Academic literature on the topic 'Fluorinated graphite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fluorinated graphite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fluorinated graphite"

1

Herraiz, Michael, Marc Dubois, Nicolas Batisse, Samar Hajjar-Garreau, and Laurent Simon. "Large-scale synthesis of fluorinated graphene by rapid thermal exfoliation of highly fluorinated graphite." Dalton Transactions 47, no. 13 (2018): 4596–606. http://dx.doi.org/10.1039/c7dt04565d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kang, Wenze, and Shangyi Li. "Preparation of fluorinated graphene to study its gas sensitivity." RSC Advances 8, no. 41 (2018): 23459–67. http://dx.doi.org/10.1039/c8ra03451f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sysoev, Vitalii I., Mikhail O. Bulavskiy, Dmitry V. Pinakov, et al. "Chemiresistive Properties of Imprinted Fluorinated Graphene Films." Materials 13, no. 16 (2020): 3538. http://dx.doi.org/10.3390/ma13163538.

Full text
Abstract:
The electrical conductivity of graphene materials is strongly sensitive to the surface adsorbates, which makes them an excellent platform for the development of gas sensor devices. Functionalization of the surface of graphene opens up the possibility of adjusting the sensor to a target molecule. Here, we investigated the sensor properties of fluorinated graphene films towards exposure to low concentrations of nitrogen dioxide NO2. The films were produced by liquid-phase exfoliation of fluorinated graphite samples with a composition of CF0.08, CF0.23, and CF0.33. Fluorination of graphite using a BrF3/Br2 mixture at room temperature resulted in the covalent attachment of fluorine to basal carbon atoms, which was confirmed by X-ray photoelectron and Raman spectroscopies. Depending on the fluorination degree, the graphite powders had a different dispersion ability in toluene, which affected an average lateral size and thickness of the flakes. The films obtained from fluorinated graphite CF0.33 showed the highest relative response ca. 43% towards 100 ppm NO2 and the best recovery ca. 37% at room temperature.
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmad, Yasser, Nicolas Batisse, Xianjue Chen, and Marc Dubois. "Preparation and Applications of Fluorinated Graphenes." C 7, no. 1 (2021): 20. http://dx.doi.org/10.3390/c7010020.

Full text
Abstract:
The present review focuses on the numerous routes for the preparation of fluorinated graphene (FG) according to the starting materials. Two strategies are considered: (i) addition of fluorine atoms on graphenes of various nature and quality and (ii) exfoliation of graphite fluoride. Chemical bonding in fluorinated graphene, related properties and a selection of applications for lubrication, energy storage, and gas sensing will then be discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Vul'f, V. A., Natal'ya Vladimirovna Polyakova, and Sergei Anatol'evich Fateev. "Effect of feedstock on the characteristics of cathodes fluorinated carbon." Electrochemical Energetics 11, no. 4 (2011): 193–99. http://dx.doi.org/10.18500/1608-4039-2011-11-4-193-199.

Full text
Abstract:
The electrode behavior of various fluorinated graphite materials and different conductive additives in various electrolytes are studied. Fluorocarbon materials based on graphite fibers are shown to have the best discharge characteristics. The advantage of thin cathodes based on fluorinated nanomaterials with a solid polymer electrolyte in comparison with the similar electrodes with traditional fluorocarbon active material is demonstrated. The use of fluorinated nanomaterials results in increased discharge characteristics of the cells.
APA, Harvard, Vancouver, ISO, and other styles
6

Gupta, Vinay, Tsuyoshi Nakajima, and Yoshimi Ohzawa. "Fluorination of Graphite at High Temperatures." Collection of Czechoslovak Chemical Communications 67, no. 9 (2002): 1366–72. http://dx.doi.org/10.1135/cccc20021366.

Full text
Abstract:
Graphite powder (57-74 μm) was fluorinated at 380 °C for 1 h-2 weeks. The composition of the products ranged from CF0.055 to CF0.659. X-Ray diffractometry showed the formation of graphite fluoride, (C2F)n with a trace of CxF phase with planar layers in addition to unreacted graphite which finally disappeared. Raman spectroscopy clearly revealed the existence of a fluorinated phase with planar layers with sp2 structure.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Li, Jiaojiao Lei, Fuhui Wang, Guochao Wang, and Huixia Feng. "Facile synthesis of graphene sheets from fluorinated graphite." RSC Advances 5, no. 50 (2015): 40148–53. http://dx.doi.org/10.1039/c5ra00910c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chakraborty, Soma, Wenhua Guo, Robert H. Hauge, and W. E. Billups. "Reductive Alkylation of Fluorinated Graphite." Chemistry of Materials 20, no. 9 (2008): 3134–36. http://dx.doi.org/10.1021/cm800060q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dubois, Marc, Katia Guérin, Yasser Ahmad, et al. "Thermal exfoliation of fluorinated graphite." Carbon 77 (October 2014): 688–704. http://dx.doi.org/10.1016/j.carbon.2014.05.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hagaman, E. W. "The characterization of fluorinated graphite." Fuel and Energy Abstracts 37, no. 3 (1996): 184. http://dx.doi.org/10.1016/0140-6701(96)88553-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography