography