To see the other types of publications on this topic, follow the link: Fluids near interfaces.

Journal articles on the topic 'Fluids near interfaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fluids near interfaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Daher, Ali, Amine Ammar, and Abbas Hijazi. "Nanoparticles migration near liquid-liquid interfaces using diffuse interface model." Engineering Computations 36, no. 3 (April 8, 2019): 1036–54. http://dx.doi.org/10.1108/ec-03-2018-0153.

Full text
Abstract:
Purpose The purpose of this paper is to develop a numerical model for the simulation of the dynamics of nanoparticles (NPs) at liquid–liquid interfaces. Two cases have been studied, NPs smaller than the interfacial thickness, and NPs greater than the interfacial thickness. Design/methodology/approach The model is based on the molecular dynamics (MD) simulation in addition to phase field (PF) method, through which the discrete model of particles motion is superimposed on the continuum model of fluids which is a new ide a in numerical modeling. The liquid–liquid interface is modeled using the diffuse interface model. Findings For NPs smaller than the interfacial thickness, the results obtained show that the concentration gradient of one fluid in the other gives rise to a hydrodynamic drag force that drives the NPs to agglomerate at the interface. Whereas, for spherical NPs greater than the interfacial thickness, the results show that such NPs oscillate at the interface which agrees with some experimental studies. Practical implications The results are important in the field of numerical modeling, especially that the model is general and can be used to study different systems. This will be of great interest in the field of studying the behavior of NPs inside fluids and near interfaces, which enters in many industrial applications. Originality/value The idea of superimposing the molecular dynamic method on the PF method is a new idea in numerical modeling.
APA, Harvard, Vancouver, ISO, and other styles
2

Gouin, Henri, and Pierre Seppecher. "Temperature profile in a liquid–vapour interface near the critical point." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, no. 2204 (August 2017): 20170229. http://dx.doi.org/10.1098/rspa.2017.0229.

Full text
Abstract:
Thanks to an expansion with respect to densities of energy, mass and entropy, we discuss the concept of thermocapillary fluid for inhomogeneous fluids. The non-convex state law valid for homogeneous fluids is modified by adding terms taking account of the gradients of these densities. This seems more realistic than Cahn and Hilliard’s model which uses a density expansion in mass-density gradient only. Indeed, through liquid–vapour interfaces, realistic potentials in molecular theories show that entropy density and temperature do not vary with the mass density as it would do in bulk phases. In this paper, we prove using a rescaling process near the critical point, that liquid–vapour interfaces behave essentially in the same way as in Cahn and Hilliard’s model.
APA, Harvard, Vancouver, ISO, and other styles
3

Daher, Ali, Amine Ammar, Abbas Hijazi, and Lazhar Benyahia. "Effect of Shear Flow on Nanoparticles Migration near Liquid Interfaces." Entropy 23, no. 9 (August 31, 2021): 1143. http://dx.doi.org/10.3390/e23091143.

Full text
Abstract:
The effect of shear flow on spherical nanoparticles (NPs) migration near a liquid–liquid interface is studied by numerical simulation. We have implemented a compact model through which we use the diffuse interface method for modeling the two fluids and the molecular dynamics method for the simulation of the motion of NPs. Two different cases regarding the state of the two fluids when introducing the NPs are investigated. First, we introduce the NPs randomly into the medium of the two immiscible liquids that are already separated, and the interface is formed between them. For this case, it is shown that before applying any shear flow, 30% of NPs are driven to the interface under the effect of the drag force resulting from the composition gradient between the two fluids at the interface. However, this percentage is increased to reach 66% under the effect of shear defined by a Péclet number Pe = 0.316. In this study, different shear rates are investigated in addition to different shearing times, and we show that both factors have a crucial effect regarding the migration of the NPs toward the interfacial region. In particular, a small shear rate applied for a long time will have approximately the same effect as a greater shear rate applied for a shorter time. In the second studied case, we introduce the NPs into the mixture of two fluids that are already mixed and before phase separation so that the NPs are introduced into the homogenous medium of the two fluids. For this case, we show that in the absence of shear, almost all NPs migrate to the interface during phase separation, whereas shearing has a negative result, mainly because it affects the phase separation.
APA, Harvard, Vancouver, ISO, and other styles
4

Steytler, David C. "Microemulsions in near-critical fluids." Current Opinion in Colloid & Interface Science 1, no. 2 (April 1996): 236–40. http://dx.doi.org/10.1016/s1359-0294(96)80009-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Scholz, Christian, Anton Ldov, Thorsten Pöschel, Michael Engel, and Hartmut Löwen. "Surfactants and rotelles in active chiral fluids." Science Advances 7, no. 16 (April 2021): eabf8998. http://dx.doi.org/10.1126/sciadv.abf8998.

Full text
Abstract:
Surfactant molecules migrate to interfaces, reduce interfacial tension, and form micelles. All of these behaviors occur at or near equilibrium. Here, we describe active analogs of surfactants that operate far from equilibrium in active chiral fluids. Unlike molecular surfactants, the amphiphilic character of surfactants in active chiral fluids is a consequence of their activity. Our fluid of choice is a mixture of spinners that demixes into left-handed and right-handed chiral fluid domains. We realize spinners in experiment with three-dimensionally printed vibrots. Vibrot surfactants are chains of vibrots containing both types of handedness. Experiments demonstrate the affinity of double-stranded chains to interfaces, where they glide along and act as mixing agents. Simulations access larger systems in which single-stranded chains form spinning vesicles, termed rotelles. Rotelles are the chiral analogs of micelles. Rotelle formation is a ratchet mechanism catalyzed by the vorticity of the chiral fluid and only exist far from equilibrium.
APA, Harvard, Vancouver, ISO, and other styles
6

Braithwaite, Gavin J. C., and Gareth H. McKinley. "Microrheometry for Studying the Rheology and Dynamics of Polymers Near Interfaces." Applied Rheology 9, no. 1 (February 1, 1999): 27–33. http://dx.doi.org/10.1515/arh-2009-0003.

Full text
Abstract:
Abstract The design of an instrument capable of opto-mechanical studies of the rheology of viscoelastic polymeric fluids near solid interfaces is described. The instrument probes the ‘meso’-scale (length scales of 0 (μm)) and bridges the gap between molecular-scale devices such as the Surface Force Apparatus (SFA) and conventional rheometers. The high viscosity materials and intermediate length scales probed with the current device are of direct relevance to industrial coating and thin film polymer processing operations, in addition to fundamental investigations of slip and interfacial instabilities. The device utilises small fluid samples (of the order of 1 μL), allows a wide range of viscosities (and thus molecular weights) to be investigated and can also be used with different substrate materials and surface coatings. Direct optical access to the sample also permits in-situ rheo-optical studies of material response under different loading conditions and flow histories.
APA, Harvard, Vancouver, ISO, and other styles
7

Schoen, M., and F. Porcheron. "Collective dynamics near a phase transition in confined fluids." European Physical Journal E 12, S1 (November 2003): 5–7. http://dx.doi.org/10.1140/epjed/e2003-01-002-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

HUNT, J. C. R., D. D. STRETCH, and S. E. BELCHER. "Viscous coupling of shear-free turbulence across nearly flat fluid interfaces." Journal of Fluid Mechanics 671 (February 24, 2011): 96–120. http://dx.doi.org/10.1017/s0022112010005525.

Full text
Abstract:
The interactions between shear-free turbulence in two regions (denoted as + and − on either side of a nearly flat horizontal interface are shown here to be controlled by several mechanisms, which depend on the magnitudes of the ratios of the densities, ρ+/ρ−, and kinematic viscosities of the fluids, μ+/μ−, and the root mean square (r.m.s.) velocities of the turbulence, u0+/u0−, above and below the interface. This study focuses on gas–liquid interfaces so that ρ+/ρ− ≪ 1 and also on where turbulence is generated either above or below the interface so that u0+/u0− is either very large or very small. It is assumed that vertical buoyancy forces across the interface are much larger than internal forces so that the interface is nearly flat, and coupling between turbulence on either side of the interface is determined by viscous stresses. A formal linearized rapid-distortion analysis with viscous effects is developed by extending the previous study by Hunt & Graham (J. Fluid Mech., vol. 84, 1978, pp. 209–235) of shear-free turbulence near rigid plane boundaries. The physical processes accounted for in our model include both the blocking effect of the interface on normal components of the turbulence and the viscous coupling of the horizontal field across thin interfacial viscous boundary layers. The horizontal divergence in the perturbation velocity field in the viscous layer drives weak inviscid irrotational velocity fluctuations outside the viscous boundary layers in a mechanism analogous to Ekman pumping. The analysis shows the following. (i) The blocking effects are similar to those near rigid boundaries on each side of the interface, but through the action of the thin viscous layers above and below the interface, the horizontal and vertical velocity components differ from those near a rigid surface and are correlated or anti-correlated respectively. (ii) Because of the growth of the viscous layers on either side of the interface, the ratio uI/u0, where uI is the r.m.s. of the interfacial velocity fluctuations and u0 the r.m.s. of the homogeneous turbulence far from the interface, does not vary with time. If the turbulence is driven in the lower layer with ρ+/ρ− ≪ 1 and u0+/u0− ≪ 1, then uI/u0− ~ 1 when Re (=u0−L−/ν−) ≫ 1 and R = (ρ−/ρ+)(v−/v+)1/2 ≫ 1. If the turbulence is driven in the upper layer with ρ+/ρ− ≪ 1 and u0+/u0− ≫ 1, then uI/u0+ ~ 1/(1 + R). (iii) Nonlinear effects become significant over periods greater than Lagrangian time scales. When turbulence is generated in the lower layer, and the Reynolds number is high enough, motions in the upper viscous layer are turbulent. The horizontal vorticity tends to decrease, and the vertical vorticity of the eddies dominates their asymptotic structure. When turbulence is generated in the upper layer, and the Reynolds number is less than about 106–107, the fluctuations in the viscous layer do not become turbulent. Nonlinear processes at the interface increase the ratio uI/u0+ for sheared or shear-free turbulence in the gas above its linear value of uI/u0+ ~ 1/(1 + R) to (ρ+/ρ−)1/2 ~ 1/30 for air–water interfaces. This estimate agrees with the direct numerical simulation results from Lombardi, De Angelis & Bannerjee (Phys. Fluids, vol. 8, no. 6, 1996, pp. 1643–1665). Because the linear viscous–inertial coupling mechanism is still significant, the eddy motions on either side of the interface have a similar horizontal structure, although their vertical structure differs.
APA, Harvard, Vancouver, ISO, and other styles
9

Srivastava, S., P. Perlekar, L. Biferale, M. Sbragaglia, J. H. M. ten Thije Boonkkamp, and F. Toschi. "A Study of Fluid Interfaces and Moving Contact Lines Using the Lattice Boltzmann Method." Communications in Computational Physics 13, no. 3 (March 2013): 725–40. http://dx.doi.org/10.4208/cicp.411011.310112s.

Full text
Abstract:
AbstractWe study the static and dynamical behavior of the contact line between two fluids and a solid plate by means of the Lattice Boltzmann method (LBM). The different fluid phases and their contact with the plate are simulated by means of standard Shan-Chen models. We investigate different regimes and compare the multicomponent vs. the multiphase LBM models near the contact line. A static interface profile is attained with the multiphase model just by balancing the hydrostatic pressure (due to gravity) with a pressure jump at the bottom. In order to study the same problem with the multicomponent case we propose and validate an idea of a body force acting only on one of the two fluid components. In order to reproduce results matching an infinite bath, boundary conditions at the bath side play a key role. We quantitatively compare open and wall boundary conditions and study their influence on the shape of the meniscus against static and lubrication theory solution.
APA, Harvard, Vancouver, ISO, and other styles
10

Castelo, Antonio, Alexandre M. Afonso, and Wesley De Souza Bezerra. "A Hierarchical Grid Solver for Simulation of Flows of Complex Fluids." Polymers 13, no. 18 (September 18, 2021): 3168. http://dx.doi.org/10.3390/polym13183168.

Full text
Abstract:
Tree-based grids bring the advantage of using fast Cartesian discretizations, such as finite differences, and the flexibility and accuracy of local mesh refinement. The main challenge is how to adapt the discretization stencil near the interfaces between grid elements of different sizes, which is usually solved by local high-order geometrical interpolations. Most methods usually avoid this by limiting the mesh configuration (usually to graded quadtree/octree grids), reducing the number of cases to be treated locally. In this work, we employ a moving least squares meshless interpolation technique, allowing for more complex mesh configurations, still keeping the overall order of accuracy. This technique was implemented in the HiG-Flow code to simulate Newtonian, generalized Newtonian and viscoelastic fluids flows. Numerical tests and application to viscoelastic fluid flow simulations were performed to illustrate the flexibility and robustness of this new approach.
APA, Harvard, Vancouver, ISO, and other styles
11

Gajrani, Kishor Kumar, Rokkham Pavan Kumar Reddy, and Mamilla Ravi Sankar. "Tribo-mechanical and surface morphological comparison of untextured, mechanical micro-textured (MμT), and coated-MμT cutting tools during machining." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 233, no. 1 (March 27, 2018): 95–111. http://dx.doi.org/10.1177/1350650118764975.

Full text
Abstract:
In machining process, cutting fluids are used to reduce the tool–chip interface temperature and forces, but it causes various health hazards to machine operators as well as increases the associated costs. To improve machining sustainability, researchers are trying to reduce or eliminate cutting fluid usage during machining by various other techniques (development of better tool material, bio-cutting fluids, use of vegetable oils, near-dry machining, process optimization, surface coatings, etc). In recent years, several researchers applied controlled surface modification (surface texturing/engineering) at the tool–chip interface to improve the tribological properties in the machining performance. In the present study, first mechanical microtextures (MµT) are created on the rake surface, and its structural stability is compared with an untextured/virgin cutting tool. The static structural analyses show a negligible effect of mechanical microtextures on the strength of the cutting tool. Afterwards, MµT cutting tools are coated using molybdenum disulphide (MoS2) solid lubricant (i.e. coated MµT, C-MµT). Subsequently, the machining performance studies of C-MµT were carried out to show its advantages over two other types of cutting tools (UC, MµT). Performance of C-MµT is improved by mechanical microtextures (due to the reduction in the actual contact area between tool–chip interfaces) and proper lubrication of the tool–chip contact area. Thus, due to the reduced contact area and formation of lubricant layer by MoS2 at the tool–chip interface, C-MµT experiences 23.75% lower tool–chip interface temperature, 41.06% reduction in the cutting force, and produces 14.37% less workpiece center line average surface roughness ( Ra) compared to untextured cutting tool. C-MµT experiences 9.55% lower tool–chip interface temperature, 19.02% reduction in the cutting force, and produces 5.34% less workpiece center line average surface roughness compared to the MµT cutting tool. Hence, C-MµT cutting tools are the viable alternative to untextured cutting tools.
APA, Harvard, Vancouver, ISO, and other styles
12

Yang, Yang, Leping Zhou, Xiaoze Du, and Yongping Yang. "Fluid Flow and Thin-Film Evolution near the Triple Line during Droplet Evaporation of Self-Rewetting Fluids." Langmuir 34, no. 13 (March 7, 2018): 3853–63. http://dx.doi.org/10.1021/acs.langmuir.8b00170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Milewska-Duda, Janina, and Jan Tadeusz Duda. "High-Accuracy PVT Relationships for Compressed Fluids and Their Application to BET-like Modelling of CO2 and CH4 Adsorption." Adsorption Science & Technology 25, no. 8 (October 2007): 543–59. http://dx.doi.org/10.1260/0263-6174.25.8.543.

Full text
Abstract:
This paper presents a set of high-accuracy formulae enabling the evaluation of the compression factor, activity and cohesion energy of fluids at near-critical and super-critical temperatures, with reduced molar volumes ranging from 0.4. Such data are necessary in BET-like theoretical modelling of adsorption process. The proposed fluid state equation (PVT relationship) combines a theoretical description of the fluid entropy (based on a hard-sphere model) with cohesion energy relationships obtained via high-accuracy approximations of universal compression factor data and vapour-liquid equilibria. The resultant relationships are incorporated into a BET-like description of adsorption in materials of irregular microporous structure (LBET model). The set of formulae gathered together in this paper allows the possible effective calculation of adsorption isotherms at near- and super-critical temperatures relative to the pore structures. A multi-variant fitting of the LBET model to the empirical data is proposed to detect active constraints for multilayer adsorption and, hence, to obtain information on the structure of the pores. Application of the formulae to the analysis of methane and carbon dioxide adsorption onto an active carbon is discussed.
APA, Harvard, Vancouver, ISO, and other styles
14

Bonhomme, Romain, Jacques Magnaudet, Fabien Duval, and Bruno Piar. "Inertial dynamics of air bubbles crossing a horizontal fluid–fluid interface." Journal of Fluid Mechanics 707 (July 13, 2012): 405–43. http://dx.doi.org/10.1017/jfm.2012.288.

Full text
Abstract:
AbstractThe dynamics of isolated air bubbles crossing the horizontal interface separating two Newtonian immiscible liquids initially at rest are studied both experimentally and computationally. High-speed video imaging is used to obtain a detailed evolution of the various interfaces involved in the system. The size of the bubbles and the viscosity contrast between the two liquids are varied by more than one and four orders of magnitude, respectively, making it possible to obtain bubble shapes ranging from spherical to toroidal. A variety of flow regimes is observed, including that of small bubbles remaining trapped at the fluid–fluid interface in a film-drainage configuration. In most cases, the bubble succeeds in crossing the interface without being stopped near its undisturbed position and, during a certain period of time, tows a significant column of lower fluid which sometimes exhibits a complex dynamics as it lengthens in the upper fluid. Direct numerical simulations of several selected experimental situations are performed with a code employing a volume-of-fluid type formulation of the incompressible Navier–Stokes equations. Comparisons between experimental and numerical results confirm the reliability of the computational approach in most situations but also points out the need for improvements to capture some subtle but important physical processes, most notably those related to film drainage. Influence of the physical parameters highlighted by experiments and computations, especially that of the density and viscosity contrasts between the two fluids and of the various interfacial tensions, is discussed and analysed in the light of simple models and available theories.
APA, Harvard, Vancouver, ISO, and other styles
15

Sawada, Ikuo, Hiroyuki Tanaka, and Masahiro Tanaka. "Status of Computational Fluid Dynamics and Its Application to Materials Manufacturing." MRS Bulletin 19, no. 1 (January 1994): 14–19. http://dx.doi.org/10.1557/s088376940003880x.

Full text
Abstract:
Computational fluid dynamics was born principally in the aerospace field as a method for fluid flow and heat transfer research methods following experimental and analytical approaches. Along with progress in the cost performance of computers, computational fluid dynamics is now establishing itself as a tool to improve production processes and product quality in the steel, nonferrous metals, glass, plastics, and composite materials industries.Materials manufacturers use computational fluid dynamics for diverse purposes:1. Reduction in experimental conditions and costs;2. Detailed analysis of mechanisms with multifaceted information unobtainable through experimentation;3. Universal tool for scale-up; and4. Evaluation of novel processes.It can be readily imagined that accuracy, flexibility, and other requirements of computational fluid dynamics should vary with specific applications.Fluids generally observed in materials manufacturing processes are molten materials such as metal, glass, and plastics, and gases for stirring and refining. In the flow of such fluids, materials quality and process characteristics are governed by the following:1. Transport phenomena in the bulk region (where fluid flow is normally turbulent);2. Chemical reaction at interfaces;3. Transport phenomena in boundary layers near the interfaces; and4. Complex coupled phenomena (heat transfer, diffusion, chemical reaction, phase transformation like solidification, free surface, electromagnetic force, and bubble flow).
APA, Harvard, Vancouver, ISO, and other styles
16

De Bruyne, Frank A., and D. B. Bogy. "Numerical Simulation of the Lubrication of the Head-Disk Interface Using a Non-Newtonian Fluid." Journal of Tribology 116, no. 3 (July 1, 1994): 541–48. http://dx.doi.org/10.1115/1.2928878.

Full text
Abstract:
The prospect of contact and near-contact recording in magnetic hard disk files naturally leads to reduced flying heights of the read-write head over the rigid disk. To avoid dry contact at these low head-to-disk spacings, a lubricant should be used to minimize wear and maximize reliability. Since fluids generally have a much greater viscosity than air and very large shear rates develop under the slider, it is believed that a fully flooded interface can only be practically possible if the fluid possesses a non-Newtonian character with a significant amount of shear-thinning. In this paper, we present results from extensive numerical simulations of the fully flooded head-disk interface using the finite element technique. This approach has proven very successful in calculating a wide variation of slider geometries for various fluid nonlinearities.
APA, Harvard, Vancouver, ISO, and other styles
17

Tovbin, Yu K., A. B. Rabinovich, and D. V. Yeremich. "Kinetic Coefficients for Mixed Adsorbate Fluids in Narrow Pores." Adsorption Science & Technology 25, no. 6 (July 2007): 395–415. http://dx.doi.org/10.1260/026361707783908328.

Full text
Abstract:
The kinetic coefficients (trace diffusion, mutual diffusion and shear viscosity) of molecules in slit-like and sphero-cylindrical mesoporous systems were studied in terms of the modified lattice-gas model (LGM). The LGM equations were derived for molecules of the mixture having a spherical shape and similar size. A new equation for the velocity of the thermal molecule was used. The theory takes the change in the mechanism of particle migration in different phases into account, viz. from pair collisions for the gas to the overcoming of the activation barrier by thermofluctuation for dense phases. At low mixture densities corresponding to an ideal gas phase, the LGM expression for the mutual diffusion coefficient agrees with the expression of the rigorous kinetic theory of gases. The theory allows the calculation of the kinetic coefficients for the components of binary mixtures in full gas-liquid density areas. The supramolecular structure of the sphero-cylindrical system was modelled by sections with a simple regular geometry (cylindrical and spherical) with the additional inclusion of junctions between different pore sections. The contributions of the near-wall regions caused by the molecule-wall potential to the general appearance of the phase diagrams and the effect of the pore size on the capillary condensation conditions were discussed.
APA, Harvard, Vancouver, ISO, and other styles
18

D. Stepanov, A. "Statistical Method for Tracing Hydraulic Fracture Front Without Evaluation of the Normal." International Journal of Engineering & Technology 7, no. 4.26 (November 30, 2018): 274. http://dx.doi.org/10.14419/ijet.v7i4.26.27936.

Full text
Abstract:
In numerical simulation of hydraulic fracture propagation, tangent component of the fluid velocity generally considered to be neglected near the crack front. Then Reynolds transport theorem yields that the limit of the particle velocity coincides with the vector of the front propagation speed. We use this fact in combination with the Poiseuille-type equation, which implies that the particle velocity is always collinear to pressure gradient. We show that this specific feature of the hydraulic fracture problem may serve to simplify tracing the front propagation. The latter may be traced without explicit evaluation of the normal to the front, which is needed in conventional applications of the theory of propagating interfaces. Numerical experiments confirm that, despite huge errors in pressure and even greater errors in its gradient, the propagation speed, statistically averaged over a distance of a mesh size, is found quite accurate. We conclude that suggested method may simplify numerical simulation of hydraulic fractures driven by Newtonian and non-Newtonian fluids.
APA, Harvard, Vancouver, ISO, and other styles
19

XU, XINPENG, and TIEZHENG QIAN. "EVAPORATIVE DROPLETS IN ONE-COMPONENT FLUIDS DRIVEN BY THERMAL GRADIENTS ON SOLID SUBSTRATES." International Journal of Modern Physics B 27, no. 07 (March 10, 2013): 1361008. http://dx.doi.org/10.1142/s0217979213610080.

Full text
Abstract:
A continuum hydrodynamic model is presented for one-component liquid–gas flows on nonisothermal solid substrates. Numerical simulations are carried out for evaporative droplets moving on substrates with thermal gradients. For droplets in one-component fluids on heated/cooled substrates, the free liquid–gas interfaces are nearly isothermal. Consequently, a thermal singularity occurs at the contact line while the Marangoni effect due to interfacial temperature variation is suppressed. Through evaporation/condensation near the contact line, the thermal singularity makes the contact angle increase with the increasing substrate temperature. Due to this effect, droplets will move toward the cold end on substrates with thermal gradients. The droplet migration velocity is found to be proportional to the change of substrate temperature across the droplet. It follows that for two droplets of different sizes on a substrate with temperature gradient, the larger droplet moves faster and will catch up with the smaller droplet ahead. As soon as they touch, they coalesce rapidly into an even larger droplet that will move even faster.
APA, Harvard, Vancouver, ISO, and other styles
20

SHIKHMURZAEV, YULII D. "Moving contact lines in liquid/liquid/solid systems." Journal of Fluid Mechanics 334 (March 10, 1997): 211–49. http://dx.doi.org/10.1017/s0022112096004569.

Full text
Abstract:
A general mathematical model which describes the motion of an interface between immiscible viscous fluids along a smooth homogeneous solid surface is examined in the case of small capillary and Reynolds numbers. The model stems from a conclusion that the Young equation, σ1 cos θ = σ2 − σ3, which expresses the balance of tangential projection of the forces acting on the three-phase contact line in terms of the surface tensions σi and the contact angle θ, together with the well-established experimental fact that the dynamic contact angle deviates from the static one, imply that the surface tensions of contacting interfaces in the immediate vicinity of the contact line deviate from their equilibrium values when the contact line is moving. The same conclusion also follows from the experimentally observed kinematics of the flow, which indicates that liquid particles belonging to interfaces traverse the three-phase interaction zone (i.e. the ‘contact line’) in a finite time and become elements of another interface – hence their surface properties have to relax to new equilibrium values giving rise to the surface tension gradients in the neighbourhood of the moving contact line. The kinematic picture of the flow also suggests that the contact-line motion is only a particular case of a more general phenomenon – the process of interface formation or disappearance – and the corresponding mathematical model should be derived from first principles for this general process and then applied to wetting as well as to other relevant flows. In the present paper, the simplest theory which uses this approach is formulated and applied to the moving contact-line problem. The model describes the true kinematics of the flow so that it allows for the ‘splitting’ of the free surface at the contact line, the appearance of the surface tension gradients near the contact line and their influence upon the contact angle and the flow field. An analytical expression for the dependence of the dynamic contact angle on the contact-line speed and parameters characterizing properties of contacting media is derived and examined. The role of a ‘thin’ microscopic residual film formed by adsorbed molecules of the receding fluid is considered. The flow field in the vicinity of the contact line is analysed. The results are compared with experimental data obtained for different fluid/liquid/solid systems.
APA, Harvard, Vancouver, ISO, and other styles
21

Rečnik, Aleksander, Janez Zavašnik, Lei Jin, Andrea Čobić, and Nina Daneu. "On the origin of 'iron-cross' twins of pyrite from Mt. Katarina, Slovenia." Mineralogical Magazine 80, no. 6 (October 2016): 937–48. http://dx.doi.org/10.1180/minmag.2016.080.073.

Full text
Abstract:
AbstractIron-cross twins of pyrite are well known among mineralogists, however it is quite surprising that the conditions of their formation remain unexplored. To address this question we studied pyrite twins from the Upper Permian silts of Mt. Katarina near Ljubljana (Slovenia), which represent one of the most typical geological environments for twinned pyrite. Mineralization of pyrite starts with a reduction of the primary red-coloured hematite-rich sediment by sulfide-rich fluids that penetrated the strata. A short period of magnetite crystallization is observed prior to pyrite crystallization, which indicates a gradual reduction process. Sulfur isotope analysis of pyrite shows an enrichment in δ34S, suggesting its origin from the neighbouring red-bed deposit. Other sulfides, such as chalcopyrite and galena, formed at the end of pyrite crystallization. Remnants of mineralizing fluids trapped at the interfaces between the inclusions and host pyrite show trace amounts of Pb and Cu, indicating their presence in the solutions throughout the period of pyrite crystallization. An electron microscopy and spectroscopy study of twin boundaries showed that interpenetration twinning is accomplished through a complex 3D intergrowth of primary {110} Cu-rich twin boundaries, and secondary {100} boundaries that are pure. We show that approximately one monolayer of Cu atoms is necessary to stabilize the {110} twin structure. When the source of Cu is interrupted, the two crystal domains continue to form {100} interfaces, that are more favourable for pure pyrite.
APA, Harvard, Vancouver, ISO, and other styles
22

Foster, Douglas J., Robert G. Keys, and F. David Lane. "Interpretation of AVO anomalies." GEOPHYSICS 75, no. 5 (September 2010): 75A3–75A13. http://dx.doi.org/10.1190/1.3467825.

Full text
Abstract:
We investigate the effects of changes in rock and fluid properties on amplitude-variation-with-offset (AVO) responses. In the slope-intercept domain, reflections from wet sands and shales fall on or near a trend that we call the fluid line. Reflections from the top of sands containing gas or light hydrocarbons fall on a trend approximately parallel to the fluid line; reflections from the base of gas sands fall on a parallel trend on the opposing side of the fluid line. The polarity standard of the seismic data dictates whether these reflections from the top of hydrocarbon-bearing sands are below or above the fluid line. Typically, rock properties of sands and shales differ, and therefore reflections from sand/shale interfaces are also displaced from the fluid line. The distance of these trends from the fluid line depends upon the contrast of the ratio of P-wave velocity [Formula: see text] and S-wave velocity [Formula: see text]. This ratio is a function of pore-fluid compressibility and implies that distance from the fluid line increases with increasing compressibility. Reflections from wet sands are closer to the fluid line than hydrocarbon-related reflections. Porosity changes affect acoustic impedance but do not significantly impact the [Formula: see text] contrast. As a result, porosity changes move the AVO response along trends approximately parallel to the fluid line. These observations are useful for interpreting AVO anomalies in terms of fluids, lithology, and porosity.
APA, Harvard, Vancouver, ISO, and other styles
23

Burguete, M. Isabel, Eduardo García-Verdugo, and Santiago V. Luis. "Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids." Beilstein Journal of Organic Chemistry 7 (September 30, 2011): 1347–59. http://dx.doi.org/10.3762/bjoc.7.159.

Full text
Abstract:
This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs), to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i) Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii) the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii) the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones.
APA, Harvard, Vancouver, ISO, and other styles
24

Luo, Xisheng, Ping Dong, Ting Si, and Zhigang Zhai. "The Richtmyer–Meshkov instability of a ‘V’ shaped air/ interface." Journal of Fluid Mechanics 802 (August 3, 2016): 186–202. http://dx.doi.org/10.1017/jfm.2016.476.

Full text
Abstract:
The Richtmyer–Meshkov instability on a ‘V’ shaped air/SF$_{6}$ gaseous interface is experimentally studied in a shock tube. By the soap film technique, a discontinuous interface without supporting mesh is formed so that the initial conditions of the interface can be accurately controlled. Five ‘V’ shaped air/$\text{SF}_{6}$ interfaces with different vertex angles ($60^{\circ }$, $90^{\circ }$, $120^{\circ }$, $140^{\circ }$ and $160^{\circ }$) are created where the ratio of the initial interface amplitude to the wavelength varies to highlight the effects of initial condition on the flow characteristics. The wave patterns and interface morphologies are clearly identified in the high-speed schlieren sequences, which show that the interface deforms in a less pronounced manner with less vortices generated as the vertex angle increases. A regime change is observed in the interface width growth rate near a vertex angle of $160^{\circ }$, which provides an experimental evidence for the numerical results obtained by McFarland et al. (Phys. Scr. vol. T155, 2013, 014014). The growth rate of interface width in the linear phase is compared with the theoretical predictions from the classical impulsive model and a modified linear model, and the latter is proven to be effective for a moderate to large initial amplitude. It is found that the initial growth rate of the interface width is a non-monotone function of the initial vertex angle (amplitude–wavelength ratio), i.e. the interface width growth rate in the linear stage experiences an increase and then a decrease as the vertex angle increases. A similar conclusion was also reached by Dell et al. (Phys. Plasmas, vol. 22, 2015, 092711) numerically for a sinusoidal interface. Finally, the general behaviour of the interface width growth in the nonlinear stage can be well captured by the nonlinear model proposed by Dimonte & Ramaprabhu (Phys. Fluids, vol. 22, 2010, 014104).
APA, Harvard, Vancouver, ISO, and other styles
25

Yu, You, Joanna Nassar, Changhao Xu, Jihong Min, Yiran Yang, Adam Dai, Rohan Doshi, et al. "Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces." Science Robotics 5, no. 41 (April 22, 2020): eaaz7946. http://dx.doi.org/10.1126/scirobotics.aaz7946.

Full text
Abstract:
Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite recent efforts to harvest energy from the human body, self-powered e-skin with the ability to perform biosensing with Bluetooth communication are limited because of the lack of a continuous energy source and limited power efficiency. Here, we report a flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ. The battery-free e-skin contains multimodal sensors and highly efficient lactate biofuel cells that use a unique integration of zero- to three-dimensional nanomaterials to achieve high power intensity and long-term stability. The PPES delivered a record-breaking power density of 3.5 milliwatt·centimeter−2 for biofuel cells in untreated human body fluids (human sweat) and displayed a very stable performance during a 60-hour continuous operation. It selectively monitored key metabolic analytes (e.g., urea, NH4+, glucose, and pH) and the skin temperature during prolonged physical activities and wirelessly transmitted the data to the user interface using Bluetooth. The PPES was also able to monitor muscle contraction and work as a human-machine interface for human-prosthesis walking.
APA, Harvard, Vancouver, ISO, and other styles
26

KOROBKIN, A. A., A. S. ELLIS, and F. T. SMITH. "Trapping of air in impact between a body and shallow water." Journal of Fluid Mechanics 611 (September 25, 2008): 365–94. http://dx.doi.org/10.1017/s0022112008002899.

Full text
Abstract:
Near-impact behaviour is investigated for a solid body approaching another solid body with two immiscible incompressible viscous fluids occupying the gap in between. The fluids have viscosity and density ratios which are extreme, the most notable combination being water and air, such that either or both of the bodies are covered by a thin film of water. Air–water interaction and the commonly observed phenomenon of air trapping are of concern in the presence of the two or three thin layers and one or two interfaces. The subcritical regime is of most practical significance here and it leads physically to the effect of inviscid water dynamics coupling with a viscous-dominated air response locally. This physical mechanism induces touchdown (or an approach to touchdown), which is found to occur in the sense that the scaled air-gap thickness shrinks towards zero within a finite scaled time according to analysis performed hand in hand with computation. A global influence on the local touchdown properties is also identified. Comparisons with computations prove favourable. Air trapping is produced between two touchdown positions, at each of which there is a pressure peak; an oblique approach would not affect the finding unless the approach itself is extremely shallow. The mechanism of air–water interaction leading to air trapping is suggested as a quite wide-ranging result.
APA, Harvard, Vancouver, ISO, and other styles
27

Lakehal, D., M. Fulgosi, G. Yadigaroglu, and S. Banerjee. "Direct Numerical Simulation of Turbulent Heat Transfer Across a Mobile, Sheared Gas-Liquid Interface." Journal of Heat Transfer 125, no. 6 (November 19, 2003): 1129–39. http://dx.doi.org/10.1115/1.1621891.

Full text
Abstract:
The impact of interfacial dynamics on turbulent heat transfer at a deformable, sheared gas-liquid interface is studied using Direct Numerical Simulation (DNS). The flow system comprises a gas and a liquid phase flowing in opposite directions. The governing equations for the two fluids are alternately solved in separate domains and then coupled at the interface by imposing continuity of velocity and stress. The deformations of the interface fall in the range of capillary waves of waveslope ak=0.01 (wave amplitude a times wavenumber k), and very small phase speed-to-friction velocity ratio, c/u*. The influence of low-to-moderate molecular Prandtl numbers Pr on the transport in the immediate vicinity of the interface is examined for the gas phase, and results are compared to existing wall-bounded flow data. The shear-based Reynolds number Re* is 171 and Prandtl numbers of 1, 5, and 10 were studied. The effects induced by changes in Pr in both wall-bounded flow and over a gas-liquid interface were analyzed by comparing the relevant statistical flow properties, including the budgets for the temperature variance and the turbulent heat fluxes. Overall, Pr was found to affect the results in very much the same way as in most of the available wall flow data. The intensity of the averaged normal heat flux at high Prandtl numbers is found to be slightly greater near the interface than at the wall. Similar to what is observed in wall flows, for Pr=1 the turbulent viscosity and diffusivity are found to asymptote with z+3, where z+ is the distance to the interface, and with z+n, where n>3 for Pr=5 and 10. This implies that the gas phase perceives deformable interfaces as impermeable walls for small amplitude waves with wavelengths much larger than the diffusive sublayers. Moreover, high-frequency fluctuating fields are shown to play a minor role in transferring heat across the interface, with a marked filtering effect of Pr. A new scaling law for the normalized heat transfer coefficient, K+ has been derived with the help of the DNS data. This law, which could be used in the range of Pr=1 to 10 for similar flow conditions, suggests an approximate Pr−3/5 relationship, lying between the Pr−1/2 dependence for free surfaces and the Pr−2/3 law for immobile interfaces and much higher Prandtl numbers. A close inspection of the transfer rates reveals a strong and consistent relationship between K+, the frequency of sweeps impacting the interface, the interfacial velocity streaks, and the interfacial shear stress.
APA, Harvard, Vancouver, ISO, and other styles
28

AFKHAMI, S., A. J. TYLER, Y. RENARDY, M. RENARDY, T. G. St. PIERRE, R. C. WOODWARD, and J. S. RIFFLE. "Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields." Journal of Fluid Mechanics 663 (September 8, 2010): 358–84. http://dx.doi.org/10.1017/s0022112010003551.

Full text
Abstract:
The effect of applied magnetic fields on the deformation of a biocompatible hydrophobic ferrofluid drop suspended in a viscous medium is investigated numerically and compared with experimental data. A numerical formulation for the time-dependent simulation of magnetohydrodynamics of two immiscible non-conducting fluids is used with a volume-of-fluid scheme for fully deformable interfaces. Analytical formulae for ellipsoidal drops and near-spheroidal drops are reviewed and developed for code validation. At low magnetic fields, both the experimental and numerical results follow the asymptotic small deformation theory. The value of interfacial tension is deduced from an optimal fit of a numerically simulated shape with the experimentally obtained drop shape, and appears to be a constant for low applied magnetic fields. At high magnetic fields, on the other hand, experimental measurements deviate from numerical results if a constant interfacial tension is implemented. The difference can be represented as a dependence of apparent interfacial tension on the magnetic field. This idea is investigated computationally by varying the interfacial tension as a function of the applied magnetic field and by comparing the drop shapes with experimental data until a perfect match is found. This estimation method provides a consistent correlation for the variation in interfacial tension at high magnetic fields. A conclusion section provides a discussion of physical effects which may influence the microstructure and contribute to the reported observations.
APA, Harvard, Vancouver, ISO, and other styles
29

Carnahan, Norman F., Lirio Quintero, David M. Pfund, John L. Fulton, Richard D. Smith, Malcolm Capel, and Kosta Leontaritis. "A small angle x-ray scattering study of the effect of pressure on the aggregation of asphaltene fractions in petroleum fluids under near-critical solvent conditions." Langmuir 9, no. 8 (August 1993): 2035–44. http://dx.doi.org/10.1021/la00032a023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Mani, Ali, and Karen May Wang. "Electroconvection Near Electrochemical Interfaces: Experiments, Modeling, and Computation." Annual Review of Fluid Mechanics 52, no. 1 (January 5, 2020): 509–29. http://dx.doi.org/10.1146/annurev-fluid-010719-060358.

Full text
Abstract:
Many electrochemical and microfluidic systems involve voltage-driven transport of ions from a fluid electrolyte toward an ion-selective interface. These systems are governed by intimate coupling between fluid flow, mass transport, and electrostatic effects. When counterions are driven toward a selective interface, this coupling is shown to lead to a hydrodynamic instability called electroconvection. This phenomenon is an example of electrochemistry inducing flow, which in turn affects the transport and ohmic resistance of the bulk electrolyte. These effects have implications in a wide range of applications, including ion separation, electrodeposition, and microfluidic processes that incorporate ion-selective elements. This review surveys recent investigations of electroconvection with an emphasis on quantitative experimental and theoretical analyses and computational modeling of this phenomenon. Approaches for control and manipulation of this phenomenon in canonical settings are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
31

Srinivas, J., J. V. Ramana Murthy, and Ali J. Chamkha. "Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using HAM." International Journal of Numerical Methods for Heat & Fluid Flow 26, no. 3/4 (May 3, 2016): 1027–49. http://dx.doi.org/10.1108/hff-09-2015-0354.

Full text
Abstract:
Purpose – The purpose of this paper is to examine the flow, heat transfer and entropy generation characteristics for an inclined channel of two immiscible micropolar fluids. Design/methodology/approach – The flow region consists of two zones, the flow of the heavier fluid taking place in the lower zone. The flow is assumed to be governed by Eringen’s micropolar fluid flow equation. The resulting governing equations are then solved using the homotopy analysis method. Findings – The following findings are concluded: first, the entropy generation rate is more near the plates in both the zones as compared to that of the interface. This indicates that the friction due to surface on the fluids increases entropy generation rate. Second, the entropy generation rate is more near the plate in Zone I than that of Zone II. This may be due to the fact that the fluid in Zone I is more viscous. This indicates the more the viscosity of the fluid is, the more the entropy generation. Third, Bejan number is the maximum at the interface of the fluids. This indicates that the amount of exergy (available energy) is maximum and irreversibility is minimized at the interface between the fluids. Fourth, as micropolarity increases, entropy generation rate near the plates decreases and irreversibility decreases. This indicates an important industrial application for micropolar fluids to use them as a good lubricant. Originality/value – The problem is original as no work has been reported on entropy generation in an inclined channel with two immiscible micropolar fluids.
APA, Harvard, Vancouver, ISO, and other styles
32

Wang, G. M., R. Prabhakar, Y. X. Gao, and E. M. Sevick. "Micro-rheology near fluid interfaces." Journal of Optics 13, no. 4 (March 4, 2011): 044009. http://dx.doi.org/10.1088/2040-8978/13/4/044009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

COATANHAY, ARNAUD, and JEAN-MARC CONOIR. "SCATTERING NEAR A PLANE INTERFACE USING A GENERALIZED METHOD OF IMAGES APPROACH." Journal of Computational Acoustics 12, no. 02 (June 2004): 233–56. http://dx.doi.org/10.1142/s0218396x04002250.

Full text
Abstract:
A new method for predicting the scattered acoustic field due to a plane wave incident upon an infinitely long cylinder lying near an penetrable plane interface is presented. The method generalizes the method of images which is restricted to rigid and soft plane interfaces. Validity domains, physical interpretations, simulations and numerical results are described for sedimentary medium-fluid plane interfaces. And, they are well compared with high frequency asymptotic results based on the Geometrical Theory of Diffraction(G.T.D.).
APA, Harvard, Vancouver, ISO, and other styles
34

Jasti, Venkata K., and C. Fred Higgs. "A Lattice-Based Cellular Automata Modeling Approach for Granular Flow Lubrication." Journal of Tribology 128, no. 2 (December 11, 2005): 358–64. http://dx.doi.org/10.1115/1.2164466.

Full text
Abstract:
Liquid lubricants break down at extreme temperatures and promote stiction in micro-/nanoscale environments. Consequently, using flows of solid granular particles as a “dry” lubrication mechanism in sliding contacts was proposed because of their ability to carry loads and accommodate surface velocities. Granular flows are highly complex flows that in many ways act similar to fluids, yet are difficult to predict because they are not well understood. Granular flows are composed of discrete particles that display liquid and solid lubricant behavior with time. This work describes the usefulness of employing lattice-based cellular automata (CA), a deterministic rule-based mathematics approach, as a tool for modeling granular flows in tribological contacts. In the past work, granular flows have been modeled using the granular kinetic lubrication (GKL) continuum modeling approach. While the CA modeling approach is constructed entirely from rules, results are in good agreement with results from the GKL model benchmark results. Velocity results of the CA model capture the well-known slip behavior of granular flows near boundaries. Solid fraction results capture the well-known granular flow characteristic of a highly concentrated center region. CA results for slip versus roughness also agree with GKL theory.
APA, Harvard, Vancouver, ISO, and other styles
35

TAGHAVI, S. M., T. SEON, D. M. MARTINEZ, and I. A. FRIGAARD. "Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit." Journal of Fluid Mechanics 639 (October 16, 2009): 1–35. http://dx.doi.org/10.1017/s0022112009990620.

Full text
Abstract:
We consider the viscous limit of a plane channel miscible displacement flow of two generalized Newtonian fluids when buoyancy is significant. The channel is inclined close to horizontal. A lubrication/thin-film approximation is used to simplify the governing equations and a semi-analytical solution is found for the flux functions. We show that there are no steady travelling wave solutions to the interface propagation equation. At short times the diffusive effects of the interface slope are dominant and there is a flow reversal, relative to the mean flow. We are able to find a short-time similarity solution governing this initial counter-current flow. At longer times the solution behaviour can be predicted from the associated hyperbolic problem (where diffusive effects are set to zero). Each solution consists of a number N ≥ 1 of steadily propagating fronts of differing speeds, joined together by segments of interface that are stretched between the fronts. Diffusive effects are always present in the propagating fronts. We explore the effects of viscosity ratio, inclinations and other rheological properties on the front height and front velocity. Depending on the competition of viscosity, buoyancy and other rheological effects, it is possible to have single or multiple fronts. More efficient displacements are generally obtained with a more viscous displacing fluid and modest improvements may also be gained with slight positive inclination in the direction of the density difference. Fluids that are considerably shear-thinning may be displaced at high efficiencies by more viscous fluids. Generally, a yield stress in the displacing fluid increases the displacement efficiency and yield stress in the displaced fluid decreases the displacement efficiency, eventually leading to completely static residual wall layers of displaced fluid. The maximal layer thickness of these static layers can be directly computed from a one-dimensional momentum balance and indicates the thickness of static layer found at long times.
APA, Harvard, Vancouver, ISO, and other styles
36

Manabe, Junichi, Toshihiro Omori, Yohsuke Imai, and Takuji Ishikawa. "PS1-10 Swimming behavior of a model ciliate near a fluid-air or a fluid-solid interface(PS1: Poster Short Presentation I,Poster Session)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2015.8 (2015): 231. http://dx.doi.org/10.1299/jsmeapbio.2015.8.231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pouliquen, O., J. M. Chomaz, and P. Huerre. "Propagating Holmboe waves at the interface between two immiscible fluids." Journal of Fluid Mechanics 266 (May 10, 1994): 277–302. http://dx.doi.org/10.1017/s002211209400100x.

Full text
Abstract:
The instability of the surface of discontinuity separating two streams of immiscible constant-density fluids is studied experimentally and theoretically near onset when surface tension effects are significant. Following Thorpe's original idea, a tube filled with two immiscible fluids is tilted at an angle and returned to its horizontal position to produce a nearly constant velocity difference between both streams that can be varied continuously across threshold. In order to control the wavenumber near onset, the flow is spatially forced by periodically distributing small obstacles on the upper side of the tank. When the kinematic viscosities of each fluid are nearly equal, ones observes two counter-propagating waves of equal amplitude, which cannot be explained from a vortex sheet model. A linear stability analysis of a density discontinuity embedded within a piecewise-linear velocity profile demonstrates that such waves are Holmboe modes associated with the diffusive layers above and below the interface. Good agreement is obtained between the measured and predicted values of the critical velocity difference, propagation velocity and growth factors of the waves. The instability analysis of the asymmetric velocity profile reveals that the breaking of reflectional symmetry gives rise to a single propagating wave near onset. When the kinematic viscosities of each fluid differ, the first destabilized wave is observed to propagate in the same direction as the less-viscous fluid, in agreement with the theoretical results, and the dominant direction of propagation can be manipulated by adjusting the viscosities accordingly.
APA, Harvard, Vancouver, ISO, and other styles
38

Courrech du Pont, Sylvain, and Jens Eggers. "Fluid interfaces with very sharp tips in viscous flow." Proceedings of the National Academy of Sciences 117, no. 51 (December 7, 2020): 32238–43. http://dx.doi.org/10.1073/pnas.2019287117.

Full text
Abstract:
When a fluid interface is subjected to a strong viscous flow, it tends to develop near-conical ends with pointed tips so sharp that their radius of curvature is undetectable. In microfluidic applications, tips can be made to eject fine jets, from which micrometer-sized drops can be produced. Here we show theoretically that the opening angle of the conical interface varies on a logarithmic scale as a function of the distance from the tip, owing to nonlocal coupling between the tip and the external flow. Using this insight we are able to show that the tip curvature grows like the exponential of the square of the strength of the external flow and to calculate the universal shape of the interface near the tip. Our experiments confirm the scaling of the tip curvature as well as of the interface’s universal shape. Our analytical technique, based on an integral over the surface, may also have far wider applications, for example treating problems with electric fields, such as electrosprays.
APA, Harvard, Vancouver, ISO, and other styles
39

POZRIKIDIS, C. "Particle motion near and inside an interface." Journal of Fluid Mechanics 575 (March 2007): 333–57. http://dx.doi.org/10.1017/s0022112006004046.

Full text
Abstract:
The motion of a spherical particle near the interface between two immiscible viscous fluids undergoing simple shear flow is considered in the limit of small Reynolds and capillary numbers where the interface exhibits negligible deformation. Taking advantage of the rotational symmetry of the boundaries of the flow with respect to the axis that is normal to the interface and passes through the particle centre, the problem is formulated as a system of one-dimensional integral equations for the first Fourier coefficients of the unknown components of the traction and velocity along the particle and interface contours. The results document the particle translational and angular velocities, and reveal that the particle slips while rolling over the interface under the influence of a simple shear flow, for any viscosity ratio. In the second part of the investigation, the motion of an axisymmetric particle straddling a planar interface is considered. The results confirm a simple exact solution when a particle with top-down symmetry is immersed half-way in each fluid and translates parallel to the interface, reveal a similar simple solution for a particle that is held stationary in simple shear flow, and document the force and torque exerted on a spherical particle for more general arrangements. The onset of a non-integrable singularity of the traction at the contact line prohibits the computation of the translational and angular velocities of a freely suspended particle convected under the action of a shear flow.
APA, Harvard, Vancouver, ISO, and other styles
40

Rohatgi, Pratik, Nicholas B. Langhals, Daryl R. Kipke, and Parag G. Patil. "In vivo performance of a microelectrode neural probe with integrated drug delivery." Neurosurgical Focus 27, no. 1 (July 2009): E8. http://dx.doi.org/10.3171/2009.4.focus0983.

Full text
Abstract:
Object The availability of sophisticated neural probes is a key prerequisite in the development of future brain-machine interfaces (BMIs). In this study, the authors developed and validated a neural probe design capable of simultaneous drug delivery and electrophysiology recordings in vivo. Focal drug delivery promises to extend dramatically the recording lives of neural probes, a limiting factor to clinical adoption of BMI technology. Methods To form the multifunctional neural probe, the authors affixed a 16-channel microfabricated silicon electrode array to a fused silica catheter. Three experiments were conducted in rats to characterize the performance of the device. Experiment 1 examined cellular damage from probe insertion and the drug distribution in tissue. Experiment 2 measured the effects of saline infusions delivered through the probe on concurrent electrophysiological measurements. Experiment 3 demonstrated that a physiologically relevant amount of drug can be delivered in a controlled fashion. For these experiments, Hoechst and propidium iodide stains were used to assess insertion trauma and the tissue distribution of the infusate. Artificial CSF (aCSF) and tetrodotoxin (TTX) were injected to determine the efficacy of drug delivery. Results The newly developed multifunctional neural probes were successfully inserted into rat cortex and were able to deliver fluids and drugs that resulted in the expected electrophysiological and histological responses. The damage from insertion of the device into brain tissue was substantially less than the volume of drug dispersion in tissue. Electrophysiological activity, including both individual spikes as well as local field potentials, was successfully recorded with this device during real-time drug delivery. No significant changes were seen in response to delivery of aCSF as a control experiment, whereas delivery of TTX produced the expected result of suppressing all spiking activity in the vicinity of the catheter outlet. Conclusions Multifunctional neural probes such as the ones developed and validated within this study have great potential to help further understand the design space and criteria for the next generation of neural probe technology. By incorporating integrated drug delivery functionality into the probes, new treatment options for neurological disorders and regenerative neural interfaces using localized and feedback-controlled delivery of drugs can be realized in the near future.
APA, Harvard, Vancouver, ISO, and other styles
41

UNGARISH, M., and J. MANG. "The flow field and bare-spot formation in spin-up from rest of a two-layer fluid about a vertical axis." Journal of Fluid Mechanics 474 (January 10, 2003): 117–45. http://dx.doi.org/10.1017/s0022112002002604.

Full text
Abstract:
The spin-up from rest of a two-layer fluid with a free surface in a cylindrical container rotating about a vertical axis is investigated for small Ekman numbers. Numerical results from the axisymmetric Navier–Stokes equations, supported by comparisons with improved boundary-layer approximations, show that the Ekman-type layer on the bottom pushes the dense fluid of the lower layer to the periphery, and consequently the interface between the layers curves upward near the sidewall and descends near the centre. When the lower layer of fluid is sufficiently thin a bare spot appears at the bottom, i.e. a region where the light fluid is in direct contact with the horizontal boundary. The lower-layer fluid is spun-up quickly by the bottom Ekman layer, but the angular motion in the upper layer is provided by the much weaker detached Ekman layer on the interface between the two fluids, and hence the global spin-up process is prolonged compared with the homogeneous fluid case. The influence of the various dimensionless parameters and the connection with the continuous stratified case are discussed.
APA, Harvard, Vancouver, ISO, and other styles
42

Arenas, Isnardo, Edgardo García, Matthew K. Fu, Paolo Orlandi, Marcus Hultmark, and Stefano Leonardi. "Comparison between super-hydrophobic, liquid infused and rough surfaces: a direct numerical simulation study." Journal of Fluid Mechanics 869 (April 29, 2019): 500–525. http://dx.doi.org/10.1017/jfm.2019.222.

Full text
Abstract:
Direct numerical simulations of two superposed fluids in a channel with a textured surface on the lower wall have been carried out. A parametric study varying the viscosity ratio between the two fluids has been performed to mimic both idealised super-hydrophobic and liquid-infused surfaces and assess its effect on the frictional, form and total drag for three different textured geometries: longitudinal square bars, transversal square bars and staggered cubes. The interface between the two fluids is assumed to be slippery in the streamwise and spanwise directions and not deformable in the vertical direction, corresponding to the ideal case of infinite surface tension. To identify the role of the fluid–fluid interface, an extra set of simulations with a single fluid has been carried out. Comparison with the cases with two fluids reveals the role of the interface in suppressing turbulent transport between the lubricating layer and the overlying flow decreasing the overall drag. In addition, the drag and the maximum wall-normal velocity fluctuations were found to be highly correlated for all the surface configurations, whether they reduce or increase the drag. This implies that the structure of the near-wall turbulence is dominated by the total shear and not by the local boundary condition of the super-hydrophobic, liquid infused or rough surfaces.
APA, Harvard, Vancouver, ISO, and other styles
43

Lefauve, Adrien, J. L. Partridge, Qi Zhou, S. B. Dalziel, C. P. Caulfield, and P. F. Linden. "The structure and origin of confined Holmboe waves." Journal of Fluid Mechanics 848 (June 5, 2018): 508–44. http://dx.doi.org/10.1017/jfm.2018.324.

Full text
Abstract:
Finite-amplitude manifestations of stratified shear flow instabilities and their spatio-temporal coherent structures are believed to play an important role in turbulent geophysical flows. Such shear flows commonly have layers separated by sharp density interfaces, and are therefore susceptible to the so-called Holmboe instability, and its finite-amplitude manifestation, the Holmboe wave. In this paper, we describe and elucidate the origin of an apparently previously unreported long-lived coherent structure in a sustained stratified shear flow generated in the laboratory by exchange flow through an inclined square duct connecting two reservoirs filled with fluids of different densities. Using a novel measurement technique allowing for time-resolved, near-instantaneous measurements of the three-component velocity and density fields simultaneously over a three-dimensional volume, we describe the three-dimensional geometry and spatio-temporal dynamics of this structure. We identify it as a finite-amplitude, nonlinear, asymmetric confined Holmboe wave (CHW), and highlight the importance of its spanwise (lateral) confinement by the duct boundaries. We pay particular attention to the spanwise vorticity, which exhibits a travelling, near-periodic structure of sheared, distorted, prolate spheroids with a wide ‘body’ and a narrower ‘head’. Using temporal linear stability analysis on the two-dimensional streamwise-averaged experimental flow, we solve for three-dimensional perturbations having two-dimensional, cross-sectionally confined eigenfunctions and a streamwise normal mode. We show that the dispersion relation and the three-dimensional spatial structure of the fastest-growing confined Holmboe instability are in good agreement with those of the observed confined Holmboe wave. We also compare those results with a classical linear analysis of two-dimensional perturbations (i.e. with no spanwise dependence) on a one-dimensional base flow. We conclude that the lateral confinement is an important ingredient of the confined Holmboe instability, which gives rise to the CHW, with implications for many inherently confined geophysical flows such as in valleys, estuaries, straits or deep ocean trenches. Our results suggest that the CHW is an example of an experimentally observed, inherently nonlinear, robust, long-lived coherent structure which has developed from a linear instability. We conjecture that the CHW is a promising candidate for a class of exact coherent states underpinning the dynamics of more disordered, yet continually forced stratified shear flows.
APA, Harvard, Vancouver, ISO, and other styles
44

Tseng, Yu-Hau, and Andrea Prosperetti. "Local interfacial stability near a zero vorticity point." Journal of Fluid Mechanics 776 (June 30, 2015): 5–36. http://dx.doi.org/10.1017/jfm.2015.246.

Full text
Abstract:
It is often observed that small drops or bubbles detach from the interface separating two co-flowing immiscible fluids. The size of these drops or bubbles can be orders of magnitude smaller than the length scales of the parent fluid mass. Examples are tip-streaming from drops or coaxial jets in microfluidics, selective withdrawal, ‘skirt’ formation around bubbles or drops, and others. It is argued that these phenomena are all reducible to a common instability that can occur due to a local convergence of streamlines in the neighbourhood of a zero-vorticity point or line on the interface. When surfactants are present, this converging flow tends to concentrate them in these regions weakening the effect of surface tension, which is the only mechanism opposing the instability. Several analytical and numerical calculations are presented to substantiate this interpretation of the phenomenon. In addition to some idealized cases, the results of two-dimensional simulations of co-flowing jets and a rising drop are presented.
APA, Harvard, Vancouver, ISO, and other styles
45

Fisher, Michael E., and Paul J. Upton. "Fluid interface tensions near critical end points." Physical Review Letters 65, no. 27 (December 31, 1990): 3405–8. http://dx.doi.org/10.1103/physrevlett.65.3405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yang, Seung-Man, and Won-Hi Hong. "Brownian diffusion near a plane fluid interface." Korean Journal of Chemical Engineering 4, no. 2 (September 1987): 187–93. http://dx.doi.org/10.1007/bf02697436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Diehl, Alexander, Cornel E. J. de Ronde, and Wolfgang Bach. "Subcritical Phase Separation and Occurrence of Deep-Seated Brines at the NW Caldera Vent Field, Brothers Volcano: Evidence from Fluid Inclusions in Hydrothermal Precipitates." Geofluids 2020 (September 16, 2020): 1–22. http://dx.doi.org/10.1155/2020/8868259.

Full text
Abstract:
The northwestern caldera wall of Brothers volcano in the southern Kermadec arc features several clusters of hydrothermal venting in a large area that extends from near the caldera floor (~1700 mbsl) almost up to the crater rim (~1300 mbsl). Abundant black smoker-type hydrothermal chimneys and exposed stockwork mineralization in this area provide an excellent archive of hydrothermal processes that form seafloor massive sulfide deposits. Using sulfate precipitates from chimneys and stockwork recently recovered by remotely operated vehicles, we conducted fluid inclusion microthermometry and Sr isotope studies to determine the role of phase separation and mixing between vent fluid and seawater. The variability in the vast majority of fluid inclusion salinities (i.e., 0.1–5.25 wt.% NaCl eq.) and entrapment temperatures of up to 346°C are indicative of phase-separated hydrothermal fluids. Large salinity variations in samples with entrapment temperatures mostly below the boiling temperature for the sample’s depth show that the majority of fluids ascending below the NW Caldera are phase separating in the subsurface and cooling, prior to discharge. In several samples, entrapment temperatures of over 343°C suggest that phase-separating fluids have at least sporadically exited the seafloor at the NW Caldera site. Isobaric-isenthalpic mixing trends between coexisting phase-separated vapors and brines with seawater are consistent with phase-separated fluids at near-seafloor pressures of ~170 bar and suggest that the vast majority of the ascending fluids continue to phase separate to within tens to hundreds of meters below seafloor prior to mixing with seawater. A small subset of the most saline fluid inclusions (up to 18.6 wt.% NaCl eq.) is unlikely formed by near-seafloor phase separation and is considered to be produced either by supercritical phase separation or by the contribution of a magmatic brine from near the magmatic-hydrothermal interface. 87Sr/86Sr values of sulfate samples range from 0.7049 (i.e., near hydrothermal end-member) to 0.7090 (i.e., near seawater) and show that the crystals grew from vapor- and brine-derived fluids in a hydrothermally dominated mixing regime. Our work provides new insights into mineral growth conditions, mixing regimes, and in particular, the extent and character of subseafloor phase separation during the formation of hydrothermal vents and their underlying stockwork in seawater-dominated, arc-related hydrothermal systems.
APA, Harvard, Vancouver, ISO, and other styles
48

Yoon, Hyun-Sik, and Kyung-Min Park. "Behavior of the Free Surface of Two-Phase Fluid Flow Near the Taphole in a Tank." Symmetry 13, no. 5 (May 14, 2021): 875. http://dx.doi.org/10.3390/sym13050875.

Full text
Abstract:
The present study numerically investigated the deformation of the free-surface of two-phase fluid flow in a tank which is considered as a simplified blast furnace hearth. Actually, the fluids existing in a blast furnace hearth are gas, slag and hot metal from top to bottom. However, the present study considered only gas and cold molten iron in the tank. The porosity is considered as a substitute for void volume formed by the packed bed of the particles such as cokes. The single-phase flow and two-phase fluids flow without the porosity are analyzed for comparison. The porosity contributed the free surface to forming a viscous finger near the taphole. The axi-symmetry nature of the interface of two-phase fluids flow in the cylindrical tank is broken by viscous finger as the interface instability by the gas entrainment into taphole, which has been identified by the visualization of the free surface formation. The acceleration of the free surface falling velocity and the outflow near the taphole are associated by the viscous finger by the gas entrainment. The dimensionless gas break-through time is linear with respect to the porosity magnitude.
APA, Harvard, Vancouver, ISO, and other styles
49

Cortellessa, Gino, Fausto Arpino, Simona Di Fraia, and Mauro Scungio. "Two-phase explicit CBS procedure for compressible viscous flow transport in porous materials." International Journal of Numerical Methods for Heat & Fluid Flow 28, no. 2 (February 5, 2018): 336–60. http://dx.doi.org/10.1108/hff-02-2017-0080.

Full text
Abstract:
Purpose In this work, a new two-phase version of the finite element-based Artificial Compressibility (AC) Characteristic-Based Split (CBS) algorithm is developed and applied for the first time to heat and mass transfer phenomena in porous media with associated phase change. The purpose of this study is to provide an alternative for the theoretical analysis and numerical simulation of multiphase transport phenomena in porous media. Traditionally, the more complex Separate Flow Model was used in which the vapour and liquid phases were considered as distinct fluids and mathematically described by the conservation laws for each phase separately, resulting in a large number of governing equations. Design/methodology/approach Even though the adopted mathematical model presents analogies with the conventional multicomponent mixture flow model, it is characterized by a considerable reduction in the number of the differential equations for the primary variables. The fixed-grid numerical formulation can be applied to the resolution of general problems that may simultaneously include a superheated vapour region, a two-phase zone and a sub-cooled liquid region in a single physical domain with irregular and moving phase interfaces in between. The local thermal non-equilibrium model is introduced to consider the heat exchange between fluid and solid within the porous matrix. Findings The numerical model is verified considering the transport phenomena in a homogenous and isotropic porous medium in which water is injected from one side and heated from the other side, where it leaves the computational domain in a superheated vapour state. Dominant forces are represented by capillary interactions and two-phase heat conduction. The obtained results have been compared with the numerical data available in the scientific literature. Social implications The present algorithm provides a powerful routine tool for the numerical modelling of complex two-phase transport processes in porous media. Originality/value For the first time, the stabilized AC-CBS scheme is applied to the resolution of compressible viscous flow transport in porous materials with associated phase change. A properly stabilized matrix inversion-free procedure employs an adaptive local time step that allows acceleration of the solution process even in the presence of large source terms and low diffusion coefficients values (near the phase change point).
APA, Harvard, Vancouver, ISO, and other styles
50

Kumar, Krishna, and Laurette S. Tuckerman. "Parametric instability of the interface between two fluids." Journal of Fluid Mechanics 279 (November 25, 1994): 49–68. http://dx.doi.org/10.1017/s0022112094003812.

Full text
Abstract:
The flat interface between two fluids in a vertically vibrating vessel may be parametrically excited, leading to the generation of standing waves. The equations constituting the stability problem for the interface of two viscous fluids subjected to sinusoidal forcing are derived and a Floquet analysis is presented. The hydrodynamic system in the presence of viscosity cannot be reduced to a system of Mathieu equations with linear damping. For a given driving frequency, the instability occurs only for certain combinations of the wavelength and driving amplitude, leading to tongue-like stability zones. The viscosity has a qualitative effect on the wavelength at onset: at small viscosities, the wavelength decreases with increasing viscosity, while it increases for higher viscosities. The stability threshold is in good agreement with experimental results. Based on the analysis, a method for the measurement of the interfacial tension, and the sum of densities and dynamic viscosities of two phases of a fluid near the liquid-vapour critical point is proposed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography