Academic literature on the topic 'Fluids motion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fluids motion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fluids motion"
Fetecau, Constantin, Tahir Mushtaq Qureshi, Abdul Rauf, and Dumitru Vieru. "On the Modified Stokes Second Problem for Maxwell Fluids with Linear Dependence of Viscosity on the Pressure." Symmetry 14, no. 2 (January 24, 2022): 219. http://dx.doi.org/10.3390/sym14020219.
Full textFetecau, Constantin, Dumitru Vieru, Abdul Rauf, and Tahir Mushtaq Qureshi. "STEADY-STATE SOLUTIONS FOR SOME MOTIONS OF MAXWELL FLUIDS WITH PRESSURE-DEPENDENCE OF VISCOSITY." Journal of Mathematical Sciences: Advances and Applications 68, no. 1 (November 30, 2021): 1–28. http://dx.doi.org/10.18642/jmsaa_7100122224.
Full textFetecau, Constantin, Dumitru Vieru, Waqas Nazeer, and Shehraz Akhtar. "Long-time solutions for some mixed boundary value problems depicting motions of a class of Maxwell fluids with pressure dependent viscosity." Open Journal of Mathematical Sciences 6, no. 1 (June 21, 2022): 192–204. http://dx.doi.org/10.30538/oms2022.0188.
Full textFetecau, Constantin, Dumitru Vieru, and Ahmed Zeeshan. "Analytical Solutions for Two Mixed Initial-Boundary Value Problems Corresponding to Unsteady Motions of Maxwell Fluids through a Porous Plate Channel." Mathematical Problems in Engineering 2021 (April 24, 2021): 1–13. http://dx.doi.org/10.1155/2021/5539007.
Full textFetecau, Constantin, Dumitru Vieru, Tehseen Abbas, and Rahmat Ellahi. "Analytical Solutions of Upper Convected Maxwell Fluid with Exponential Dependence of Viscosity under the Influence of Pressure." Mathematics 9, no. 4 (February 7, 2021): 334. http://dx.doi.org/10.3390/math9040334.
Full textFetecau, Constantin, and Dumitru Vieru. "General Solutions for Some MHD Motions of Second-Grade Fluids between Parallel Plates Embedded in a Porous Medium." Symmetry 15, no. 1 (January 8, 2023): 183. http://dx.doi.org/10.3390/sym15010183.
Full textFetecau, Constantin, Rahmat Ellahi, and Sadiq M. Sait. "Mathematical Analysis of Maxwell Fluid Flow through a Porous Plate Channel Induced by a Constantly Accelerating or Oscillating Wall." Mathematics 9, no. 1 (January 4, 2021): 90. http://dx.doi.org/10.3390/math9010090.
Full textCaimmi, R. "R fluids." Serbian Astronomical Journal, no. 176 (2008): 23–35. http://dx.doi.org/10.2298/saj0876023c.
Full textFetecau, Constantin, Dumitru Vieru, Abdul Rauf, and Tahir Mushtaq Qureshi. "Mixed initial-boundary value problems describing motions of Maxwell fluids with linear dependence of viscosity on the pressure." Zeitschrift für Naturforschung A 76, no. 12 (October 13, 2021): 1107–24. http://dx.doi.org/10.1515/zna-2021-0212.
Full textFetecau, Constantin, and Dumitru Vieru. "Steady-state solutions for modified Stokes’ second problem of Maxwell fluids with power-law dependence of viscosity on the pressure." Open Journal of Mathematical Sciences 6, no. 1 (March 3, 2022): 14–24. http://dx.doi.org/10.30538/oms2022.0175.
Full textDissertations / Theses on the topic "Fluids motion"
RIBEIRO, GERALDO AFONSO SPINELLI MARTINS. "DYNAMICS OF RELATIVE MOTION BETWEEN SOLID PARTICLES AND NON-NEWTONIAN FLUIDS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1987. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19130@1.
Full textEste trabalho descreve experimentos relacionamentos com o movimento relativo entre partículas sólidas e fluido não-newtoniano, confinados no interior de um duto circular. Medições da pressão dinâmica adicional, devida unicamente à presença da partícula (fonte de perturbação no escoamento) e do arrasto viscoso foram conduzidas de forma a se verificar a validade da Teoria de Brenner (1962). Esta teoria, já confirmada para fluidos newtonianos, permite que parâmetros característicos do escoamento perturbado sejam determinados, convenientemente, através de parâmetros do escoamento não-perturbado (ausência de partícula). Para o caso de fluido não-newtoniano, denominados puramente viscosos, do tipo Power-law, a teoria se mostrou perfeitamente aplicável. O valor da razão Delta P mais A/D descrito por Brenner foi confirmado com uma precisão de 3 por cento, num total de 70 experimentos realizados. Para fluidos não-newtonianos, viscoelásticos, com função viscosidade tipo Power-law, a validade da teoria parece, entretanto, depender de um parâmetro capaz de descrever na natureza constitutiva do fluido utilizado. Experimentos realizados com três diferentes fluidos viscoelásticos (expoentes power-law n igual 0,303; 0,343; 0,483) conduziram à identificação deste parâmetro, o Segundo Número Elástico, El2. Para valores de El2, inferiores a 14, caracterizando um escoamento predominantemente viscoso, o valor da razão Delta P mais A/D novamente é confirmado com precisão inferior a 4 por cento. Para valores de El2 superiores a 40 a razão Delta P mais A/D não mais pode ser avaliada com base em parâmetros do escoamento perturbado, analogamente ao que havia sido proposto por Brenner para o caso de fluidos newtonianos. Neste trabalho incluem-se também registros contínuos dos experimentos enfatizando os efeitos viscoelásticos envolvidos, bem como uma análise dos efeitos de parede associados ao movimento relativo entre fluidos não-newtonianos e partículas sólidas. Todos os experimentos foram realizados num regime de Reynolds variando de 0,1 a 90 e num regime de Weissenberg (calculando com base no modelo de Powell-Eyring) variando de 850 a 3800.
This work describes experiments related to relative motion between solid particles and mon-newtonian fluid, inside a circular duct. Measurements of the aditional dynamic pressure, due to the presence of the particle (a source of disturbance in the flow) ando f the viscous drag, were conducted to verify the validity of Brenner’s Theory (1962). This theory, already confirmed for newtonian fluids, allows the determination of the characteristic parameters of the disturbed flow using parameters of non-disturbed flow (without particle). In the case of purely viscous non-newtonian fluids, of the power-law type, the theory was confirmed. The value of the ratio Delta P plus A/D, described by Brenner, was confirmed. The value an accuracy of 3 per cent, in a total of 70 experiments. For viscoelastic fluids, with Power-law viscosity function, it appears that the validity of the theory depends on the Second Elastic Number, El2. Experiments conducted with three different viscoelastic fluids (power-law exponents, n equal 0,303; 0,343 and 0,483) shows that for values of El2 bellow 14, which characterizes a predominantly viscous flow, the value of of the ratio Delta P plus A/D is agair confirmed, with na accuracy of 4 per cent. For values of the El2, parameter above 40, the ratio Delta P plus A/D cannot be determined using parameters of the non-disturbed flow, as proposed by Brenner for newtonian fluids. In this work are also included graphic registers of the experiment, showing the complex viscoelastic effects, as well as na analysis of the wall effects associated with the relative motion between non- newtonian fluid and solid particles. All the experiments were conducted with Reynolds number between 0,1 and 90 and a Weissenberg number (based in Powell-Eyring model) between 850 and 38.00.
Wang, Jin. "A numerical approach for the interfacial motion between two immiscible incompressible fluids." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1092675815.
Full textTitle from first page of PDF file. Document formatted into pages; contains xiii, 152 p.; also includes graphics. Includes bibliographical references (p. 147-152).
Anekal, Samartha Guha. "Stokesian dynamic simulations and analyses of interfacial and bulk colloidal fluids." Texas A&M University, 2003. http://hdl.handle.net/1969.1/4434.
Full textLin, Po-Hsien. "Solving First-Order Hyperbolic Problems For Wave Motion in Nearly Incompressible fluids, Two-Phase Fluids, and Viscoelastic Media By the CESE Method." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1420552163.
Full textMallett, Michael John Disney. "An analytical and computer modelling study of atomic motion in fluids constrained by barriers." Thesis, University of Kent, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358039.
Full textMaggistro, Rosario. "On some optimal control problems on networks, stratied domains, and controllability of motion in fluids." Doctoral thesis, Università degli studi di Trento, 2017. https://hdl.handle.net/11572/368468.
Full textMaggistro, Rosario. "On some optimal control problems on networks, stratied domains, and controllability of motion in fluids." Doctoral thesis, University of Trento, 2017. http://eprints-phd.biblio.unitn.it/2556/1/PhDThesis.pdf.
Full textQu, Bo. "The use of fractional Brownian motion in the modelling of the dispersion of contaminants in fluids." Thesis, Edinburgh Napier University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285235.
Full textGross, Andreas [Verfasser], and Christian [Akademischer Betreuer] Wagner. "Investigation of Brownian motion in simple and complex fluids under oscillatory perturbations / Andreas Gross. Betreuer: Christian Wagner." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2014. http://d-nb.info/1058360701/34.
Full textAumann, Craig Alvan. "Development, parameterization and numerical solution of an unsaturated flow model for water in the sapwood of a Douglas-fir tree /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6374.
Full textBooks on the topic "Fluids motion"
Kim, Tujin, and Daomin Cao. Equations of Motion for Incompressible Viscous Fluids. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78659-5.
Full textLighthill, M. J. Waves in fluids. Cambridge, UK: Cambridge University Press, 2001.
Find full textCaviglia, Giacomo. Inhomogeneous waves in solids and fluids. Singapore: World Scientific, 1992.
Find full textGuinot, Vincent. Wave propagation in fluids: Models and numerical techniques. Hoboken, NJ: ISTE/Wiley, 2008.
Find full textDrumheller, D. S. Introduction to wave propagation in nonlinear fluids and solids. Cambridge, U.K: Cambridge University Press, 1998.
Find full textGuinot, Vincent. Wave propagation in fluids: Models and numerical techniques. 2nd ed. London: ISTE, 2010.
Find full textMarcello, Anile Angelo, ed. Ray methods for nonlinear waves in fluids and plasmas. Essex, England: Longman Scientific and Technical, 1993.
Find full text1947-, Galdi Giovanni P., and International Centre for Mechanical Sciences., eds. Stability and wave propagation in fluids and solids. Wien: Springer-Verlag, 1995.
Find full textPrecious bodily fluids: A larrikin's memoir. Rydalmere, N.S.W: Hodder Headline, 1998.
Find full textDeffenbaugh, D. M. Final report for the liquid motion in a rotating tank experiment (LME). [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textBook chapters on the topic "Fluids motion"
Hamill, Les. "Fluids in motion." In Understanding Hydraulics, 74–122. London: Macmillan Education UK, 2011. http://dx.doi.org/10.1007/978-0-230-34586-7_4.
Full textHamill, Les. "Fluids in Motion." In Understanding Hydraulics, 66–107. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13296-6_4.
Full textSłużalec, Andrzej. "Motion of Fluids." In Theory of Thermomechanical Processes in Welding, 51–55. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-2991-8_4.
Full textMassey, B. S. "The Principles of Fluid Motion." In Mechanics of Fluids, 69–112. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3126-9_3.
Full textMassey, B. S. "The Principles of Fluid Motion." In Mechanics of Fluids, 69–112. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-7408-8_3.
Full textLagrange, J. L. "The Motion of Incompressible Fluids." In Analytical Mechanics, 521–60. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8903-1_19.
Full textKaushik, Mrinal. "Thermodynamics of Fluids in Motion." In Theoretical and Experimental Aerodynamics, 181–97. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1678-4_8.
Full textFeireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová, and Bangwei She. "Equations Governing Fluids in Motion." In Numerical Analysis of Compressible Fluid Flows, 3–23. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_1.
Full textGirin, Oleksandr. "General Equations of Gas Motion." In Dynamics of Compressible Fluids, 1–24. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11262-1_1.
Full textDrew, Donald A., and Stephen L. Passman. "Equations of Motion for Dilute Flow." In Theory of Multicomponent Fluids, 221–33. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/0-387-22637-0_19.
Full textConference papers on the topic "Fluids motion"
Weiler, Marcel, Dan Koschier, and Jan Bender. "Projective fluids." In MiG '16: Motion In Games. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2994258.2994282.
Full textTachibana, Rintarou, and Takayuki Saito. "A Relationship Between the Motion of a Zigzagging Bubble and its Surrounding Liquid Motion." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-11010.
Full textIshioka, Hirotaka, Shoya Ota, Kosuke Nakasato, Keiji Onishi, and Makoto Tsubokura. "Coupled 6DoF Motion and Aerodynamics Simulation During Pass-By and Overtaken Motions." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-17714.
Full textAndreev, A. F. "Charge motion in solid helium." In Symposium on quantum fluids and solids−1989. AIP, 1989. http://dx.doi.org/10.1063/1.38789.
Full textIshii, Eiji, Yoshihito Yasukawa, Kazuki Yoshimura, and Kiyotaka Ogura. "Fuel-Spray Simulation With Valve Motion Perpendicular to Closing Direction." In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69072.
Full textMolki, Majid. "THE SWIRLING MOTION OF DRIBBLING HONEY." In 5th Thermal and Fluids Engineering Conference (TFEC). Connecticut: Begellhouse, 2020. http://dx.doi.org/10.1615/tfec2020.fnc.031576.
Full textKratschun, Filipp, Tobias Mielke, and Katharina Schmitz. "Water Vapour Cavitation in Hydraulic Fluids." In BATH/ASME 2018 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fpmc2018-8872.
Full textZhu, Qinsheng, and Peter E. Clark. "Periodic Motion in Multiparticle Settling." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0450.
Full textTsuda, Kazutoshi, Yuji Hirose, Hironao Ogura, Yasufumi Otsubo, Albert Co, Gary L. Leal, Ralph H. Colby, and A. Jeffrey Giacomin. "Motion Control of Disc Electrode by Electrorheological Fluids." In THE XV INTERNATIONAL CONGRESS ON RHEOLOGY: The Society of Rheology 80th Annual Meeting. AIP, 2008. http://dx.doi.org/10.1063/1.2964608.
Full textBoragno, Corrado, and Gregorio Boccalero. "A new energy harvester for fluids in motion." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Wei-Hsin Liao. SPIE, 2015. http://dx.doi.org/10.1117/12.2084591.
Full textReports on the topic "Fluids motion"
Apps, Christopher, and Tyler Johnson. PR244-173902-R01 On-water Leak Detection System Evaluation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2018. http://dx.doi.org/10.55274/r0011504.
Full textHerbert, T. Unsteady Fluid Motion in Liquid Filled Projectiles. Fort Belvoir, VA: Defense Technical Information Center, March 1998. http://dx.doi.org/10.21236/ada343142.
Full textKim, Sangtae. The Motion of Ellipsoids in a Second Order Fluid. Fort Belvoir, VA: Defense Technical Information Center, September 1985. http://dx.doi.org/10.21236/ada160973.
Full textChen, S. S., S. Zhu, and J. A. Jendrzejczyk. Motion-dependent fluid forces acting on tube arrays in crossflow. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10189487.
Full textNohel, J. A., R. L. Pego, and A. E. Tzavaras. Stability of Discontinuous Shearing Motions of a Non-Newtonian Fluid. Fort Belvoir, VA: Defense Technical Information Center, July 1989. http://dx.doi.org/10.21236/ada210643.
Full textFrymier, P. D. Jr. Bacterial migration and motion in a fluid phase and near a solid surface. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/573237.
Full textUhlman, J. S., and Jr. An Integral Equation Formulation of the Equations of Motion of an Incompressible Fluid. Fort Belvoir, VA: Defense Technical Information Center, July 1992. http://dx.doi.org/10.21236/ada416252.
Full textWeinacht, Paul. Prediction of Projectile Performance, Stability, and Free-Flight Motion Using Computational Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada417123.
Full textS. K. Griffiths and R. H. Nilson. Electroosmotic fluid motion and late-time solute transport at non-negligible zeta potentials. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/751022.
Full textNeilson, D. G., and F. P. Incropera. Unidirectional solidification of a binary model alloy and the effects of induced fluid motion. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5733771.
Full text