Academic literature on the topic 'Fluids'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fluids.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fluids"

1

Ido, Yasushi, Hiroki Yokoyama, and Hitoshi Nishida. "OS22-13 Viscous Property of Magnetic Compound Fluids Containing Needle-like Particles(Fluid Machinery and Functional Fluids,OS22 Experimental method in fluid mechanics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 277. http://dx.doi.org/10.1299/jsmeatem.2015.14.277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gagnon, D. A., and P. E. Arratia. "The cost of swimming in generalized Newtonian fluids: experiments with C. elegans." Journal of Fluid Mechanics 800 (July 14, 2016): 753–65. http://dx.doi.org/10.1017/jfm.2016.420.

Full text
Abstract:
Numerous natural processes are contingent on microorganisms’ ability to swim through fluids with non-Newtonian rheology. Here, we use the model organism Caenorhabditis elegans and tracking methods to experimentally investigate the dynamics of undulatory swimming in shear-thinning fluids. Theory and simulation have proposed that the cost of swimming, or mechanical power, should be lower in a shear-thinning fluid compared to a Newtonian fluid of the same zero-shear viscosity. We aim to provide an experimental investigation into the cost of swimming in a shear-thinning fluid from (i) an estimate of the mechanical power of the swimmer and (ii) the viscous dissipation rate of the flow field, which should yield equivalent results for a self-propelled low Reynolds number swimmer. We find the cost of swimming in shear-thinning fluids is less than or equal to the cost of swimming in Newtonian fluids of the same zero-shear viscosity; furthermore, the cost of swimming in shear-thinning fluids scales with a fluid’s effective viscosity and can be predicted using fluid rheology and simple swimming kinematics. Our results agree reasonably well with previous theoretical predictions and provide a framework for understanding the cost of swimming in generalized Newtonian fluids.
APA, Harvard, Vancouver, ISO, and other styles
3

Momeni, Ali, Seyyed Shahab Tabatabaee Moradi, and Seyyed Alireza Tabatabaei-Nejad. "A REVIEW ON GLYCEROL-BASED DRILLING FLUIDS AND GLYCERINE AS A DRILLING FLUID ADDITIVE." Rudarsko-geološko-naftni zbornik 39, no. 1 (2024): 87–99. http://dx.doi.org/10.17794/rgn.2024.1.8.

Full text
Abstract:
A significant increase of energy demands all over the world and production decline from available oil and gas reservoirs have led the industry to invest in major offshore petroleum resources. However, drilling operations in offshore environments are usually restricted by environmental constraints. Therefore, recent studies are devoted to the development of environmentally compatible fluids with adequate technical properties. Glycerine is a non-toxic, lubricating, colorless, odorless substance with a higher density than water. Due to the properties of glycerine, it can be used as the base of drilling fluid to formulate synthetic-based fluids. This research aimed to review the studies on the applications of glycerine in the composition of drilling fluid. Based on the results, glycerine-based fluids can be considered as an environmentally compatible fluid with sufficient technical properties to replace other drilling fluids. However, there is a lack of experimental studies on the glycerine fluid properties for a reliable decision. For the application of glycerine fluids, an economic feasibility study is mandatory for both pure and crude glycerine. Also, the thermal stability of glycerine fluids is an important aspect, which should be covered in future research studies.
APA, Harvard, Vancouver, ISO, and other styles
4

Adams-Thies, Brian. "Fluid bodies or bodily fluids." Journal of Language and Sexuality 1, no. 2 (September 28, 2012): 179–205. http://dx.doi.org/10.1075/jls.1.2.03ada.

Full text
Abstract:
Previous researchers discussing cybersexuality have been fascinated with the body-less-ness of cybersex. They have focused on the textual productions and (re)formations of the self that are allowed in this space independent of the body. Thus, the cyber becomes the space of transformation and fluidity of the self while the ‘real’ becomes the site of the material, concrete and unchanging body. I posit that dichotomous thinking about the cyber and the real and the text and the body produces an errant concept of the body. Cybersex is rarely a disembodied experience. Text-making cannot create itself free from the constraints of linguistic communities of practice in the “real” world. I challenge the notion that cybersexuality is a sexuality without the body and that the body in the ‘real’ world is stable. I focus specifically on how gay men describe the experience of the anus and anal sex as a means to better understand how the body becomes a site for linguistic marking and reference.
APA, Harvard, Vancouver, ISO, and other styles
5

Haghghi, Maghsoud A., and Seyed M. Pesteei. "Energy and exergy analysis of flat plate solar collector for three working fluids, under the same conditions." Progress in Solar Energy and Engineering Systems 1, no. 1 (December 31, 2017): 1–9. http://dx.doi.org/10.18280/psees.010101.

Full text
Abstract:
The growth and expansion of the population, has caused increased the use of energy in the last few years. One of the cleanest and renewable sources of the energy is the solar energy. The solar energy can be collected by solar collectors. One of the solar collectors is the flat plate solar collector (FPC), that it is used in domestic utilization. Use of various Nano-fluids to improve the thermal properties of solar collectors, considered as one of the most effective method to optimize the flat plate collectors. In this study, a FPC in terms of energy and exergy, for three fluids (water, air and TiO2 Nano-fluid) have been investigated. According to the results obtained and under the same conditions, destruction exergy of water is more than other two fluids and TiO2 Nano-fluid has the least amount of destruction exergy. Also, by increasing in the total radiation on tilted surface (Gt) TiO2 Nano-fluid’s exergy efficiency is more than the other fluids in this study. By increasing ambient temperature, the exergy efficiency decreases, that water has the most variation. Due to the temperature range of the inlet working fluid to the collector’s tubes, observed that outlet temperature of the TiO2 Nano-fluid is about 50°C higher than when water enters it. Therefore, the initial statement about Nano-fluids is confirmed. In appropriate conditions, the collector’s efficiency is between 45% - 50%, thus FPC is one of the best devices for domestic utilization.
APA, Harvard, Vancouver, ISO, and other styles
6

Dufour, I., A. Maali, Y. Amarouchene, C. Ayela, B. Caillard, A. Darwiche, M. Guirardel, et al. "The Microcantilever: A Versatile Tool for Measuring the Rheological Properties of Complex Fluids." Journal of Sensors 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/719898.

Full text
Abstract:
Silicon microcantilevers can be used to measure the rheological properties of complex fluids. In this paper, two different methods will be presented. In the first method, the microcantilever is used to measure the hydrodynamic force exerted by a confined fluid on a sphere that is attached to the microcantilever. In the second method, the measurement of the microcantilever's dynamic spectrum is used to extract the hydrodynamic force exerted by the surrounding fluid on the microcantilever. The originality of the proposed methods lies in the fact that not only may the viscosity of the fluid be measured, but also the fluid's viscoelasticity, that is, both viscous and elastic properties, which are key parameters in the case of complex fluids. In both methods, the use of analytical equations permits the fluid's complex shear modulus to be extracted and expressed as a function of shear stress and/or frequency.
APA, Harvard, Vancouver, ISO, and other styles
7

Watanabe, Toshiaki, Hironori Maehara, and Shigeru Itoh. "Evaporating Cryogenic Fluids by Direct Contacting Normal Temperature Fluids." Materials Science Forum 673 (January 2011): 219–24. http://dx.doi.org/10.4028/www.scientific.net/msf.673.219.

Full text
Abstract:
In recent years in Japan, the demand of cryogenic fluids like a LH2, LNG is increasing because of the advance of fuel cell device technology, hydrogen of engine, and stream of consciousness for environmental agreement. On the other hand, as for fisheries as well, the use of a source of energy that environment load is small has been being a pressing need. We paid attention to the effective use of cold heat of the liquid fuel which is a cryogenic fluid. That method is to use a cold heat which an cryogenic fluid has, without a heat exchanger. The mixture of the extreme low temperature fluid and the normal temperature fluid becomes the cause which causes pressure vessel and piping system crush due to explosive boiling and rapid freezing. Therefore, we carried out the experiments related to promotion of evaporating cryogenic fluids, in the contact directly of the room temperature fluids and cryogenic fluids.
APA, Harvard, Vancouver, ISO, and other styles
8

Audétat, Andreas, and Marie Edmonds. "Magmatic-Hydrothermal Fluids." Elements 16, no. 6 (December 1, 2020): 401–6. http://dx.doi.org/10.2138/gselements.16.6.401.

Full text
Abstract:
Magmatic-hydrothermal fluids play a key role in a variety of geological processes, including volcanic eruptions and the formation of ore deposits whose metal content is derived from magmas and transported to the site of ore deposition by means of hydrothermal fluids. Here, we explain the causes and consequences of fluid saturation in magmas, the corresponding fluid-phase equilibria, and the behavior of metals and ligands during the transition from magma to an exsolved hydrothermal fluid. Much of what we know about magmatic-hydrothermal systems stems from the study of fluid inclusions, which are minute droplets of fluids trapped within minerals during mineral growth.
APA, Harvard, Vancouver, ISO, and other styles
9

Esterik, Penny Van. "Vintage Breast Milk: Exploring the Discursive Limits of Feminine Fluids." Canadian Theatre Review 137 (January 2009): 20–23. http://dx.doi.org/10.3138/ctr.137.003.

Full text
Abstract:
What are feminine fluids — fluids consumed by women or fluids produced by women? Fluids that enter female bodies or fluids that exit female bodies? Breast milk is clearly a fluid that leaves one body and enters another. No fluid is more feminine than breast milk. No fluid carries with it as much complex symbolic baggage surrounding what it means to be female. This article explores the material and symbolic dimensions of breast milk in North America, building on the provocations of a Toronto performance artist whose work has transformed breast milk from a fluid produced by women to a fluid consumed by women.
APA, Harvard, Vancouver, ISO, and other styles
10

Sherje, Dr Nitin. "Thermal Property Investigation in Nanolubricants via Nano- Scaled Particle Addition." International Journal of New Practices in Management and Engineering 10, no. 01 (March 31, 2021): 12–15. http://dx.doi.org/10.17762/ijnpme.v10i01.96.

Full text
Abstract:
In nanolubricants, the increase in scholarly attention has been attributed to the affirmation that they exhibit enhanced thermo-physical features and that they can also be used in various thermal applications. Some of these applications where they could be incorporated include solar energy harvesting, industrial applications, and heat exchanger effectiveness enhancement. Recently, various approaches have been employed to enhance the coefficient of heat transfer, especially between the fluid contact surfaces and the working fluids. When it comes to conventional fluids of heat transfer, examples being ethylene glycol/water, thermal oils, and water, some studies document that they exhibit limitations. For instance, these fluids exhibit low thermal properties when compared to the solids with which they interact. To respond to this dilemma, there have been efforts in this study to have the fluids’ thermal properties improved via nano-scaled particle addition, causing marked evolutions in the evaluations of the behavior of fluids of heat transfer. Indeed, findings suggest that in base fluids, when the solid particles are suspended, there tends to be an enhancement in the fluid’s energy transmission; hence, notable improvements in material thermal conductivity properties, besides the betterment of material heat transfer characteristics.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Fluids"

1

Vyawahare, Saurabh Scherer Axel. "Manipulating fluids : advances in micro-fluidics, opto-fluidics and fluidic self-assembly /." Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-05252006-223101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yerlett, T. K. "Enthalpies of fluids and fluid mixtures." Thesis, University of Bristol, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Wei. "Theoretical study of multi-component fluids confined in porous media." Thesis, Lyon, École normale supérieure, 2011. http://www.theses.fr/2011ENSL0624.

Full text
Abstract:
Un milieu poreux ou un matériau poreux comprend deux régions interconnectées : une perméable par un gaz ou un liquide et l’autre imperméable. Beaucoup de substances naturelles comme les roches, le sol et les tissus biologiques (par exemple, os, bio-membranes) sont poreuses ainsi que les matériaux manufacturés comme les ciments et les céramiques, etc. Les matériaux poreux ont des applications technologiques importantes et nombreuses, par exemple, comme tamis moléculaires, catalyseurs ou senseurs chimiques. Il existe un nombre très important d’études en expérience et en théorie pour comprendre la structure des matériaux poreux ainsi que les propriétés des substances confinées dans ces matériaux. Dans leur travail de pionnier, Madden et Glandt ont proposé un modèle très simple pour l’adsorption de fluide dans des milieux poreux désordonnés. Dans ce modèle, on forme la matrice en prenant une configuration figée instantanément d’un système à l’équilibre (“quench” en anglais) et puis un fluide est introduit dans une telle matrice. Récemment, T. Patsahan, M. Holovko et W. Dong ont généralisé la “scaled particle theory” (SPT) aux fluides confinés et obtenu ainsi des équations d’état analytiques pour un fluide de sphère dure dans plusieurs modèles de matrice. Dans un premier temps, j’ai développé la version de la SPT pour un mélange de sphères dures additives confiné en milieu poreux. Les expressions pour les valeurs au contact de différentes fonctions de distribution ont été obtenues également. J’ai effectué aussi des simulations de Monte Carlo. Les résultats de ces simulations sont utilisés pour valider les résultats théoriques. Ensuite, j’ai étudié aussi la séparation de phase d’un mélange binaire des sphères dures non additives confiné dans un milieu poreux. Pour obtenir l’équation d’état, nous avons utilisé une théorie de perturbation en prenant un fluide de sphères dures additive comme système de référence. Les résultats donnés par cette théorie sont en bon accord avec les résultats de simulation Monte Carlo
A porous medium or a porous material (called as frame or matrix also) usually consists of two interconnected rejoins: one permeable by a gas or a liquid, i.e., pore or void, and the other impermeable. Many natural substances such as rocks, soils, biological tissues (e.g., bio membranes, bones), and manmade materials such as cements, foams and ceramics are porous materials. Porous materials have important technological applications such as molecular sieve, catalyst, chemical sensor, etc. In recent years, there have been considerable investigations for understanding thoroughly the structure of these materials as well as the behavior of substances confined in them. Much effort (both experimental and theoretical) has been devoted to the study of porous materials. In their pioneering work, a very simple model for the fluid adsorption in random porous media was proposed by Madden and Glandt. The matrix in Madden-Glandt model is made by quenching an equilibrium system. Then, a fluid is adsorbed in such a matrix. Recently, T. Patsahan, M. Holovko and W. Dong have extended the scaled particle theory (SPT) to confined fluids and derived analytical equations of state (EOS) for a hard sphere (HS) fluid in some matrix models. In this thesis, using SPT method, I obtained the equation of state of additive hard-sphere (AHS) fluid mixtures confined in porous media. The contact values of the fluid-fluid and fluid-matrix radial distribution functions (RDF) were derived as well. The results of the contact values of the RDFs and the chemical potentials of different species were assessed against Monte Carlo simulations. Moreover, I analyzed also the fluid-fluid phase separation of non-additive hard sphere (NAHS) fluid confined in porous media. An equation of state is derived by using a perturbation theory with a multi-component fluid reference. The results of this theory are in good agreement with those obtained from semi grand canonical ensemble Monte Carlo simulations
APA, Harvard, Vancouver, ISO, and other styles
4

Seed, M. "Electrorheological fluids." Thesis, University of Sheffield, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Watson, T. "Electrorheological fluids." Thesis, Cranfield University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guenther, Gerhard K. "Textured fluids." Diss., This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-08272007-163931/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cardillo, Giulia. "Fluid Dynamic Modeling of Biological Fluids : From the Cerebrospinal Fluid to Blood Thrombosis." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX110.

Full text
Abstract:
Dans cette thèse, trois modèles mathématiques ont été proposés, avec l’objectif de modéliser autant d’aspects complexes de la biomédecine, dans lesquels la dynamique des fluides du système joue un rôle fondamental: i) les interactions fluide-structure entre la pulsatilité du liquide céphalo-rachidien et la moelle épinière (modélisation analytique); ii) dispersion efficace d’un médicament dans l’espace sous-arachnoïdien (modélisation numérique); et iii) la formation et l’évolution d’un thrombus au sein du système cardiovasculaire (modélisation numérique).Le liquide céphalorachidien est un fluide aqueux qui entoure le cerveau et la moelle épinière afin de les protéger. Une connaissance détaillée de la circulation du liquide céphalorachidien et de son interaction avec les tissus peut être importante dans l’étude de la pathogenèse de maladies neurologiques graves, telles que la syringomyélie, un trouble qui implique la formation de cavités remplies de liquide (seringues) dans la moelle épinière.Par ailleurs, dans certains cas, des analgésiques - ainsi que des médicaments pour le traitement de maladies graves telles que les tumeurs et les infections du liquide céphalorachidien - doivent être administrés directement dans le liquide céphalorachidien. L’importance de connaître et de décrire l’écoulement du liquide céphalorachidien, ses interactions avec les tissus environnants et les phénomènes de transport qui y sont liés devient claire. Dans ce contexte, nous avons proposé: un modèle capable de décrire les interactions du liquide céphalo-rachidien avec la moelle épinière, considérant cela, pour la première fois, comme un milieu poreux imprégné de différents fluides (sang capillaire et veineux et liquide céphalo-rachidien); et un modèle capable d’évaluer le transport d’un médicament dans l’espace sousarachnoïdien, une cavité annulaire remplie de liquide céphalo-rachidien qui entoure la moelle épinière.Avec le troisième modèle proposé, nous entrons dans le système cardiovasculaire.Dans le monde entière, les maladies cardiovasculaires sont la cause principale de mortalité. Parmi ceux-ci, nous trouvons la thrombose, une condition qui implique la formation d’un caillot à l’intérieur d’un vaisseau sanguin, qui peut causer sa occlusion. À cet égard, un modèle numérique a été développé qui étudie la formation et l’évolution des thrombus, en considérant simultanément les aspects chimico-biomécaniques et dynamiques des fluides du problème. Dans le modèle proposé pour la première fois, l'importance du rôle joué par les gradients de contrainte de cisaillement dans le processus de thrombogenèse est pris en compte.Les modèles sélectionnés ont fourni des résultats intéressants. Tout d’abord, l’étude des interactions fluide-structure entre le liquide céphalo-rachidien et la moelle épinière a mis en évidence es conditions pouvant induire l’apparition de la syringomyélie. Il a été observé comment la déviation des valeurs physiologiques du module d’Young de la moelle épinière, les pressions capillaires dans l’interface moelle-espace sousarachnoïdien et la perméabilité des compartiments capillaire et veineux, conduisent à la formation de seringues.Le modèle de calcul pour l’évaluation de la dispersion pharmacologique dans l’espace sousarachnoïdien a permis une estimation quantitatif de la diffusivité effective du médicament, une quantité qui peut aider à l’optimisation des protocoles d’injections intrathécales.Le modèle de thrombogenèse a fourni un instrument capable d’étudier quantitativement l’évolution des dépôts de plaquettes dans la circulation sanguine. En particulier, les résultats ont fourni des informations importantes sur la nécessité de considérer le rôle de l’activation mécanique et de l’agrégation des plaquettes aux côtés de la substance chimique
In the present thesis, three mathematical models are described. Three different biomedical issues, where fluid dynamical aspects are of paramount importance, are modeled: i) Fluid-structure interactions between cerebro-spinal fluid pulsatility and the spinal cord (analytical modeling); ii) Enhanced dispersion of a drug in the subarachnoid space (numerical modeling); and iii) Thrombus formation and evolution in the cardiovascular system (numerical modeling).The cerebrospinal fluid (CSF) is a liquid that surrounds and protects the brain and the spinal cord. Insights into the functioning of cerebrospinal fluid are expected to reveal the pathogenesis of severe neurological diseases, such as syringomyelia that involves the formation of fluid-filled cavities (syrinxes) in the spinal cord.Furthermore, in some cases, analgesic drugs -- as well drugs for treatments of serious diseases such as cancers and cerebrospinal fluid infections -- need to be delivered directly into the cerebrospinal fluid. This underscores the importance of knowing and describing cerebrospinal fluid flow, its interactions with the surrounding tissues and the transport phenomena related to it. In this framework, we have proposed: a model that describes the interactions of the cerebrospinal fluid with the spinal cord that is considered, for the first time, as a porous medium permeated by different fluids (capillary and venous blood and cerebrospinal fluid); and a model that evaluates drug transport within the cerebrospinal fluid-filled space around the spinal cord --namely the subarachnoid space--.The third model deals with the cardiovascular system. Cardiovascular diseases are the leading cause of death worldwide, among these diseases, thrombosis is a condition that involves the formation of a blood clot inside a blood vessel. A computational model that studies thrombus formation and evolution is developed, considering the chemical, bio-mechanical and fluid dynamical aspects of the problem in the same computational framework. In this model, the primary novelty is the introduction of the role of shear micro-gradients into the process of thrombogenesis.The developed models have provided several outcomes. First, the study of the fluid-structure interactions between cerebro-spinal fluid and the spinal cord has shed light on scenarios that may induce the occurrence of Syringomyelia. It was seen how the deviation from the physiological values of the Young modulus of the spinal cord, the capillary pressures at the SC-SAS interface and the permeability of blood networks can lead to syrinx formation.The computational model of the drug dispersion has allowed to quantitatively estimate the drug effective diffusivity, a feature that can aid the tuning of intrathecal delivery protocols.The comprehensive thrombus formation model has provided a quantification tool of the thrombotic deposition evolution in a blood vessel. In particular, the results have given insight into the importance of considering both mechanical and chemical activation and aggregation of platelets
APA, Harvard, Vancouver, ISO, and other styles
8

CARDILLO, GIULIA. "Fluid Dynamic Modeling of Biological Fluids: From the Cerebrospinal Fluid to Blood Thrombosis." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2845786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Harris, Rodney Morton. "THE ONSET OF INSTABILITY IN A TRIPLY-DIFFUSIVE FLUID LAYER." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Andersson, Tomas. "Controlling the fluid dynamics : an analysis of the workflow of fluids." Thesis, University of Gävle, Department of Mathematics, Natural and Computer Sciences, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-155.

Full text
Abstract:

A scene containing dynamic fluids can be created in a number of ways. There are two approaches that will highlight the problems and obstacles that might occur. Today’s leading fluid simulator, RealFlow, simulates the fluid dynamics. A comparison between the two approaches will be made and are analyzed. Through experimentation, one of the approaches fails to produce the set requirements in the experiment and furthermore the two approaches differ in efficiency.

APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Fluids"

1

Massey, B. S. Mechanics of fluids. 6th ed. London: Van Nostrand Reinhold (International), 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Massey, B. S. Mechanics of fluids. 6th ed. London: Chapman and Hall, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

service), MatWeb (Online. MatWeb fluids material data sheets. [Blacksburg, Va.?]: MatWeb, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

V, Sengers J., ed. Hydrodynamic fluctuations in fluids and fluid mixtures. Amsterdam: Elsevier, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abdulagatov, I. M. Thermodynamic properties of fluids and fluid mixtures. New York: Begell House, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

A, Winsa Edward, and Lewis Research Center, eds. Fluids and combustion facility--fluid integrated rack. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bhattacharjee, J. K. Convection and chaos in fluids. Singapore: World Science, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1946-, Kiran Erdogan, Debenedetti Pablo G. 1953-, Peters Cor J, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on Supercritical Fluids--Fundamentals and Applications (1998 : Kemer, Kemer Bucağı, Antalya İli, Turkey), eds. Supercritical fluids: Fundamentals and applications. Dordrecht: Kluwer Academic Publishers, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Belinsky, Marcel R. Supercritical fluids. New York: Nova Science Publishers, Inc., 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dyke, Kate Van. Drillings fluids. Austin: University of Texas Press at Austin, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fluids"

1

Massey, B. S. "Fluids in Equilibrium (Fluid ‘Statics’)." In Mechanics of Fluids, 27–68. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3126-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Massey, B. S. "Fluids in Equilibrium (Fluid ‘Statics’)." In Mechanics of Fluids, 27–68. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-7408-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wellner, Marcel. "Fluids." In Elements of Physics, 193–207. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3860-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barron, T. H. K., and G. K. White. "Fluids." In Heat Capacity and Thermal Expansion at Low Temperatures, 129–51. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4695-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karaoglu, Bekir. "Fluids." In Classical Physics, 179–98. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38456-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Keighley, John, and Stephen Doyle. "Fluids." In Physics GCSE, 233–43. London: Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-14325-2_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Holmes, Mark H. "Fluids." In Texts in Applied Mathematics, 403–40. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-87765-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Davies, Eryl. "Fluids." In The Final FFICM Structured Oral Examination Study Guide, 37–39. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003243694-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Calle, Carlos I. "Fluids." In Superstrings and Other Things, 113–32. Third edition. | Boca Raton : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429431029-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fisher, Malcolm. "Fluids." In Classic Papers in Critical Care, 303–25. London: Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-145-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fluids"

1

Zitha, P. L. J., and F. Wessel. "Fluid Flow Control Using Magnetorheological Fluids." In SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 2002. http://dx.doi.org/10.2118/75144-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Corban, Robert. "Fluids and combustion facility - Fluids Integrated Rack." In 38th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Corban, Robert, and Edward Winsa. "Fluids and Combustion Facility - Fluids Integrated Rack." In 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rosen, Kate, and Benjamin Orwoll. "Fluid Creep in the PICU: Characterizing Fluid Administration Beyond Maintenance Fluids." In AAP National Conference & Exhibition Meeting Abstracts. American Academy of Pediatrics, 2021. http://dx.doi.org/10.1542/peds.147.3_meetingabstract.464-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zheng, Changxi, and Doug L. James. "Harmonic fluids." In ACM SIGGRAPH 2009 papers. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1576246.1531343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thuerey, Nils, Theodore Kim, and Tobias Pfaff. "Turbulent fluids." In ACM SIGGRAPH 2013 Courses. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2504435.2504441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Goldfuss, Jan. "Space-fluids." In SIGGRAPH '15: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2745234.2746857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tao, R., and G. D. Roy. "Electrorheological Fluids." In Fourth International Conference on Electrorheological Fluids. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789814534772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stuyck, Tuur, and Philip Dutré. "Sculpting fluids." In SIGGRAPH '16: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2945078.2945089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stam, Jos. "Stable fluids." In the 26th annual conference. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/311535.311548.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Fluids"

1

Hair. L51725 Drilling Fluids in Pipeline Installation by Horizontal Directional Drilling-Practical Applications. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), October 1994. http://dx.doi.org/10.55274/r0010163.

Full text
Abstract:
Drilling fluid plays a key role in the installation of a pipeline by horizontal directional drilling (HDD) and accounts for the majority of the associated environmental impact. An improper drilling fluid program can result in stuck pipe. Uncontrolled discharge of drilling fluid downhole can damage or undermine adjacent structures.The cost of drilling fluid involved with pipeline installation, particularly when disposal costs are considered, can be substantial. This manual is the principal product of PRC project PR-227-9321. Its purpose is to increase the level of technical sophistication relative to drilling fluids used in the installation of pipelines by Horizontal Directional Drilling (HDD). It is anticipated that this increase will benefit the natural gas industry through reductions in HDD installation costs and environmental impact. The manual contains six sections which address the following general topics: 1 . The HDD installation process, the specific functions of drilling fluids in pipeline installation by HDD, and the composition of drilling fluids; 2. Characteristics of drilling fluid flow, pertinent properties of drilling fluids, and calculation methods relative to drilling fluid flow circuits; 3. Standard classification of soil and rock structures and soil and rock properties relative to drilling fluid flow; 4. The behavior of soil and rock structures relative to drilling fluid flow, general drilling fluid criteria, and general solutions to drilling problems; 5. Methods for estimating drilling fluid quantities, methods for disposing of excess drilling fluids, the environmental impact of drilling fluids used in HDD, and construction specifications relative to drilling fluids; and 6. Materials used drilling fluids.
APA, Harvard, Vancouver, ISO, and other styles
2

Sengers, Jan V., and Mikhail A. Anisimov. Thermophysical Properties of Fluids and Fluid Mixtures. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/899302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Adolf, D., R. Anderson, T. Garino, T. C. Halsey, B. Hance, J. E. Martin, and J. Odinek. Electrorheological fluids. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/404764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Phelps, M. R., M. O. Hogan, and L. J. Silva. Fluid dynamic effects on precision cleaning with supercritical fluids. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/10165549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Phelps, M. R., W. A. Willcox, L. J. Silva, and R. S. Butner. Effects of fluid dynamics on cleaning efficacy of supercritical fluids. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/10136973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Phelps, M. R., W. A. Willcox, L. J. Silva, and R. S. Butner. Effects of fluid dynamics on cleaning efficacy of supercritical fluids. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/6665473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Michael C. Adams and Greg Nash. Tracing Geothermal Fluids. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/928987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Adams Greg Nash, Michael C. Tracing Geothermal Fluids. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/822403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stell, George. Final Progress Report for THERMOPHYSICAL PROPERTIES OF FLUIDS AND FLUID MIXTURES. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/946590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ecke, R., Ning Li, Shiyi Chen, and Yuanming Liu. Turbulent scaling in fluids. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/399361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography