Academic literature on the topic 'Fluidised bed pyrolyser'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fluidised bed pyrolyser.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fluidised bed pyrolyser"

1

Rangasamy, Mythili, P. Venkatachalam, and P. Subramanian. "Fluidized bed technology for biooil production: Review." JOURNAL OF ADVANCES IN AGRICULTURE 4, no. 2 (June 13, 2015): 423–27. http://dx.doi.org/10.24297/jaa.v4i2.4273.

Full text
Abstract:
Fast pyrolysis is an emerging technique by which a liquid product, biooil is formed. The fast pyrolysis can be done using various reactors such as fluidized bed reactors, transported and circulating fluidized bed reactors, ablative and vacuum reactors, tubular reactors, microwave pyrolytic reactors,auger system and rotating cone reactors. Among them fluidized bed system is a well understood technology and available for the commercialization of fast pyrolysis. In this review, the process parameters in fluidized bed system that enhance the biooil production were reviewed. Utilization of various feedstocks for biooil production and the characteristics of biooil that mainly affect the utilization were presented. Â
APA, Harvard, Vancouver, ISO, and other styles
2

Raza, Mohsin, Abrar Inayat, Ashfaq Ahmed, Farrukh Jamil, Chaouki Ghenai, Salman R. Naqvi, Abdallah Shanableh, Muhammad Ayoub, Ammara Waris, and Young-Kwon Park. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing." Sustainability 13, no. 19 (October 7, 2021): 11061. http://dx.doi.org/10.3390/su131911061.

Full text
Abstract:
In the future, renewable energy technologies will have a significant role in catering to energy security concerns and a safe environment. Among the various renewable energy sources available, biomass has high accessibility and is considered a carbon-neutral source. Pyrolysis technology is a thermo-chemical route for converting biomass to many useful products (biochar, bio-oil, and combustible pyrolysis gases). The composition and relative product yield depend on the pyrolysis technology adopted. The present review paper evaluates various types of biomass pyrolysis. Fast pyrolysis, slow pyrolysis, and advanced pyrolysis techniques concerning different pyrolyzer reactors have been reviewed from the literature and are presented to broaden the scope of its selection and application for future studies and research. Slow pyrolysis can deliver superior ecological welfare because it provides additional bio-char yield using auger and rotary kiln reactors. Fast pyrolysis can produce bio-oil, primarily via bubbling and circulating fluidized bed reactors. Advanced pyrolysis processes have good potential to provide high prosperity for specific applications. The success of pyrolysis depends strongly on the selection of a specific reactor as a pyrolyzer based on the desired product and feedstock specifications.
APA, Harvard, Vancouver, ISO, and other styles
3

Arregi, A., G. Lopez, M. Amutio, I. Barbarias, J. Bilbao, and M. Olazar. "Hydrogen production from biomass by continuous fast pyrolysis and in-line steam reforming." RSC Advances 6, no. 31 (2016): 25975–85. http://dx.doi.org/10.1039/c6ra01657j.

Full text
Abstract:
The continuous fast pyrolysis of pine wood sawdust has been studied in a conical spouted bed reactor (CSBR) followed by in-line steam reforming of the pyrolysis vapours in a fluidised bed reactor on a Ni commercial catalyst.
APA, Harvard, Vancouver, ISO, and other styles
4

Qin, Linbo, Jun Han, Bo Zhao, Wangsheng Chen, and Futang Xing. "The kinetics of typical medical waste pyrolysis based on gaseous evolution behaviour in a micro-fluidised bed reactor." Waste Management & Research: The Journal for a Sustainable Circular Economy 36, no. 11 (August 9, 2018): 1073–82. http://dx.doi.org/10.1177/0734242x18790357.

Full text
Abstract:
In order to obtain the kinetic parameters during typical medical waste pyrolysis, the typical medical waste is pyrolysed in a micro-fluidised bed reactor. The gases evolved from the typical medical waste pyrolysis are analysed by a mass spectrometer, and only H2, CH4, C2H2, C2H4, C2H6, C3H6, C3H8 and C4H4 are observed. According to the gaseous product concentration profiles, the activation energies of gaseous formation are calculated based on the Friedman approach, and the average activation energies of H2, CH4, C2H2, C2H4, C2H6, C3H6, C3H8 and C4H4 formation during typical medical waste pyrolysis are in sequence as 65.10, 39.98, 35.17, 38.71, 40.75, 41.79, 58.57 and 63.95 kJ mol−1. Moreover, the activation energy with respect to the gases mixture formation is 52.70 kJ mol−1. Hence, it is concluded that the activation energy of typical medical waste pyrolysis is 52.70 kJ mol−1. The model-fitting method is used to determine the mechanism model of medical waste pyrolysis. The results indicate that the chemical reaction ( n = 1) model (G(x) = –ln(1–x)) is the optimum.
APA, Harvard, Vancouver, ISO, and other styles
5

Aida, Isma M. I., A. Salmiaton, and Dinie K. B. Nur. "Mixed Plastic Wastes Pyrolysis in a Fluidized Bed Reactor for Potential Diesel Production." International Journal of Environmental Science and Development 6, no. 8 (2015): 606–9. http://dx.doi.org/10.7763/ijesd.2015.v6.666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Novita, Sri Aulia, Santosa Santosa, Nofialdi Nofialdi, Andasuryani Andasuryani, and Ahmad Fudholi. "Artikel Review: Parameter Operasional Pirolisis Biomassa." Agroteknika 4, no. 1 (June 30, 2021): 53–67. http://dx.doi.org/10.32530/agroteknika.v4i1.105.

Full text
Abstract:
Artikel ini menjelaskan definisi pirolisis dan pentingnya proses pirolisis dalam konversi termokimia biomassa menjadi bahan bakar. Teknologi pirolisis berpotensi untuk dikembangkan karena ketersediaan sumber bahan biomassa yang sangat melimpah, teknologinya mudah untuk dikembangkan, bersifat ramah lingkungan dan menguntungkan secara ekonomi. Dalam teknik pirolisis, beberapa parameter yang mempengaruhi proses pirolisis adalah perlakuan awal biomassa, kadar air dan ukuran partikel bahan, komposisi senyawa biomassa, suhu, laju pemanasan, laju alir gas, waktu tinggal, jenis pirolisis, jenis reaktor pirolisis dan final produk pirolisis. Reaktor pirolisis adalah alat pengurai senyawa-senyawa organik yang dilakukan dengan proses pemanasan tanpa berhubungan langsung dengan udara luar dengan suhu 300-6000C. Beberapa jenis reaktor pirolisis yang sering digunakan adalah Fixed-Bed Pyrolyzer, Bubbling Fluidized-Bed Reactors, Circulating Fluidized Bed, Ultra–Rapid Pyrolyzer, Rotating Cone, Ablative Pyrolyzer dan Vacuum Pyrolyzer. Teknik pirolisis menghasilkan tiga macam produk akhir, yaitu bio-oil, arang (biochar) dan gas.
APA, Harvard, Vancouver, ISO, and other styles
7

Kaliappan, S., M. Karthick, Pravin P. Patil, P. Madhu, S. Sekar, Ravi Mani, Francisca D. Kalavathi, S. Mohanraj, and Solomon Neway Jida. "Utilization of Eco-Friendly Waste Eggshell Catalysts for Enhancing Liquid Product Yields through Pyrolysis of Forestry Residues." Journal of Nanomaterials 2022 (June 7, 2022): 1–10. http://dx.doi.org/10.1155/2022/3445485.

Full text
Abstract:
In this study, catalytic and noncatalytic pyrolysis of Prosopis juliflora biomass was carried out in a fluidized bed reactor. This study highlights the potential use of forestry residues with waste eggshells under a nitrogen environment. The experiments were conducted to increase the yield of bio-oil by changing the parameters such as pyrolysis temperature, particle size, and catalyst ratio. Under noncatalytic pyrolysis, a maximum bio-oil yield of 40.9 wt% was obtained when the feedstock was pyrolysed at 500°C. During catalytic pyrolysis, the yield of bio-oil was increased by up to 16.95% compared to the noncatalytic process due to the influence of Ca-rich wastes on devolatilization behavior. In particular, the existence of alkali and alkaline-earth metals present in eggshells might have positive effects on the decomposition of biomass material. The bio-oil obtained through catalytic pyrolysis under maximum yield conditions was analyzed for its physical and chemical characterization by Fourier transform infrared (FT-IR) spectroscopy and gas chromatography mass spectroscopy (GC-MS).
APA, Harvard, Vancouver, ISO, and other styles
8

Azizi, Salar, and Dariush Mowla. "CFD Modeling of Algae Flash Pyrolysis in the Batch Fluidized Bed Reactor Including Heat Carrier Particles." International Journal of Chemical Reactor Engineering 14, no. 1 (February 1, 2016): 463–80. http://dx.doi.org/10.1515/ijcre-2014-0185.

Full text
Abstract:
AbstractThe algae biomass is one of the potential biomass resources for extracting lipid to produce fuel. The off grade or residuals of dehydrated algae particles can be used in pyrolysis reactions to produce fuel or useful chemicals. Due to higher ash contents of algae biomass, pyrolysis process needs an appropriate design of pyrolysis reactor. The heating rate of algae biomass is a key factor for increasing of bio-oil production rate. Instead of heat transfer from reactor walls to the biomass, heated inert particles are added to the conventional fluidized bed reactor to increase heat transfer rate and yield of the bio-oil as called flash pyrolysis. The introduced pyrolysis reaction in the novel heating method of fluidized bed reactor studied numerically. For this purpose, an Eulerian-Eulerian CFD model utilized for modeling of the dehydrated algae pyrolysis in the fluidized bed reactor. The appropriate reaction rate of the algae pyrolysis is based on the heating rate, temperature sensitive activation energy and the reaction selectivity utilized to the algae pyrolysis. In addition, the segregation and density change of the biomass particles investigated in the CFD modeling to analysis mixing of the particles and corresponding heat transfer between the mixed particles. The validation of the CFD model investigated using results of prepared experimental setup.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Hui, and Xin Hui Ma. "Improved Design for the Device of Biomass Pyrolysis." Applied Mechanics and Materials 79 (July 2011): 155–58. http://dx.doi.org/10.4028/www.scientific.net/amm.79.155.

Full text
Abstract:
On account of the problems which often appeared in the biomass pyrolysis device, a new set of improved biomass pyrolysis device was designed. It contains four parts: feed system, fluidized bed, cyclone separation system and condenser system. It has mainly solved the problems through the improved equipment as below: blind arch phenomenon in feed bucket, feed pipe jammed and the feed system leakage; when it makes pyrolysis experiment, the sand grains are easy to be carried out of the fluidized bed ; the cyclone separator separation efficiency is low; the condensation speed is slow and so on.
APA, Harvard, Vancouver, ISO, and other styles
10

Garland, R. V., and P. W. Pillsbury. "Status of Topping Combustor Development for Second-Generation Fluidized Bed Combined Cycles." Journal of Engineering for Gas Turbines and Power 114, no. 1 (January 1, 1992): 126–31. http://dx.doi.org/10.1115/1.2906294.

Full text
Abstract:
Addition of a fluidized bed combustor to a high-efficiency combined cycle plant enables direct firing of inexpensive run-of-the-mine coal in an environmentally acceptable manner. To attain high thermal efficiencies, coal pyrolysis is included. The low heating value fuel gas from the pyrolyzer is burned in a topping combustion system that boosts gas turbine inlet temperature to state of the art while the pyrolyzer-produced char is burned in the bed. The candidate topping combustor, the multi-annular swirl burner, based on a design by J. M. Bee´r, is presented and discussed. Design requirements differ from conventional gas turbine combustors. The use of hot, vitiated air for cooling and combustion, and the use of low heating value fuel containing ammonia, are two factors that make the design requirements unique. The multi-annular swirl burner contains rich-burn, quick-quench, and lean-burn zones formed aerodynamically rather than the physically separate volumes found in other rich-lean combustors. Although fuel is injected through a centrally located nozzle, the combustion air enters axially through a series of swirlers. Wall temperatures are controlled by relatively thick layers of air entering through the various swirler sections, which allows the combustor to be of all-metal construction rather than the ceramic often used in rich-lean concepts. This 12-in.-dia design utilizes some of the features of the previous 5-in. and 10-in. versions of the multi-annular swirl burner; test results from the previous projects were utilized in the formulation of the test for the present program. In the upcoming tests, vitiated air will be provided to simulate a pressurized fluidized bed effluent. Hot syngas seeded with ammonia will be used to simulate the low-Btu gas produced in the pyrolyzer.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Fluidised bed pyrolyser"

1

Chodak, Jillian. "Pyrolysis and Hydrodynamics of Fluidized Bed Media." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/32920.

Full text
Abstract:
Interest in non-traditional fuel sources, carbon dioxide sequestration, and cleaner combustion has brought attention on gasification to supplement fossil fueled energy, particularly by a fluidized bed. Developing tools and methods to predict operation and performance of gasifiers will lead to more efficient gasifier designs. This research investigates bed fluidization and particle decomposition for fluidized materials. Experimental methods were developed to model gravimetric and energetic response of thermally decomposing materials. Gravimetric, heat flow, and specific heat data were obtained from a simultaneous thermogravimetric analyzer (DSC/TGA). A method was developed to combine data in an energy balance and determine an optimized heat of decomposition value. This method was effective for modeling simple reactions but not for complex decomposition. Advanced method was developed to model mass loss using kinetic reactions. Kinetic models were expanded to multiple reactions, and an approach was developed to identify suitable multiple reaction mechanisms. A refinement method for improving the fit of kinetic parameters was developed. Multiple reactions were combined with the energy balance, and heats of decomposition determined for each reaction. From this research, this methodology can be extended to describe more complex thermal decomposition. Effects of particle density and diameter on the minimum fluidization velocity were investigated, and results compared to empirical models. Effects of bed mass on pressure drop through fluidized beds were studied. A method was developed to predict hydrodynamic response of binary beds from the response of each particle type and mass. Resulting pressure drops of binary mixtures resembled behavior superposition for individual particles.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
2

Jendoubi, Naoufel. "Mécanismes de transfert des inorganiques dans les procédés de pyrolyse rapide de la biomasse : Impacts de la variabilité des ressources lignocellulosiques sur la qualité des bio-huiles." Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL062N/document.

Full text
Abstract:
La pyrolyse rapide de biomasse est un procédé de conversion thermochimique qui permet de produire principalement des huiles de pyrolyse valorisables dans le domaine de l’énergie. Les espèces inorganiques initialement présentes dans la biomasse sont à l’origine de problèmes d’instabilité des huiles, de dépôts et d’encrassement. L’objectif de ce travail consiste à mieux comprendre les mécanismes de transfert des inorganiques depuis la biomasse vers les huiles dans les procédés de pyrolyse rapide.Une méthodologie est mise au point afin de quantifier la répartition des alcalins et alcalino-terreux (K, Ca, Mg et Na), identifiés comme les plus néfastes, dans les produits (charbons et huiles) issus de pyrolyse de bois et de paille de blé. Deux dispositifs complémentaires sont utilisés, pour lesquels les bilans de matière bouclent de façon très satisfaisante: un réacteur pilote de pyrolyse rapide en lit fluidisé et un réacteur laboratoire en four tubulaire. Dans tous les cas, le charbon séquestre 99% des éléments minéraux issus de la biomasse. En outre, grâce à un dispositif original de condensation fractionnée des huiles, on démontre que plus de 60% des inorganiques restants dans les huiles de pyrolyse proviennent des aérosols, ce résultat ouvrant une discussion quant à leur origine. Les teneurs en inorganiques des huiles sont par ailleurs fortement liées à la présence de fines particules de charbon mal séparées dans le procédé. Les possibilités de traitement amont ou aval sont discutées, afin de diminuer ces concentrations.Enfin, des expériences parallèles associées à un modèle permettent de décrire quantitativement les mécanismes de transfert entre les particules de charbon et une phase liquide lors du stockage d’huiles de pyrolyse
Biomass fast pyrolysis is a promising process for the preparation of bio-oils dedicated to energy production. Inorganic species originally present in biomass are known to induce problems such as bio-oil instability, deposits and fouling. The purpose of the present work is to better understand the mechanisms of inorganic species transfer from biomass to bio-oils in fast pyrolysis processes. A methodology is developed for quantifying alkali and alkali-earth species (K, Ca, Mg, Na) distribution in the products (chars and bio-oils) issued from wheat straw and beech wood fast pyrolysis. Two complementary devices are used: a pilot plant fluidized bed reactor, and a horizontal tubular reactor. Mass balances closures are accurately achieved. 99 wt.% of the inorganic species originally contained in biomass are recovered in the chars. Thanks to an original bio-oils fractional condensation device, it is shown that more than 60 wt.% of the inorganic content of overall bio-oil is contained in the aerosols. Different assumptions of possible origins of the aerosols are discussed. Inorganic content of bio-oil is strongly connected to the presence of fine chars particles which are not efficiently separated by the cyclones, and, hence recovered in the bio-oils. The possibilities of upstream or downstream treatments are discussed in order to lower inorganic content of bio-oils. Finally, the mechanisms of inorganics transfers between char particles and a liquid phase, during bio-oil storage, are quantitatively described on the basis of side experiments associated to a model
APA, Harvard, Vancouver, ISO, and other styles
3

Mohamed, M. "Fluidised bed gasification and pyrolysis of woodchips." Thesis, University of Leeds, 1989. http://etheses.whiterose.ac.uk/21074/.

Full text
Abstract:
The work presented in this thesis includes experimental investigation using a basic fluidised bed to gasify woodchips and cold modelling studies to improve the fluid bed reactor dynamics incorporating bed internals, such as draft tubes and jets. Low grade fuel gas was produced from woodchips as feedstock, in a 154 mm i/d fluidised bed as the main experimental part of the project using air as the gasifying medium. The influence of a number of process variables on the gasification process were studied including fuel feedrates, temperatures and bed heights, with respect to their effects on quality and quantity of the fuel gas produced. It was found that fuel gas of about 6 MJ/Nm3 can be obtained with temperatures in excess of 700 °c and with fuel feedrates in excess of 3.5 times stoichiometric. The process also benefitted from increasing the static bed heights of the fluidised bed, which was due to the better separation of the combustion and gasification zones. The cold modelling studies coducted using a 2-D glass model employing a draft tube a nd jet system, and using a novel photographic technique produced more realistic data. This showed that both the systems in question produced induced recirculation rates which can be controlled by the process variables such as bed height, bed and jet velocities. Further studies employing these systems for biomass conversion should prove that a better fuel gas quality and quantity can be achieved. In addition a variety of feedstocks can be utilised using the same reactor configuration.
APA, Harvard, Vancouver, ISO, and other styles
4

Kessas, Sid Ahmed. "Etude expérimentale de pyrolyse et de vapogazéification des boues de STEP en réacteurs à lit fluidisé entre 700 et 900°C : comparaison avec les déchets boisés." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0113.

Full text
Abstract:
La gazéification des biomasses lignocellulosiques apparaît actuellement comme une solution technologique prometteuse permettant la production d’un gaz à haute valeur ajoutée, utilisable dans de nombreuses applications. Cependant, les tensions qui commencent à apparaître sur le marché du bois incitent les acteurs du secteur à se tourner vers d’autres ressources lignocellulosiques telles que les résidus agricoles, les déchets verts municipaux et les boues de STEP. Suivant les cas, ces déchets sont vus comme des effluents à traiter dont le coût peut être parfois nul ou négatif. L’objectif de ces travaux est de mieux comprendre et modéliser les phénomènes qui se déroulent lors de la gazéification des déchets (boues de STEP et déchets verts municipaux) en lit fluidisé. Dans un premier temps, sont présentés successivement une étude de caractérisation physico chimique et texturale des intrants utilisés ainsi que des chars issus de leur pyrolyse rapide ainsi qu’une étude cinétique portant sur l’influence de la température de pyrolyse et de la nature de l’intrant sur la réactivité de char. Dans un second temps, sont exposés les résultats obtenus lors de la pyrolyse et de la vapogazéification des déchets dans un pilote de pyrogazéification en lit fluidisé entre 700 et 900 °C. Les études paramétriques ont permis de mettre en évidence l’effet des paramètre opératoires (température, rapport massique H2O/intrant, nature de l’intrant et du média fluidisé) sur les performances de la gazéification et d’identifier les paramètres clés permettant de contrôler la composition ainsi que le taux de production du gaz de synthèse. Par ailleurs, à partir des résultats obtenus sont proposés des schémas réactionnels pour la pyrolyse des déchets entre 700 et 900 °C. Enfin, les résultats d’une étude de modélisation du réacteur de gazéification des déchets en lit fluidisé intégrant les réactions de pyrolyse, de vapogazéification du char, de water-gas shift et de reformage des goudrons sont présentés et comparés avec les résultats expérimentaux afin de mieux comprendre l’effet des paramètres opératoires sur les taux d’avancement de différentes réactions
The gasification of lignocellulosic biomass is viewed as a promising technological solution for theproduction of a high value-added gas that could be used in several applications. However,emerging tensions in the wood market are prompting industrial actors to turn to otherlignocellulosic resources, such as agricultural residues, municipal green waste and sewage sludge(SS). Depending on the case, these wastes are considered as effluents with a zero or negativecost. The objective of this work is to better understand and model the phenomena that occurduring the gasification of sewage sludge and green wastes in a fluidized bed. Firstly, aphysicochemical and textural characterization study of the selected fuels and their chars resultingfrom their rapid pyrolysis as well as a kinetic study on the influence of the pyrolysis temperatureand the nature of solid fuel on the reactivity of char were presented. Then, the results obtainedduring the pyrolysis and steam gasification of wastes, in a fluidized bed gasification pilot plant, arepresented for temperatures ranging between 700 and 900 °C. Parametric studies allows to betterunderstand the effect of operating parameters (temperature, H2O/fuel mass ratio, the nature of thefuel and the kind of the fluidized medium) on the gasification performance and to identify the keyparameters that control the composition, as well as the syngas production yield. Moreover,reaction schemes are proposed based on the experimental results, for the pyrolysis of wastesbetween 700 and 900 °C. Finally, the results of a modelling study of the gasifier, integrating thereactions of pyrolysis, char steam gasification, water-gas shift and tar reforming are presented andcompared to the experimental results in order to better understand the effect of the operatingparameters on the conversion rate of different reactions
APA, Harvard, Vancouver, ISO, and other styles
5

Urban, Brook John. "Flash Pyrolysis and Fractional Pyrolysis of Oleaginous Biomass in a Fluidized-bed Reactor." University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1431105367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

De, la Rey Jandri. "Energy efficiency in dual fluidised bed fast pyrolysis." Diss., University of Pretoria, 2015. http://hdl.handle.net/2263/57516.

Full text
Abstract:
The Combustion Reduction Integrated Pyrolysis System (CRIPS) is a dual fluidised bed fast pyrolyser that was developed at the University of Pretoria for the conversion of biomass waste to biofuels. The dual fluidised bed design allows in situ catalytic upgrading of bio-oil, by providing the conditions required for the regeneration and decoking of catalysts. The first version of the CRIPS process (CRIPS 1) emphasised the need for an energy balance approach to model the pyrolysis process rather than a mass balance. CRIPS 1 experienced severe energy losses and as a result very poor performance was observed. The energy balance was set up in the enthalpy reference level since no shaft work was produced and the entire process was operated under constant atmospheric conditions. The enthalpy balance approach was set up to analyse the process performance and energy efficiencies of a CRIPS process and possibly the bio-oil energy content and yield that could be expected from such a process. The approach was used to derive the bio-oil properties and energy efficiencies for a number of scenarios based on the CRIPS process. The Higher Heating Value (HHV) of the bio-oil was derived using the total energy balance of the CRIPS process. The validity of the approach was confirmed by comparing the derived bio-oil HHV from CRIPS 1 of 14,2 MJ/kg with that of similar processes, in the range of 17-23 MJ/kg, as well as comparison to the operating data and process yields. The enthalpy balance approach was able to accurately model the operation of CRIPS 1 using energy and mass balances and therefore the approach was used in the design of CRIPS 2 to limit heat losses and improve the process efficiency by recovering heat from the exhaust of the combustor. The heat recovery resulted in significant improvements in the efficiency of CRIPS 2 (74%) compared to CRIPS 1 (33%). The final design of the CRIPS 2 process featured an annular design in which the combustion bed is located in a refractory cylinder, with the pyrolysis bed around the refractory. The design allowed for the addition of a heat exchanger inside the combustor which is responsible for the increase in efficiency.
Dissertation (MEng)--University of Pretoria, 2015.
tm2016
Chemical Engineering
MEng
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
7

Bamido, Alaba O. "Design Of A Fluidized Bed Reactor For Biomass Pyrolysis." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535372231547049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Matta, Johnny. "Biomass Fast Pyrolysis Fluidized Bed Reactor: Modelling and Experimental Validation." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35516.

Full text
Abstract:
Of the many thermochemical conversion pathways for utilizing biomass as a renewable energy source, fast pyrolysis is a promising method for converting and upgrading carbonaceous feedstocks into a range of liquid fuels for use in heat, electricity and transportation applications. Experimental trials have been carried out to assess the impact of operational parameters on process yields. However, dealing with larger-scale experimental systems comes at the expense of lengthy and resource-intensive experiments. Luckily, the advances in computing technology and numerical algorithm solvers have allowed reactor modelling to be an attractive opportunity for reactor design, optimization and experimental data interpretation in a cost-effective fashion. In this work, a fluidized bed reactor model for biomass fast pyrolysis was developed and applied to the Bell’s Corners Complex (BCC) fluidized bed fast pyrolysis unit located at NRCan CanmetENERGY (Ottawa, Canada) for testing and validation. The model was programmed using the Microsoft Visual Basic for Applications software with the motivation of facilitating use and accessibility as well as minimizing runtime and input requirements. The application of different biomass devolatilization schemes within the model was conducted, not only for biomass fast pyrolysis product quantity but also liquid product composition (quality), to examine the effect of variable reaction kinetic sub-models on product yields. The model predictions were in good agreement with the results generated from the experimental work and mechanism modifications were proposed which further increased the accuracy of model predictions. Successively, the formulation of the modelled fluid dynamic scheme was adapted to study the effect of variable hydrodynamic sub-models on product yields for which no significant effect was observed. The work also looked into effect of the dominant process variables such as feedstock composition, bed temperature, fluidizing velocity and feedstock size on measurable product outputs (bio-oil, gas and biochar) and compared the results to those generated from the experimental fast pyrolysis unit. The ideal parameters for maximizing bio-oil yield have been determined to be those which: minimize the content of lignin and inorganic minerals in the feedstock, maintain the dense-bed temperature in a temperature range of 450-520 ºC, maximize the fluidization velocity without leading to bed entrainment, and limit the feedstock particle size to a maximum of 2000 μm.
APA, Harvard, Vancouver, ISO, and other styles
9

Burton, Alan Hamilton. "Bed agglomeration during biomass fast pyrolysis in a fluidised bed reactor." Thesis, Curtin University, 2016. http://hdl.handle.net/20.500.11937/1885.

Full text
Abstract:
This thesis explores the previously-unreported phenomenon of bed agglomeration during biomass fast pyrolysis in fluidised bed. Experimental work was carried out to characterise bed agglomerates formed. The differences in bed agglomeration behaviour were also identified among the fast pyrolysis of various mallee biomass components (wood, leaf and bark). A new parameter (sand loading) has also been developed for diagnosing bed agglomeration during biomass fast pyrolysis in fluidised bed under a wide range of conditions.
APA, Harvard, Vancouver, ISO, and other styles
10

Chern, Jyuung-Shiauu. "The pyrolysis and devolatilisation of coal in a fluidised bed." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627146.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Fluidised bed pyrolyser"

1

Scott, Donald S. The flash pyrolysis of wood in a bench scale fluidized bed. [Hull?: s.n.], 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aarsen, F. G. van den. and Commission of the European Communities. Directorate-General for Science, Research and Development., eds. Energy recovery by gasification of agricultural and forestry wastes in fluidized bed reactors and in moving bed reactors with internalrecycle of pyrolysis gas: Process development and reactor modelling. Luxembourg: Commission of the European Communities, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aarsen, F. G. van den. and Commission of the European Communities. Directorate-General for Science, Research and Development., eds. Energy recovery by gasification of agricultural and forestry wastes in fluidized bed reactors and in moving bed reactors with internal recycle of pyrolysis gas: Process development and reactor modelling. Luxembourg: Commission of the European Communities, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Middleton, Stephen Philip. Partitioning of sulphur and nitrogen in pyrolysis and gasification of coal in a fluidised bed. 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fluidised bed pyrolyser"

1

Arena, Umberto, and Maria Laura Mastellone. "Fluidized Bed Pyrolysis of Plastic Wastes." In Feedstock Recycling and Pyrolysis of Waste Plastics, 435–74. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470021543.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kaminsky, W., and N. Brolund. "Petrochemicals from Bark by Fluidized Bed Pyrolysis." In Developments in Thermochemical Biomass Conversion, 549–56. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1559-6_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heinrich, Rainer, Walter Kaminsky, and Yuequin Ying. "Chemicals by Biomass Pyrolysis in a Fluidized Bed." In Advances in Thermochemical Biomass Conversion, 1222–29. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1336-6_95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kaminsky, Walter. "Monomer Recovery of Plastic Waste in a Fluidized Bed Process." In Feedstock Recycling and Pyrolysis of Waste Plastics, 627–40. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470021543.ch24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kaminsky, Walter. "The Hamburg Fluidized-bed Pyrolysis Process to Recycle Polymer Wastes and Tires." In Feedstock Recycling and Pyrolysis of Waste Plastics, 475–91. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470021543.ch17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, X. H., H. P. Chen, H. P. Yang, X. M. Dai, and S. H. Zhang. "Fast Pyrolysis of Agricultural Wastes in a Fluidized Bed Reactor." In Proceedings of the 20th International Conference on Fluidized Bed Combustion, 719–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02682-9_111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cao, X. X., B. X. Shen, F. Lu, and Y. Yao. "Catalytic Pyrolysis of Cotton Straw by Zeolites and Metal Oxides." In Proceedings of the 20th International Conference on Fluidized Bed Combustion, 648–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02682-9_99.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, N. Y., D. E. Walsh, and L. R. Koenig. "Fluidized-Bed Upgrading of Wood Pyrolysis Liquids and Related Compounds." In ACS Symposium Series, 277–89. Washington, DC: American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0376.ch024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Baoqun, Li Dong, Yin Wang, Y. Matsuzawa, and Guangwen Xu. "Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping." In Proceedings of the 20th International Conference on Fluidized Bed Combustion, 706–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02682-9_109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yin, Shui-E., Peng Dong, and Ru-Shan Bie. "Basic Study on Plastic Pyrolysis in Fluidized Bed with Continuous-feeding." In Challenges of Power Engineering and Environment, 123–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-76694-0_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fluidised bed pyrolyser"

1

Cui, Lijie, Jianzhong Yao, Weigang Lin, and Zheng Zhang. "Product Distribution From Flash Pyrolysis of Coal in a Fast Fluidized Bed." In 17th International Conference on Fluidized Bed Combustion. ASMEDC, 2003. http://dx.doi.org/10.1115/fbc2003-122.

Full text
Abstract:
The flash pyrolysis of Huolinhe coal was carried out in a fast-entrained bed reactor. The investigation focuses on the effects of pyrolysis temperature and particle size on pyrolysis product distributions and gas and liquid compositions. Increasing temperature results in an increase of the gaseous product. There is an optimum temperature on the maximum liquid yield, which is around 650°C. An increase in particle size leads to a decrease of liquid products. Some amount of phenol group was found in the liquid products, which may produce the chemicals with high value. The results provide fundamental data and optimal conditions to maximize light oils yields for the coal topping process.
APA, Harvard, Vancouver, ISO, and other styles
2

Zevenhoven, Ron, Jaakko Savolahti, Liselotte Verhoeven, and Loay Saeed. "Partitioning of Mercury and Other Trace Elements From Coal and Waste-Derived Fuels During Fluidised Bed Pyrolysis." In 18th International Conference on Fluidized Bed Combustion. ASMEDC, 2005. http://dx.doi.org/10.1115/fbc2005-78124.

Full text
Abstract:
The potential releases of toxic trace elements such as mercury, lead and arsenic call for emission control during fluidised bed (FB) combustion, pyrolysis or gasification of waste-derived fuels and fossil fuels. Control measures for sulphur oxides, nitrogen oxides and particulates effectively remove many other pollutants from the exhaust gases as well, but mercury and several other trace elements are already problematic and this situation will only worsen with time. Besides the effect of temperature, gas atmosphere and halogens, the presence of other species, for example metal oxides, have an effect on under which conditions and in what form trace elements are released from fuels. Understanding the events of trace elements release from solid fuels during the pyrolysis or char combustion stage will provide a key to manipulating their partitioning and controlling their emissions. Pyrolysis experiments were made with coal, sewage sludge and automotive shredder residue (ASR) in a two-stage fluidised bed combustion (FBC) facility. An Ontario Hydro measurement train plus an additional sampling system were used to measure mercury and around fifteen other trace elements in the gases, and also char samples were taken and analysed. Results from these experiments are presented. An issue that is addressed explicitely is the bed material, which may be contaminated with significant amounts of toxic trace elements.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, Changsui, Chuanmin Chen, Xiaoping Chen, Fengjun Wang, Wenxuan Wang, Aiqiang Zhu, and Xin Wu. "Experimental Study on Characteristics of Pyrolysis, Ignition and Combustion of Blends of Petroleum Coke and Coal in CFB." In 18th International Conference on Fluidized Bed Combustion. ASMEDC, 2005. http://dx.doi.org/10.1115/fbc2005-78048.

Full text
Abstract:
It is a common understanding that co-firing of petroleum coke and coal in circulating fluidized bed (CFB) is an efficient, economical and environment-friendly way to utilize petroleum coke with medium or high sulfur content. Experimental investigations on characteristics of pyrolysis, ignition and combustion of petroleum coke, coal and their blends with different mixing ratios were conducted on a thermogravimetric analyzer and a pilot CFB combustor systematically. Ignition temperature and burnout temperature were also acquired. The effects of several parameters in terms of the fuel category, the heating rate, the coal/coke mass flow ratio, the CO2 partial pressure, and the Ca/S molar ratio on the ignition and burnout characteristics of the petroleum coke and the blends of the petroleum coke and coal were verified. The results show that the ignition temperature and the burnout temperature of the petroleum coke are between those of bituminous coal and anthracite, which implies that its combustion characteristic is between bituminous coal and anthracite, but is more closer to the bituminous. The pyrolysis process of blends of petroleum coke and coal accords with mechanism model (1−α)1.5 well, and the combustion process accords with mechanism model w1.5 well. Although the ignition temperature of the blended fuels keeps the same when the heating rate, or the CO2 partial pressure or the Ca/S molar ratio increases, the burnout temperature decreases gradually. With decrease in the coal/coke mass flow ratio, the ignition temperature and the burnout temperature of the blends rise.
APA, Harvard, Vancouver, ISO, and other styles
4

Konttinen, Jukka, Mikko Hupa, Sirpa Kallio, Franz Winter, and Jessica Samuelsson. "NO Formation Tendency Characterization for Biomass Fuels." In 18th International Conference on Fluidized Bed Combustion. ASMEDC, 2005. http://dx.doi.org/10.1115/fbc2005-78025.

Full text
Abstract:
When a solid fuel, such as coal, biomass or a mixture of these fuels, enters a hot fluidized bed, the volatile carbon and nitrogen compounds are released, while some nitrogen and carbon remains in the solid char. Volatile nitrogen can form reactive species such as NH3, HCN and tar-nitrogen. These can react in the presence of oxygen to NO (and some N2O). Some part of volatile nitrogen is always reduced to N2. During combustion of the char residue, some part of the char-nitrogen forms NO (or N2O) and the rest is converted to N2. Usually the standard fuel analysis is not enough to allow for accurate NO emission predictions in large scale fluidized bed combustion. This paper presents NO formation tendency characterization results from novel laboratory measurements in a small-scale fluidised bed combustor. The laboratory results of this paper give a good insight into the distribution of fuel nitrogen between reactive and non-reactive (N2) volatile components and char-nitrogen. A NO formation tendency database is formed based on the results, including data on biomass-, waste-, peat- and coal-type fuels. The combustion test results show that the cumulative conversion of fuel nitrogen to NO under lean, non-staged fluidized bed combustion is 20–50% (850°C with O2 in excess). For biomass and peat, nearly all reactive nitrogen (forming NO) is released from the fuel during pyrolysis. NO formation during char combustion is significant with coal. With the help of the database, a reasonable estimate of the maximum non-staged NO emission in fluidized bed combustion can be obtained. Normally, air staging is utilized to reduce NO emissions. Effects of air-staging can be studied by means of modelling. In case of a BFBC boiler, the data can be used as input in the design or modelling of air staging for freeboard. For CFBC, the data can be used as input in the NO prediction where the once formed NO is further reduced by char carbon.
APA, Harvard, Vancouver, ISO, and other styles
5

Duan, Yufeng, Yi Zhou, Xiaoping Chen, Changsui Zhao, and Xin Wu. "Pore Structure of Coal-Chars Derived From Atmospheric and Pressurized Spouted Fluidized Bed Gasifiers." In 18th International Conference on Fluidized Bed Combustion. ASMEDC, 2005. http://dx.doi.org/10.1115/fbc2005-78036.

Full text
Abstract:
Pore structure is one of the most important factors that dominate the reactivity of post-combustion of coal-chars derived from partial gasification process of atmospheric and pressurized spouted fluidized bed gasifiers. The influential factors on pore structure of coal-chars were analyzed in terms of the coal size feed, operational conditions, coal-char size and its components. It concluded that pyrolysis and devolatilization play a leading role in forming the pore structure of coal-chars in the partial gasification process. It is the reaction of coal-char with CO2 and H2O (steam) that plays a dominant positive impact on promoting enlargement and development of the coal-char pores at the elevated pressure gasification. There may exist an optimal coal-char size range that possesses abundant porosity and bigger pore specific surface area, which contributes to enhancing the gasification reactions in the atmospheric gasifier.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao Hailiang, Wang Zhonghua, and Xu Yaoting. "Novel micro fluidized bed pyrolysis reaction analyzer." In 2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). IEEE, 2015. http://dx.doi.org/10.1109/icemi.2015.7494435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rodionov, A. S., and I. R. Ilyasov. "INSTALLATION OF PYROLYSIS IN A FLUIDIZED BED." In Новые материалы и перспективные технологии лесопромышленного комплекса. Воронеж: Воронежский государственный лесотехнический университет им. Г.Ф. Морозова, 2022. http://dx.doi.org/10.58168/nmptti2022_92-96.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wen, Liang, Jianmeng Cen, and Mengxiang Fang. "Pyrolysis Characteristics of Lignite in a Fluidized bed: Influence of Pyrolysis Temperature." In 2009 International Conference on Energy and Environment Technology (ICEET 2009). IEEE, 2009. http://dx.doi.org/10.1109/iceet.2009.68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Keller, Norman K., and Theodore J. Heindel. "A Method to Quantify Mixing in a Two Component Fluidized Bed." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30369.

Full text
Abstract:
Fluidized bed technology can be used for pyrolysis and gasification of solid fuel particles such as biomass, which is important to industry because of its potential as an alternative for petroleum-based fuels. To efficiently utilize a fluidized bed reactor it is necessary, among other factors, to investigate the mixing and segregation behavior of the fuel particles with the bed material. In order to characterize the material distribution, a technique to visualize the biomass inside a fluidized bed reactor has been developed using X-ray computed tomography (CT) scans. This paper presents an image analysis procedure that can be used to quantify and characterize the local mixing and segregation in a 3D fluidized bed.
APA, Harvard, Vancouver, ISO, and other styles
10

Jourabchi, Seyed Amirmostafa, Suyin Gan, and Hoon Kiat Ng. "Heat transfer analysis of laboratory scale fast pyrolysis fluidised bed reactor." In GREEN AND SUSTAINABLE TECHNOLOGY: 2nd International Symposium (ISGST2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4979372.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Fluidised bed pyrolyser"

1

Wiggins, Gavin, and James Parks II. Using Chemical Reactor Models to Predict Fluidized Bed Pyrolysis Yields of Biomass Feedstocks. Office of Scientific and Technical Information (OSTI), June 2022. http://dx.doi.org/10.2172/1871900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography