Journal articles on the topic 'Fluorescence'

To see the other types of publications on this topic, follow the link: Fluorescence.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fluorescence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

MATSUMOTO, TAKURO, ATSUSHI SUETSUGU, KOSUKE HASEGAWA, MIKI NAKAMURA, YUHEI SHIBATA, HITOMI AOKI, TAKAHIRO KUNISADA, et al. "A Mouse Model of Fluorescent Protein-expressing Disseminated Peritoneal Lymphoma for Fluorescence-guided Surgery." Anticancer Research 36, no. 9 (September 9, 2016): 4483–88. http://dx.doi.org/10.21873/anticanres.10993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pawley, James B. "Fluorescence Microscopy and Fluorescence Probes." Microscopy and Microanalysis 4, no. 2 (April 1998): 164–65. http://dx.doi.org/10.1017/s1431927698000166.

Full text
Abstract:
Fluorescence Microscopy and Fluorescence Probes, edited by Jan Slavik, 1996. Plenum Press, New York and London. 306 pages. (hardback, $95)This volume is a compilation of abstracts of papers presented at the Fluorescence Microscopy and Fluorescence Probes Conference held in Prague in June 1995. This conference was one of the first tangible results of the end of the Cold War in the field of microscopy. As such, it attracted a great many of those who constitute the vanguard of progress in the field of fluorescence microscopy, on both sides of the old East-West divide. About one-third of the 127 contributors were from the West.
APA, Harvard, Vancouver, ISO, and other styles
3

Sessions, S. K. "Fluorescence Microscopy; Quantitative Fluorescence Microscopy." Systematic Biology 42, no. 2 (June 1, 1993): 224–25. http://dx.doi.org/10.1093/sysbio/42.2.224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ravinson, Daniel Sylvinson Muthiah, and Mark E. Thompson. "Thermally assisted delayed fluorescence (TADF): fluorescence delayed is fluorescence denied." Materials Horizons 7, no. 5 (2020): 1210–17. http://dx.doi.org/10.1039/d0mh00276c.

Full text
Abstract:
Thermally assisted delayed fluorescence (TADF) allows for efficient collection of both singlet and triplet excitons with both emitting through the singlet channel. TADF opens the door to photo- and electroluminescence efficiencies close to 100%.
APA, Harvard, Vancouver, ISO, and other styles
5

Ping Tang, Ping Tang, and Luping Lyu and Yujin Li Luping Lyu and Yujin Li. "Fluorescence and Theoretical Calculation of Phenylhydrazone Derivatives and Fluorine Boron Complex: Synthesis and Fluorescence Characteristics." Journal of the chemical society of pakistan 42, no. 1 (2020): 10. http://dx.doi.org/10.52568/000623.

Full text
Abstract:
A sereis of phenylhydrazone-based derivatives and their corresponding BF2 complexes were synthesized efficiently by a three-step reaction. Photophysical performance was investigated in different organic solvents and in the solid state. Although these compounds exhibited feeble fluorescent intensity in solution-state, BF2 complexes showed weaker fluorescence in solid state compared to precursors 2, which were caused by slight geometry relaxation of upon photo excitation. Density Functional Theory calculations was carried out to confirm above inference.
APA, Harvard, Vancouver, ISO, and other styles
6

Ping Tang, Ping Tang, and Luping Lyu and Yujin Li Luping Lyu and Yujin Li. "Fluorescence and Theoretical Calculation of Phenylhydrazone Derivatives and Fluorine Boron Complex: Synthesis and Fluorescence Characteristics." Journal of the chemical society of pakistan 42, no. 1 (2020): 10. http://dx.doi.org/10.52568/000623/jcsp/42.01.2020.

Full text
Abstract:
A sereis of phenylhydrazone-based derivatives and their corresponding BF2 complexes were synthesized efficiently by a three-step reaction. Photophysical performance was investigated in different organic solvents and in the solid state. Although these compounds exhibited feeble fluorescent intensity in solution-state, BF2 complexes showed weaker fluorescence in solid state compared to precursors 2, which were caused by slight geometry relaxation of upon photo excitation. Density Functional Theory calculations was carried out to confirm above inference.
APA, Harvard, Vancouver, ISO, and other styles
7

Heldt, Józef, Janina R. Heldt, and Jerzy Kamiński. "Steady-state and Time-resolved Spectroscopic Studies of Benzanilides." Zeitschrift für Naturforschung A 54, no. 8-9 (September 1, 1999): 495–502. http://dx.doi.org/10.1515/zna-1999-8-909.

Full text
Abstract:
Steady-state and time-resolved spectroscopic studies of benzanilide (I) and jV-methylbenzanilide (II)were performed at 298 and 77 K in various solvents. The results indicate that benzanilide fluorescencein non-polar solvents at room temperature involves three independent modes of emission: F1 (LE) normalfluorescence from the initially excited state S1 (LE) with λmax = 320 nm, F2´(PT) fluorescence from the proton transfer tautomer with λmax = 468 nm, F2″CT) fluorescence from the species where intramolecular charge transfer appears, with λmax = 510 nm. At 77 K in MCH a new fluorescence band, Fag, appears at λmax=415 nm instead of the F2(PT) and F2″CT) fluorescence. This new emission originates from benzanilide dipolar aggregates or cis-imidol dimers. The decay times of these emission modes aredifferent.N-methylbenzanilide, dissolved in nonpopular and weakly polar solvents at room temperature and at77 K, shows only two fluorescence modes, i.e., the normal and the charge-transfer emissions at 320 nmand 520 nm, respectively. The fluorescence is deactivated with two decay times, 30 ps and 2.05 ns, inMCH solution.
APA, Harvard, Vancouver, ISO, and other styles
8

BEARDER, E. ARTHUR. "Fluorescence." Journal of the Society of Dyers and Colourists 27, no. 12 (October 22, 2008): 270–79. http://dx.doi.org/10.1111/j.1478-4408.1911.tb00530.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Inoue, S., O. Shimomura, M. Goda, M. Shribak, and P. T. Tran. "Fluorescence polarization of green fluorescence protein." Proceedings of the National Academy of Sciences 99, no. 7 (April 2, 2002): 4272–77. http://dx.doi.org/10.1073/pnas.062065199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gardner, Craig M., Steven L. Jacques, and Ashley J. Welch. "Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence." Applied Optics 35, no. 10 (April 1, 1996): 1780. http://dx.doi.org/10.1364/ao.35.001780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ma, Xiben, Jimeng Cheng, Sijun Fan, Xin Wang, Wei Chen, Shubin Chen, and Lili Hu. "Silver-Neodymium Codoped Lithium Aluminum Metaphosphate Glasses for Radio-Photoluminescence Dosimeter." Materials 15, no. 16 (August 11, 2022): 5527. http://dx.doi.org/10.3390/ma15165527.

Full text
Abstract:
Commercial radio-photoluminescence (RPL) glass dosimeters generally use Ag single-doped phosphate glass as a single-wavelength sensor. Now, a novel type of Ag–Nd-codoped phosphate glass has been developed, which can be applied to dual-wavelength or multi-wavelength RPL sensors, and can thus improve the accuracy and stability of RPL dosimeters. An anhydrous 99.5 (0.7LiPO3–0.3Al (PO3)3) −0.25Ag2O–0.25Nd2O3 glass was prepared and irradiated at different doses, and then the absorption, fluorescence, infrared transmission spectra, as well as fluorescence lifetimes were tested and analyzed. The results show that there is an energy transfer between the Ag defect center and Nd3+ ions, and the transfer efficiency using 380 nm excitation is greater than that using 310 nm excitation. Aside from the 650 nm fluorescence of the Ag defect center, strong 882 nm and 1054 nm fluorescences of Nd ions are exhibited. It is possible that these fluorescences would allow the developed Ag–Nd-codoped phosphate glass to be applied to new RPL glass sensors and dosimeters.
APA, Harvard, Vancouver, ISO, and other styles
12

Fukushima, Shuichiro, Takashi Yasui, Tetsuo Iwata, Pasuk Mahakkanukrauh, and Tsutomu Araki. "P-25 Distribution of fluorescence lifetime of human dentin measured by nanosecond time-resolved fluorescence microscopy." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2007.6 (2007): _P—25–1_—_P—25–3_. http://dx.doi.org/10.1299/jsmeatem.2007.6._p-25-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Han, Zhengang, and Kefeng Xie. "Abnormally aggregation-induced emissions observed from hydrogen- and silyl-substituted siloles." Main Group Metal Chemistry 43, no. 1 (August 11, 2020): 125–31. http://dx.doi.org/10.1515/mgmc-2020-0015.

Full text
Abstract:
AbstractSilacyclopentadienes (siloles) are currently of great interest because of their intriguing aggregation-induced emission (AIE) characteristics. In this work, abnormally AIE phenomena were observed from silyl- and hydrogen-substituted siloles respectively. We propose silyl-substituent and hydrogen atom effects to explain this via both experiments and theoretical calculations. It was discovered that trimethylsilyl substituents destroyed the p-interactions with the silole core and resulted in the non-fluorescence. Additionally, 1-chloro-1-H-2,3,4,5-tetraphenylsilole featuring strong fluorescences in both solid and solution states with high fluorescence quantum yields represents a new potential photoelectric material. This work not only reports the silole with strong fluorescences in both solid and solution states for the first time but also contributs to enrich the AIE research of siloles.
APA, Harvard, Vancouver, ISO, and other styles
14

MI, Cheng. "Does Anti Stokes Fluorescence Belong to Fluorescence." University Chemistry 31, no. 11 (2016): 81–82. http://dx.doi.org/10.3866/pku.dxhx201603019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mohanty, N., and HY Yamamoto. "Mechanism of Non-Photochemical Chlorophyll Fluorescence Quenching. I. The Role of De-Epoxidised Xanthophylls and Sequestered Thylakoid Membrane Protons as Probed by Dibucaine." Functional Plant Biology 22, no. 2 (1995): 231. http://dx.doi.org/10.1071/pp9950231.

Full text
Abstract:
Dibucaine reportedly inhibits the light-induced transthylakoid proton gradient of chloroplasts without inhibiting energy-dependent non-photochemical chlorophyll fluorescence quenching (Laasch, H. and Weis, E. (1989). Photosynthesis Research 22, 137-146). We show that dibucaine can inhibit fluorescence quenching, depending on the de-epoxidation state of the xanthophyll cycle. Whereas dibucaine (20-40 μM) had little effect on fluorescence quenching in pre-illuminated-type thylakoids (loaded with zeaxanthin and antheraxanthin), it strongly inhibited quenching in dark-adapted-type thylakoids (no preinduction of de-epoxidation). Dibucaine inhibited lumen acidification similarly in both types of thylakoids and also the induction of violaxanthin de-epoxidation in dark-adapted thylakoids. Thus dark-adapted and pre-illuminated thylakoids differed in de-epoxidation states and their suspectibility to dibucaine inhibition of fluorescence quenching corresponded to this difference. The mechanism of inhibition of de-epoxidation by dibucaine is unclear. It could be due to the inhibition of lumen acidification but an inhibition of the violaxanthin available for de-epoxidation is not excluded. High dibucaine concentrations inhibited de-epoxidase activity directly. Dibucaine inhibition of fluorescence quenching, however, is not limited to the inhibition of de-epoxidation. Small but clear effects on fluorescence quenching were present in thylakoids even with de-epoxidation preinduced. Moreover, thylakoids with preinduced de-epoxidation were more resistant to dibucaine inhibition of fluorescene quenching when poised by salt treatments for proton partitioning into membrane-sequestered domains than when poised for proton partitioning into delocalised domains. We conclude that non-photochemical quenching of chlorophyll fluorescence depends on both de-epoxidised xanthophylls and sequestered proton domains in the thylakoid membranes
APA, Harvard, Vancouver, ISO, and other styles
16

Sakurai, Takeki, Shigeru Kobayashi, Jun Ogura, Yukio Inoue, and Hirokazu Hori. "Dissociation Processes of SiCl4 and Plasma Parameters measured by Transient Spectroscopy at the Beginning of a SiCl4?Helium dc Discharge." Australian Journal of Physics 48, no. 3 (1995): 515. http://dx.doi.org/10.1071/ph950515.

Full text
Abstract:
We propose that the excitation or the dissociation mechanism and plasma parameters in a discharge can be estimated by. spectroscopic methods, such as the measurement of the transient behaviour of fluorescences at the beginning of a pulsed de discharge. Fluorescences emitted from excited atoms and dissociated fragments from 270 to 640 nm in wavelength are measured as a function of time at the beginning of a discharge of a He-SiCl4 gas mixture. The transient waveform of fluorescence is calculated by considering the experimental results of discharge current and voltage between electrodes measured as a function of time. From a comparison of the experimental and calculated waveforms of fluorescence it is concluded that the fragment emitting the light, SiCb, is excited in a single-step from SiCl4 by electronic collisions and the fluorescence-emitting fragments of SiCI3, SiCI, C12, CI, Si and CI+ in a discharge can never be excited by electronic collisions in a single step. Furthermore, an average electron energy in the plasma at a steady state is simply estimated from a measurement of the transient behaviour of emission lines from helium excited states. The result is in fair agreement with the value measured by using an electric probe.
APA, Harvard, Vancouver, ISO, and other styles
17

Yang Anping, 杨安平, 周鸿猷 Zhou Hongyou, 方婕 Fang Jie, 苏斯杰 Su Sijie, 宋向阳 Song Xiangyang, 黄梓琪 Huang Ziqi, and 甘久林 Gan Jiulin. "基于荧光强度比技术的强抗干扰柔性荧光光纤温度传感器." Laser & Optoelectronics Progress 60, no. 13 (2023): 1316005. http://dx.doi.org/10.3788/lop231041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ren, Pan Pan, Ren Jie Wang, and Shou Zhi Pu. "Photochromism Properties of a New Unsymmetrical Diarylethene Bearing a Benzene Unit." Advanced Materials Research 830 (October 2013): 266–69. http://dx.doi.org/10.4028/www.scientific.net/amr.830.266.

Full text
Abstract:
A new photochromic diarylethene compound 1-[(2-methyl-5-(4-trifluoromethyphenyl)-3-thienyl)]-2-{2-methyl-5-[2-(1,3-dioxolane)]-3-thienyl} perfluorocyclopentene 1O was synthesized. Its optoelectronic properties, such as photochromism in solution as well as in poly-methylmethacrylate (PMMA) amorphous films, fluorescences switch were investigated in detail. Upon irradiated UV light it changes from colorless to purple in solution and PMMA amorphous film, respectively. Finally, the diarylethene 1O was exhibited remarkable fluorescence switch properties along with the cyclization reactions. When the concentration arrived at 1 × 10-5 mol L-1, the fluorescence peak had the maximum.
APA, Harvard, Vancouver, ISO, and other styles
19

Raabe, Andreas, and Robert F. Spetzler. "Fluorescence Angiography." Journal of Neurosurgery 108, no. 2 (February 2008): 429–30. http://dx.doi.org/10.3171/jns/2008/108/2/0429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bollinger, A. "Fluorescence videomicroscopy." Clinical Hemorheology and Microcirculation 8, no. 3-4 (December 9, 2016): 379–83. http://dx.doi.org/10.3233/ch-1988-83-414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yilmaz, Ibrahim. "Fluorescence Sensors." Current Analytical Chemistry 18, no. 2 (February 2022): 143–44. http://dx.doi.org/10.2174/1573411018666220104214202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

OHYANAGI, Hiroyuki. "Fluorescence EXAFS." Nihon Kessho Gakkaishi 27, no. 2 (1985): 106–12. http://dx.doi.org/10.5940/jcrsj.27.106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Evanko, Daniel. "Intelligent fluorescence." Nature Methods 2, no. 5 (May 2005): 324–25. http://dx.doi.org/10.1038/nmeth0505-324b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bilenca, Alberto, Jing Cao, Max Colice, Aydogan Ozcan, Brett Bouma, Laurel Raftery, and Guillermo Tearney. "Fluorescence Interferometry." Annals of the New York Academy of Sciences 1130, no. 1 (May 2008): 68–77. http://dx.doi.org/10.1196/annals.1430.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Stiel, Laure, Xavier Delabranche, Anne-Cécile Galoisy, François Severac, Florence Toti, Laurent Mauvieux, Ferhat Meziani, and Julie Boisramé-Helms. "Neutrophil Fluorescence." Critical Care Medicine 44, no. 11 (November 2016): e1132-e1136. http://dx.doi.org/10.1097/ccm.0000000000001851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fitzgerald, Richard J. "Frog fluorescence." Physics Today 70, no. 5 (May 2017): 23. http://dx.doi.org/10.1063/pt.3.3549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Dowell, L. Jonathan. "Fluorescence Thermometry." Applied Mechanics Reviews 45, no. 7 (July 1, 1992): 253–60. http://dx.doi.org/10.1115/1.3119756.

Full text
Abstract:
The fluorescence of rare-earth-doped ceramic phosphors depends on temperature. Particularly, the fluorescence lifetime is decreased by temperature. This dependence makes the fluorescence suitable for measuring temperature. This paper describes the physics of the fluorescence of these ceramics, noting the works of Forster, Dexter, Inokuti, Hirayama, and others. Next, it outlines the several advantages of fluorescence thermometry. These advantages include (a) measurement of temperature by transfer to measurement standards for time, (b) remote sensing for surface thermometry, (c) high speed of measurement relative to many physical and mechanical phenomena, (d) narrow-spectrum optical sensing suitable for hostile electrical and luminous environments, and (e) the transfer of calibration standards for precise thermometry. The paper presents engineering considerations for realizing these advantages. It presents parameter-estimation techniques that allow measurement of the temperature-dependent fluorescence parameters. It describes instrumentation techniques that transfer the measurement of temperature to measurement of units of time, with instrument calibration by atomic standards. It also discusses other measurement and instrumentation details.
APA, Harvard, Vancouver, ISO, and other styles
28

Lichtman, Jeff W., and José-Angel Conchello. "Fluorescence microscopy." Nature Methods 2, no. 12 (November 18, 2005): 910–19. http://dx.doi.org/10.1038/nmeth817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pile, David. "Resonance fluorescence." Nature Photonics 10, no. 9 (August 31, 2016): 565. http://dx.doi.org/10.1038/nphoton.2016.168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Muyskens, Mark. "pHantastic Fluorescence." Journal of Chemical Education 83, no. 5 (May 2006): 768A. http://dx.doi.org/10.1021/ed083p768a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sanderson, M. J., I. Smith, I. Parker, and M. D. Bootman. "Fluorescence Microscopy." Cold Spring Harbor Protocols 2014, no. 10 (October 1, 2014): pdb.top071795. http://dx.doi.org/10.1101/pdb.top071795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Diamandis, Eleftherios P. "Fluorescence Spectroscopy." Analytical Chemistry 65, no. 12 (June 15, 1993): 454–59. http://dx.doi.org/10.1021/ac00060a616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Stanley, P. E. "Practical fluorescence." TrAC Trends in Analytical Chemistry 11, no. 6 (June 1992): XIV—XV. http://dx.doi.org/10.1016/0165-9936(92)80048-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Morgan, C. G. "Fluorescence spectroscopy." TrAC Trends in Analytical Chemistry 13, no. 1 (January 1994): xiii—xiv. http://dx.doi.org/10.1016/0165-9936(94)85060-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cohen, Bruce E. "Beyond fluorescence." Nature 467, no. 7314 (September 2010): 407–8. http://dx.doi.org/10.1038/467407a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Foley, J. F. "Sensitive Fluorescence." Science Signaling 1, no. 50 (December 16, 2008): ec432-ec432. http://dx.doi.org/10.1126/scisignal.150ec432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Khanizadeh, Shahrokh, and Jennifer Deell. "Chlorophyll Fluorescence." Small Fruits Review 1, no. 3 (July 6, 2001): 61–67. http://dx.doi.org/10.1300/j301v01n03_06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Baeyens, Willy R. G. "Practical fluorescence." Analytica Chimica Acta 254, no. 1-2 (November 1991): 253. http://dx.doi.org/10.1016/0003-2670(91)90038-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gillbro, Tomas, and Richard J. Cogdell. "Carotenoid fluorescence." Chemical Physics Letters 158, no. 3-4 (June 1989): 312–16. http://dx.doi.org/10.1016/0009-2614(89)87342-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Herman, Brian. "Fluorescence Microscopy." Current Protocols in Cell Biology 00, no. 1 (October 1998): 4.2.1–4.2.10. http://dx.doi.org/10.1002/0471143030.cb0402s13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

ตู้จินดา, ภูวดี. "การผลิตกระดาษอ้างอิงมาตรฐานสำหรับสอบเทียบเครื่องวัดความขาวสว่างของกระดาษชนิด Fluorescence." วารสารวิทยาศาสตร์ประยุกต์ กรมวิทยาศาสตร์บริการ 1, no. 1 (October 7, 2022): 72–90. http://dx.doi.org/10.60136/bas.v1.2012.180.

Full text
Abstract:
ค่าความขาวสว่าง (Brightness) มีความสำคัญต่ออุตสาหกรรมเยื่อและกระดาษเป็นอย่างมากเพราะเป็นค่าที่ใช้อ้างอิงในกระบวนการฟอกเยื่อและเป็นสิ่งที่มองเห็นได้ด้วยสายตา เครื่องวัดความขาวสว่างของกระดาษมีความจำเป็นจะต้องได้รับการสอบเทียบให้ถูกต้องแม่นยำอยู่เสมอ โดยใช้กระดาษอ้างอิงมาตรฐานสำหรับสอบเทียบเครื่องวัดความขาวสว่างของกระดาษ ซึ่งหนึ่งชุดประกอบด้วยกระดาษอ้างอิงมาตรฐาน 4 ชนิดคือ Fluorescence, ความขาวสว่าง 90, 70 และ 60 เพื่อให้สามารถสอบเทียบได้ครอบคลุมทุก Parameter บทความนี้กล่าวถึงการผลิตกระดาษอ้างอิงมาตรฐานชนิด Fluorescence ซึ่งใช้วิธีการผลิตตามข้อกำหนดของ ISO TC 6 (Paper, board and pulps) และ Optical Properties Authorized Laboratories (OPALs) ซึ่งเป็นห้องปฏิบัติการมาตรฐานที่ได้รับการรับรองจาก ISO TC6 กระดาษอ้างอิงมาตรฐานชนิด Fluorescence ที่ผลิตได้นั้นถูกส่งไปตรวจสอบคุณภาพกับ Technidyne Laboratory Services (TLS) ประเทศสหรัฐอเมริกา ซึ่งเป็นหนึ่งใน OPALs ตั้งแต่เดือนตุลาคม 2552 เป็นประจำทุกเดือนจนถึงปัจจุบัน ด้วยการเปรียบเทียบค่า 2 ค่าคือ ค่าความขาวสว่าง (C brightness) และค่าความขาว (D65 Whiteness) ตลอดระยะเวลาที่ทาง Technidyne Laboratory Services ตรวจสอบคุณภาพของกระดาษอ้างอิงมาตรฐานชนิด Fluorescence ที่กรมวิทยาศาสตร์บริการผลิตได้นั้น พบว่า คุณภาพโดยเฉลี่ยของกระดาษอ้างอิงมาตรฐานอยู่ในเกณฑ์ที่ยอมรับได้ คือ ทาง Technidyne Laboratory Services วัดค่าความขาวสว่าง (C brightness) ของกระดาษอ้างอิงมาตรฐานที่ส่งไปไม่แตกต่างเกิน 0.15 โดยเฉลี่ยและค่าความขาว (D65 Whiteness) ไม่แตกต่างเกิน 0.3 โดยเฉลี่ย นอกจากนั้นกระดาษอ้างอิงมาตรฐานชนิด Fluorescence ที่ผลิตได้นั้นยังถูกส่งให้ห้องปฏิบัติการของอุตสาหกรรมเยื่อและกระดาษในประเทศไทยจำนวน 13 แห่ง ทดลองใช้ตั้งแต่เดือนกุมภาพันธ์ 2553 เป็นประจำทุกเดือนด้วย
APA, Harvard, Vancouver, ISO, and other styles
42

ZHANG Li-min, 张丽敏, 刘涵 LIU Han, 尹国艳 YIN Guo-yan, 李娇 LI Jiao, 周仲兴 ZHOU Zhong-xing, and 高峰 GAO Feng. "Dynamic Diffuse Fluorescence Tomography System for Fluorescence Pharmacokinetics." ACTA PHOTONICA SINICA 48, no. 6 (2019): 611002. http://dx.doi.org/10.3788/gzxb20194806.0611002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Cadoff, Evan M. "Fluorescence Assays: Fluorescence Polarization and Time-Resolved Pulse." Laboratory Medicine 21, no. 6 (June 1, 1990): 347–52. http://dx.doi.org/10.1093/labmed/21.6.347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Shelar, Deepak Prakash, Sandeep R. Patil, Ramhari V. Rote, and Madhukar N. Jachak. "A Fluorescence and Fluorescence Probe Study of Benzonaphthyridines." Journal of Fluorescence 22, no. 1 (August 16, 2011): 17–29. http://dx.doi.org/10.1007/s10895-011-0945-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Cazeau-Dubroca, C., A. Peirigua, S. Ait Lyazidi, G. Nouchi, Ph Cazeau, and R. Lapouyade. "Tict fluorescence in rigid matrices: α-delayed fluorescence." Chemical Physics Letters 124, no. 2 (February 1986): 110–15. http://dx.doi.org/10.1016/0009-2614(86)85128-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Breusegem, Sophia Y., Moshe Levi, and Nicholas P. Barry. "Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Imaging Microscopy." Nephron Experimental Nephrology 103, no. 2 (2006): e41-e49. http://dx.doi.org/10.1159/000090615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gao, Melisa, George Lewis, Gordon M. Turner, Antoine Soubret, and Vasilis Ntziachristos. "Effects of background fluorescence in fluorescence molecular tomography." Applied Optics 44, no. 26 (September 10, 2005): 5468. http://dx.doi.org/10.1364/ao.44.005468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ghauharali, Hofstraat, and Brakenhoff. "Fluorescence photobleaching-based shading correction for fluorescence microscopy." Journal of Microscopy 192, no. 2 (November 1998): 99–113. http://dx.doi.org/10.1046/j.1365-2818.1998.00412.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ghauharali and Brakenhoff. "Fluorescence photobleaching-based image standardization for fluorescence microscopy." Journal of Microscopy 198, no. 2 (May 2000): 88–100. http://dx.doi.org/10.1046/j.1365-2818.2000.00683.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Digman, Michelle A., and Enrico Gratton. "Fluorescence correlation spectroscopy and fluorescence cross‐correlation spectroscopy." Wiley Interdisciplinary Reviews: Systems Biology and Medicine 1, no. 2 (September 2009): 273–82. http://dx.doi.org/10.1002/wsbm.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography