Academic literature on the topic 'Fluidi Biologici'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fluidi Biologici.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fluidi Biologici"
Akkoyun, Fatih, and Adem Özçelik. "A Battery-Powered Fluid Manipulation System Actuated by Mechanical Vibrations." Actuators 11, no. 5 (April 21, 2022): 116. http://dx.doi.org/10.3390/act11050116.
Full textWalsh, E. J., C. King, R. Grimes, A. Gonzalez, and D. Ciobanu. "Compatibility of Segmenting Fluids in Continuous-Flow Microfluidic PCR." Journal of Medical Devices 1, no. 4 (September 12, 2007): 241–45. http://dx.doi.org/10.1115/1.2812426.
Full textRibeiro, J. C., G. Minas, P. Turmezei, R. F. Wolffenbuttel, and J. H. Correia. "A SU-8 fluidic microsystem for biological fluids analysis." Sensors and Actuators A: Physical 123-124 (September 2005): 77–81. http://dx.doi.org/10.1016/j.sna.2005.03.032.
Full textSwain, Michael V. "ROLE OF FLUID ON THE CONTACT DEFORMATION RESPONSE OF BIOLOGICAL TISSUE." Acta Polytechnica CTU Proceedings 27 (June 11, 2020): 22–31. http://dx.doi.org/10.14311/app.2020.27.0022.
Full textShaw, Julie LV, and Eleftherios P. Diamandis. "Distribution of 15 Human Kallikreins in Tissues and Biological Fluids." Clinical Chemistry 53, no. 8 (August 1, 2007): 1423–32. http://dx.doi.org/10.1373/clinchem.2007.088104.
Full textNelson, Arif Z., Binu Kundukad, Wai Kuan Wong, Saif A. Khan, and Patrick S. Doyle. "Embedded droplet printing in yield-stress fluids." Proceedings of the National Academy of Sciences 117, no. 11 (March 3, 2020): 5671–79. http://dx.doi.org/10.1073/pnas.1919363117.
Full textMolina, R., X. Filella, J. Jo, C. Agusti, and A. M. Ballesta. "CA 125 in Biological Fluids." International Journal of Biological Markers 13, no. 4 (October 1998): 224–30. http://dx.doi.org/10.1177/172460089801300410.
Full textLi, Suyi, and K. W. Wang. "On the dynamic characteristics of biological inspired multicellular fluidic flexible matrix composite structures." Journal of Intelligent Material Systems and Structures 23, no. 3 (October 10, 2011): 291–300. http://dx.doi.org/10.1177/1045389x11424218.
Full textToma, Milan, Rosalyn Chan-Akeley, Jonathan Arias, Gregory D. Kurgansky, and Wenbin Mao. "Fluid–Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics." Biology 10, no. 3 (March 2, 2021): 185. http://dx.doi.org/10.3390/biology10030185.
Full textTerekhina, N. A., S. E. Reuk, and T. I. Atamanova. "Comparative analysis of ceruloplasmin level in biological fluids at herpes infection." Kazan medical journal 94, no. 5 (October 15, 2013): 752–54. http://dx.doi.org/10.17816/kmj1936.
Full textDissertations / Theses on the topic "Fluidi Biologici"
MAININI, VERONICA. "Indagini molecolari mediante spettrometrial di massa in fluidi biologici e tessuti." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19695.
Full textBerlese, Gloria <1993>. "Studio di metodi analitici per la determinazione di acidi organici in fluidi biologici." Master's Degree Thesis, Università Ca' Foscari Venezia, 2020. http://hdl.handle.net/10579/16948.
Full textZincarelli, Nicola. "Progetto e realizzazione di un sensore indossabile, passivo e wireless per l'identificazione di fluidi biologici." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17665/.
Full textArcangeli, Danilo. "Sensori tessili indossabili per la determinazione dello ione cloruro e del pH in fluidi biologici." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21682/.
Full textGIANAZZA, ERICA. "Ricerca di biomarcatori proteici per il carcinoma a cellule renali e la nefropatia diabetica in fluidi biologici mediante spettrometria di massa." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19694.
Full textGIANNATEMPO, GIOVANNI. "Ricerca di marcatori molecolari del carcinoma del cavo orale nei fluidi biologici, quali sangue e saliva, a fini di diagnosi precoce e prognosi." Doctoral thesis, Università di Foggia, 2016. http://hdl.handle.net/11369/363213.
Full textDOMAKOSKI, ANA CAROLINA. "Impiego di un array di sensori di gas e di tecniche gascromatografiche per lo studio di patologie e forme cellulari attraverso l'analisi di composti volatili rilasciati dai fluidi biologici." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2016. http://hdl.handle.net/2108/201857.
Full textCardillo, Giulia. "Fluid Dynamic Modeling of Biological Fluids : From the Cerebrospinal Fluid to Blood Thrombosis." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX110.
Full textIn the present thesis, three mathematical models are described. Three different biomedical issues, where fluid dynamical aspects are of paramount importance, are modeled: i) Fluid-structure interactions between cerebro-spinal fluid pulsatility and the spinal cord (analytical modeling); ii) Enhanced dispersion of a drug in the subarachnoid space (numerical modeling); and iii) Thrombus formation and evolution in the cardiovascular system (numerical modeling).The cerebrospinal fluid (CSF) is a liquid that surrounds and protects the brain and the spinal cord. Insights into the functioning of cerebrospinal fluid are expected to reveal the pathogenesis of severe neurological diseases, such as syringomyelia that involves the formation of fluid-filled cavities (syrinxes) in the spinal cord.Furthermore, in some cases, analgesic drugs -- as well drugs for treatments of serious diseases such as cancers and cerebrospinal fluid infections -- need to be delivered directly into the cerebrospinal fluid. This underscores the importance of knowing and describing cerebrospinal fluid flow, its interactions with the surrounding tissues and the transport phenomena related to it. In this framework, we have proposed: a model that describes the interactions of the cerebrospinal fluid with the spinal cord that is considered, for the first time, as a porous medium permeated by different fluids (capillary and venous blood and cerebrospinal fluid); and a model that evaluates drug transport within the cerebrospinal fluid-filled space around the spinal cord --namely the subarachnoid space--.The third model deals with the cardiovascular system. Cardiovascular diseases are the leading cause of death worldwide, among these diseases, thrombosis is a condition that involves the formation of a blood clot inside a blood vessel. A computational model that studies thrombus formation and evolution is developed, considering the chemical, bio-mechanical and fluid dynamical aspects of the problem in the same computational framework. In this model, the primary novelty is the introduction of the role of shear micro-gradients into the process of thrombogenesis.The developed models have provided several outcomes. First, the study of the fluid-structure interactions between cerebro-spinal fluid and the spinal cord has shed light on scenarios that may induce the occurrence of Syringomyelia. It was seen how the deviation from the physiological values of the Young modulus of the spinal cord, the capillary pressures at the SC-SAS interface and the permeability of blood networks can lead to syrinx formation.The computational model of the drug dispersion has allowed to quantitatively estimate the drug effective diffusivity, a feature that can aid the tuning of intrathecal delivery protocols.The comprehensive thrombus formation model has provided a quantification tool of the thrombotic deposition evolution in a blood vessel. In particular, the results have given insight into the importance of considering both mechanical and chemical activation and aggregation of platelets
Trejo, Soto Claudia Andrea. "Front Microrheology of biological Fluids." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/400566.
Full textDesde los tiempos de Poiseuille, se han desarrollado variadas técnicas para medir la viscosidad de la sangre. Durante las décadas de los 60’s y 70’s con la aparición de los primeros reómetros las propiedades reológicas de la sangre fueron medidas y se determinó su comportamiento dependiente del gradiente de velocidad. Además se observó que posee un comportamiento pseudoplástico, es decir, que a medida que aumenta su velocidad su viscosidad disminuye. Desde un punto de vista médico, la sangre y su plasma sanguíneo son los fluidos más eficaces para la detección de patologías globales. Estas patologías pueden estar relacionadas con su viscosidad, con las proteínas presentes en el plasma o con las propiedades de sus glóbulos rojos, como su agregación, deformabilidad o la capacidad elástica de su membrana celular. En los últimos años, con el nacimiento de la microfluídica a principio de los 90’s, nuevas técnicas para el diagnóstico de enfermedades se han desarrollado. La ventaja del uso de la microfluídica en el diagnóstico de enfermedades viene dada por: el bajo requerimiento de muestra para realizar la detección, su portabilidad, la facilidad de uso y el bajo costo de su fabricación. El objetivo de esta tesis ha sido el estudio de la interfase fluido-aire, por medio del desarrollo de un dispositivo microfluídico y método sencillo que permite obtener la viscosidad tanto de fluidos newtonianos e.g. plasma sanguíneo y sangre con un error no superior al 10%. Además de ser capaces de observar el comportamiento no-Newtoniano de la sangre, y a su vez, relacionar su viscosidad con características específicas de sus células rojas como la agregación y la flexibilidad de su membrana. Los estudios de sangre se realizaron a distintos hematocritos, distintos días desde la extracción de la muestra y muestras de anemia y alfa-talasemia. La tesis ha sido desarrollada principalmente desde un punto de vista experimental y está separada en 2 partes. La primera contempla los resultados obtenidos en el estudio de frentes de fluidos Newtonianos. La segunda parte se centra en los resultados obtenidos para la sangre y su relación con las propiedades de sus células rojas.
Montenegro-Johnson, Thomas D. "Microscopic swimming in biological fluids." Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4220/.
Full textBooks on the topic "Fluidi Biologici"
Gomez, Frank A. Biological applications of microfluidics. Hoboken, N.J: John Wiley, 2008.
Find full textGomez, Frank A. Biological applications of microfluidics. Hoboken, N.J: John Wiley, 2008.
Find full textMichel-Yves, Jaffrin, Caro Colin G, and World Congress of Biomechanics (2nd : 1994 : Amsterdam, Netherlands), eds. Biological flows. New York: Plenum Press, 1995.
Find full textHormone assays in biological fluids. New York: Humana Press, 2013.
Find full textWheeler, Michael J., and J. S. Morley Hutchinson, eds. Hormone Assays in Biological Fluids. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1385/1592599869.
Full textWheeler, Michael J., ed. Hormone Assays in Biological Fluids. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-616-0.
Full textSpagnolie, Saverio E., ed. Complex Fluids in Biological Systems. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2065-5.
Full textJ, Wheeler M., and Hutchinson J. S. M, eds. Hormone assays in biological fluids. Totowa, N.J: Humana Press, 2006.
Find full textComputational hydrodynamics of capsules and biological cells. Boca Raton: Chapman & Hall/CRC, 2010.
Find full textAnalysis of drugs in biological fluids. Boca Raton, Fla: CRC Press, 1985.
Find full textBook chapters on the topic "Fluidi Biologici"
Roselli, Robert J., and Kenneth R. Diller. "Rheology of Biological Fluids." In Biotransport: Principles and Applications, 107–68. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8119-6_4.
Full textGiddens, Don P., Tongdar D. Tang, and Francis Loth. "Fluid Mechanics of Arterial Bifurcations." In Biological Flows, 51–68. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9471-7_4.
Full textBlows, William T. "Fluid balance." In The Biological Basis of Clinical Observations, 119–33. Third edition. | Milton Park, Abingdon, Oxon ; New York, NY : Routledge, 2018.: Routledge, 2018. http://dx.doi.org/10.4324/9781315143552-6.
Full textPedley, T. J. "New Perspectives in Biological Fluid Dynamics." In Biological Flows, 31–49. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9471-7_3.
Full textAlrawashdeh, Wasfi, and Tatjana Crnogorac-Jurcevic. "Biomarker Discovery in Biological Fluids." In Sample Preparation in Biological Mass Spectrometry, 291–326. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0828-0_17.
Full textVelesiotis, Christos, Stella Vasileiou, and Demitrios H. Vynios. "Analyzing Hyaluronidases in Biological Fluids." In The Extracellular Matrix, 127–42. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9133-4_12.
Full textVincent, Fabien B., and Tali Lang. "Measuring MIF in Biological Fluids." In Macrophage Migration Inhibitory Factor, 47–56. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-4939-9936-1_5.
Full textPalkovits, Roland, Christian Mayer, and Thomas G. M. Schalkhammer. "Analysis in Complex Biological Fluids." In Analytical Biotechnology, 300–322. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8101-2_9.
Full textSubramanian, K. S. "Trace Elements in Biological Fluids." In Biological Trace Element Research, 130–57. Washington, DC: American Chemical Society, 1991. http://dx.doi.org/10.1021/bk-1991-0445.ch011.
Full textBeaven, M. A. "Radioenzymatic Assays in Biological Fluids." In Histamine and Histamine Antagonists, 39–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75840-9_5.
Full textConference papers on the topic "Fluidi Biologici"
Tovar-Lopez, Francisco J., K. Khoshmanesh, M. Nasabi, Gary Rosengarten, and Arnan Mitchell. "Characterization of high fluid strain micro contractions to study the stress on biological fluids." In Smart Materials, Nano-and Micro-Smart Systems, edited by Dan V. Nicolau and Guy Metcalfe. SPIE, 2008. http://dx.doi.org/10.1117/12.813943.
Full textWang, Z., Y. Zhang, and E. Zheng. "Resistivity measurement of biological fluids." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.95065.
Full textSablinskas, Valdas, Sonata Adomaviciute, and Martynas Velicka. "COLLOIDAL SERS SPECTROSCOPY OF BIOLOGICAL FLUIDS." In 2020 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2020. http://dx.doi.org/10.15278/isms.2020.wi04.
Full textTregubov, Vladimir. "Mathematical modeling of biological fluid flows." In 2014 2nd International Conference on Emission Electronics (ICEE). IEEE, 2014. http://dx.doi.org/10.1109/emission.2014.6893982.
Full textMajumdar, Rwitajit, J. S. Rathore, and N. N. Sharma. "Simulation of swimming Nanorobots in biological fluids." In 2009 4th International Conference on Autonomous Robots and Agents. IEEE, 2009. http://dx.doi.org/10.1109/icara.2000.4803912.
Full textTakayama, Shuichi, Yi-Chung Tung, and Bor-Han Chueh. "Biological Micro/Nanofluidics." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52087.
Full textBensaidane, Hakim. "2D finite element modeling of magnetic MEMS and coupled model with fluid mechanic problem: Application to biological pumping fluids." In Multi-Physics simulation and Experiments in Microelectronics. IEEE, 2008. http://dx.doi.org/10.1109/esime.2008.4525010.
Full textDubolazov, A. V., V. Marchuk, O. I. Olar, V. T. Bachinskiy, O. Ya Vanchuliak, N. V. Pashkovska, D. Andriychuk, and S. V. Kostiuk. "Multiparameter correlation microscopy of biological fluids polycrystalline networks." In Eleventh International Conference on Correlation Optics, edited by Oleg V. Angelsky. SPIE, 2013. http://dx.doi.org/10.1117/12.2053853.
Full textDubolazov, A. V., O. Ya Vanchuliak, M. Garazdiuk, M. I. Sidor, A. V. Motrich, and S. V. Kostiuk. "Polarization-phase tomography of biological fluids polycrystalline structure." In Eleventh International Conference on Correlation Optics, edited by Oleg V. Angelsky. SPIE, 2013. http://dx.doi.org/10.1117/12.2053861.
Full textSakhnovskiy, M. Yu, and V. N. Balazyuk. "Polarization-phase imaging of biological fluids polycrystalline structure." In SPIE Optical Engineering + Applications, edited by G. Groot Gregory and Arthur J. Davis. SPIE, 2013. http://dx.doi.org/10.1117/12.2024321.
Full textReports on the topic "Fluidi Biologici"
Liepmann, Dorian. Mixing and Processing of Complex Biological Fluids. Fort Belvoir, VA: Defense Technical Information Center, March 2003. http://dx.doi.org/10.21236/ada414038.
Full textLin, Emil T., Leslie Z. Benet, Robert A. Upton, and Winnie L. Gee. Analysis of Investigational Drugs in Biological Fluids - Method Development and Routine Assay. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada238981.
Full textSingh, Rajesh, Marshall Richmond, Pedro Romero-Gomez, Cynthia Rakowski, and John Serkowski. Validation of Computational Fluid Dynamics Simulations for Biological Performance Assessment in Hydropower units. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1798166.
Full textPryfogle, Peter Albert. Comparison of Selective Culturing and Biochemical Techniques for Measuring Biological Activity in Geothermal Process Fluids. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/911015.
Full textLin, Emil T. Analysis of Investigational Drugs in Biological Fluids - Method Development and Analysis of Pre-Clinical Samples. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada399915.
Full textBrozik, Susan Marie, Laura J. Douglas Frink, George David Bachand, David J. Keller, Elizabeth L. Patrick, Jason A. Marshall, Lauren A. Meyer, Ryan W. Davis, James A. Brozik, and Jeb Hunter Flemming. Integration of biological ion channels onto optically addressable micro-fluidic electrode arrays for single molecule characterization. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/920735.
Full textZaraisky, E. I. Detection of PAMG-1 oncoantigen using nanogold conjugates with monoclonal antibodies in samples of biological fluids. Editors of the Eurasian Scientific Journal, 2018. http://dx.doi.org/10.18411/esj_n12_2018-145-150.
Full textGarrison, Laura A., Richard K. Fisher, Jr., Michael J. Sale, and Glenn Cada. Application of biological design criteria and computational fluid dynamics to investigate fish survival in Kaplan turbines. Office of Scientific and Technical Information (OSTI), July 2002. http://dx.doi.org/10.2172/1218120.
Full textLin, Emil T. Analysis of Investigational Drugs in Biological Fluids - Method Development and Analysis of Pre-Clinical and Clinical Samples. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada391522.
Full textGlushko, E. Ya, and A. N. Stepanyuk. Optopneumatic medium for precise indication of pressure over time inside the fluid flow. Астропринт, 2018. http://dx.doi.org/10.31812/123456789/2874.
Full text