Journal articles on the topic 'Fluid-structure interaction and aeroacoustics'

To see the other types of publications on this topic, follow the link: Fluid-structure interaction and aeroacoustics.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fluid-structure interaction and aeroacoustics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Schäfer, Frank, Thomas Uffinger, Stefan Becker, Jens Grabinger, and Manfred Kaltenbacher. "Fluid‐structure interaction and computational aeroacoustics of the flow past a thin flexible structure." Journal of the Acoustical Society of America 123, no. 5 (May 2008): 3570. http://dx.doi.org/10.1121/1.2934641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jansson, Johan. "Adaptive stabilized finite element framework for simulation of vocal fold turbulent fluid-structure interaction and towards aeroacoustics." Journal of the Acoustical Society of America 133, no. 5 (May 2013): 3416. http://dx.doi.org/10.1121/1.4805976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Valášek, Jan, and Petr Sváček. "Aeroacoustic computation of fluid-structure interaction problems with low Mach numbers." EPJ Web of Conferences 180 (2018): 02113. http://dx.doi.org/10.1051/epjconf/201818002113.

Full text
Abstract:
This contribution deals with the acoustic simulation of aerodynamical noise generated by a flow over an airfoil or by flow in a flexible channel. Since the considered flow has low Mach number the hybrid approach of acoustic analogies can be applied here with benefits. The fluid-structure-acoustic interaction problem is generally described as a quite complicated problem comprising of three different physical fields - the vibration of the elastic body, the unsteady fluid flow and the acoustics together with mutual couplings. The fluid flow in time dependent domain is governed by the incompressible Navier-Stokes equations in arbitrary Langrangian-Eulerian formulation and the elastic structure is modelled by the means of linear elasticity theory. The Lighthill analogy and acoustic perturbation equation (APE) is considered to describe the sound propagation. The simulation of fluid-structure (FSI) interaction and acoustic field is implemented using the FEM in an in-house solver. The sound sources computed from FSI results are analyzed and within sound propagation simulation the perfectly matched layer technique is used. In the end the results of Lighthill and APE analogy are compared.
APA, Harvard, Vancouver, ISO, and other styles
4

You, Young H., Deokhwan Na, and Sung N. Jung. "Data Transfer Schemes in Rotorcraft Fluid-Structure Interaction Predictions." International Journal of Aerospace Engineering 2018 (2018): 1–15. http://dx.doi.org/10.1155/2018/3426237.

Full text
Abstract:
For a CFD (computation fluid dynamics)/CSD (computational structural dynamics) coupling, appropriate data exchange strategy is required for the successful operation of the coupling computation, due to fundamental differences between CFD and CSD analyses. This study aims at evaluating various data transfer schemes of a loose CFD/CSD coupling algorithm to validate the higher harmonic control aeroacoustic rotor test (HART) data in descending flight. Three different data transfer methods in relation to the time domain airloads are considered. The first (method 1) uses random data selection matched with the timewise resolution of the CSD analysis whereas the last (method 2) adopts a harmonic filter to the original signals in CFD and CSD analyses. The second (method 3) is a mixture of the two methods. All methods lead to convergent solutions after a few cycles of coupling iterations are marched. The final converged solutions for each of the data transfer methods are correlated with the measured HART data. It is found that both method 1 and method 2 exhibit nearly identical results on airloads and blade motions leading to excellent correlations with the measured data while the agreement is less satisfactory with method 3. The reason of the discrepancy is identified and discussed illustrating CFD-/CSD-coupled aeromechanics predictions.
APA, Harvard, Vancouver, ISO, and other styles
5

Valášek, Jan, and Petr Sváček. "Aeroacoustic computation of fluid-structure interaction problems with low Mach numbers." EPJ Web of Conferences 180 (2018): 02113. http://dx.doi.org/10.1051/epjconf/201817002113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Heydari, Morteza, Hamid Sadat, and Rajneesh Singh. "A Computational Study on the Aeroacoustics of a Multi-Rotor Unmanned Aerial System." Applied Sciences 11, no. 20 (October 18, 2021): 9732. http://dx.doi.org/10.3390/app11209732.

Full text
Abstract:
The noise generated by a quadrotor biplane unmanned aerial system (UAS) is studied computationally for various conditions in terms of the UAS pitch angle, propellers rotating velocity (RPM), and the UAS speed to understand the physics involved in its aeroacoustics and structure-borne noise. The k-ω SST turbulence model and Ffowcs Williams-Hawkings equations are used to solve the flow and acoustics fields, respectively. The sound pressure level is measured using a circular array of microphones positioned around the UAS, as well as at specific locations on its structure. The local flow is studied to detect the noise sources and evaluate the pressure fluctuation on the UAS surface. This study found that the UAS noise increases with pitch angle and the propellers’ rotating velocity, but it shows an irregular trend with the vehicle speed. The major source of the UAS noise is from its propellers and their interactions with each other at small pitch angle. The propeller and CRC-3 structure interaction contributes to the noise at large pitch angle. The results also showed that the propellers and structure of the UAS impose unsteadiness on each other through a two-way mechanism, resulting in structure-born noises which depend on the propeller RPM, velocity and pitch angle.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhong, Siyang, and Xin Zhang. "A generalized sound extrapolation method for turbulent flows." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, no. 2210 (February 2018): 20170614. http://dx.doi.org/10.1098/rspa.2017.0614.

Full text
Abstract:
Sound extrapolation methods are often used to compute acoustic far-field directivities using near-field flow data in aeroacoustics applications. The results may be erroneous if the volume integrals are neglected (to save computational cost), while non-acoustic fluctuations are collected on the integration surfaces. In this work, we develop a new sound extrapolation method based on an acoustic analogy using Taylor’s hypothesis (Taylor 1938 Proc. R. Soc. Lon. A 164 , 476–490. ( doi:10.1098/rspa.1938.0032 )). Typically, a convection operator is used to filter out the acoustically inefficient components in the turbulent flows, and an acoustics dominant indirect variable D c p ′ is solved. The sound pressure p ′ at the far field is computed from D c p ′ based on the asymptotic properties of the Green’s function. Validations results for benchmark problems with well-defined sources match well with the exact solutions. For aeroacoustics applications: the sound predictions by the aerofoil–gust interaction are close to those by an earlier method specially developed to remove the effect of vortical fluctuations (Zhong & Zhang 2017 J. Fluid Mech. 820 , 424–450. ( doi:10.1017/jfm.2017.219 )); for the case of vortex shedding noise from a cylinder, the off-body predictions by the proposed method match well with the on-body Ffowcs-Williams and Hawkings result; different integration surfaces yield close predictions (of both spectra and far-field directivities) for a co-flowing jet case using an established direct numerical simulation database. The results suggest that the method may be a potential candidate for sound projection in aeroacoustics applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Nusser, Katrin, and Stefan Becker. "Numerical investigation of the fluid structure acoustics interaction on a simplified car model." Acta Acustica 5 (2021): 22. http://dx.doi.org/10.1051/aacus/2021014.

Full text
Abstract:
Part of vehicle interior noise is caused by the complex turbulent flow field behind the a-pillar and side mirror. It excites the structure of the side window, which radiates noise into the interior. Both aerodynamic pressure excitation and acoustic sound sources in the flow play an important role. In this work, the influence of both excitation mechanisms is investigated numerically in a hybrid simulation on a simplified car geometry. The generic model allows for an exact definition of boundary conditions and good reproducibility of simulation results. An incompressible Large-Eddy-Simulation (LES) of the flow is conducted, from which acoustic source terms within the flow field and transient fluid forces acting on the surface of the side window are extracted. This data is used in a coupled vibroacoustic and aeroacoustic simulation of the structure and passenger cabin of the vehicle. A finite element (FE) approach is used for the simulations and detailed modeling of the structure and the influence of interior absorption properties is emphasized. The computed excitation on the side window and the interior noise levels are successfully validated by using experimental data. The importance and contribution of both aerodynamic and acoustic pressure excitation to the interior sound level are determined.
APA, Harvard, Vancouver, ISO, and other styles
9

Barnard, Andrew, and Daniel A. Russell. "The graduate program in acoustics at Penn State." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A124. http://dx.doi.org/10.1121/10.0015762.

Full text
Abstract:
The Graduate Program in Acoustics at Penn State offers graduate degrees (M.Eng., M.S., Ph.D.) in Acoustics, with courses and research opportunities in a wide variety of subfields. Our 820 alumni are employed around the world in a wide variety of military and government labs, academic institutions, consulting firms, and consumer audio and related industries. Our 40+ faculty from several disciplines conduct research and teach courses in structural acoustics, nonlinear acoustics, architectural acoustics, signal processing, aeroacoustics, biomedical ultrasound, transducers, computational acoustics, noise and vibration control, acoustic metamaterials, psychoacoustics, and underwater acoustics. Course offerings include fundamentals of acoustics and vibration, electroacoustic transducers, signal processing, acoustics in fluid media, sound and structure interaction, digital signal processing, experimental techniques, acoustic measurements and data analysis, ocean acoustics, architectural acoustics, noise control engineering, nonlinear acoustics, outdoor sound propagation, computational acoustics, biomedical ultrasound, flow induced noise, spatial sound and three-dimensional audio, and the acoustics of musical instruments. This poster highlights faculty research areas, laboratory facilities, student demographics, successful graduates, and recent enrollment and employment trends for the Graduate Program in Acoustics at Penn State.
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Li, Yang Yu, and Guo Xiang Hou. "Flow-Induced Noise Radiation from the Rotational Bodies Based on Fluid Mechanics Using Hybrid Immersed Boundary Lattice-Boltzmann/FW-H Method." Applied Mechanics and Materials 345 (August 2013): 345–48. http://dx.doi.org/10.4028/www.scientific.net/amm.345.345.

Full text
Abstract:
A novel study of the simulations of the flow-induced noise from the moving boundary objects using the hybrid immersed boundary lattice-Boltzmann method (IB-LBM), which is the modern useful numerical method of fluid mechanics, on the Ffowcs Williams-Hawkings (FW-H) equation is carried out. The permeable surface FW-H method has been demonstrated an effective technique of the far-field noise predication, because of its complete theories and successful applications in aeroacoustics. It usually need the information of the field near sound source. Therefore, we also adopt the effective and widely used IB-LBM to treat the interaction of the moving boundaries and the fluid, in order to simulate the near-field accurately. Some simulations are shown to test the hybrid method, including the rotational cylinder. The results prove that the hybrid IB-LBM/FW-H method can simulate the large field problems of the flow-induced noise effectively and accurately.
APA, Harvard, Vancouver, ISO, and other styles
11

Choi, Woen-Sug, Suk-Yoon Hong, Hyun-Wung Kwon, Jeong-Hwa Seo, Shin-Hyung Rhee, and Jee-Hun Song. "Estimation of turbulent boundary layer induced noise using energy flow analysis for ship hull designs." Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 234, no. 1 (June 4, 2019): 196–208. http://dx.doi.org/10.1177/1475090219852195.

Full text
Abstract:
A turbulent boundary layer develops on the surface of submerged bodies in motion; these layers consist of complex flows and interact with the structure causing turbulent boundary layer induced noise due to fluid-structure interaction. Recently, although the research on such noise has attracted great interest in the naval fields, owing to the focus on the competitive development of low-noise naval ships, the limitations corresponding to the application of methods developed in aeroacoustics for underwater structures having lower convection speed of turbulence and faster sound speed along with insufficient environments to conduct experiments restrained to subjects of simple structures at high frequency. To overcome the abovementioned limitations and study the noise characteristics for ship hull design, in this research, methods to analyze the noise radiated due to turbulent flow on the complex underwater structure are developed using energy flow analysis methods for vibro-acoustic calculations. For estimation of the input hydrodynamic forces, wall pressure fluctuation spectrum on the surface is obtained from turbulent boundary layer properties to acquire sufficient resolutions. The vibrational response of the structure is calculated using energy flow analysis incorporating the finite element method for structural forces estimated as input power. The acoustical response coupled with the vibrational response is obtained using the calculated vibrational energy density with the boundary element method in combination with the energy flow analysis, taking advantages of the fact that the methods share the common energy variables. Developed methods are validated with a case of broadband noise radiated from a plate. Using the procedures, numerical estimation and analysis of acoustic performance are performed for trimaran ship hull designs with steady-state computational fluid dynamics to demonstrate the method’s usability as an assessment tool in the early design stage.
APA, Harvard, Vancouver, ISO, and other styles
12

Candeloro, Paolo, Daniele Ragni, and Tiziano Pagliaroli. "Small-Scale Rotor Aeroacoustics for Drone Propulsion: A Review of Noise Sources and Control Strategies." Fluids 7, no. 8 (August 15, 2022): 279. http://dx.doi.org/10.3390/fluids7080279.

Full text
Abstract:
In the last decade, the drone market has grown rapidly for both civil and military purposes. Due to their versatility, the demand for drones is constantly increasing, with several industrial players joining the venture to transfer urban mobility to the air. This has exacerbated the problem of noise pollution, mainly due to the relatively lower altitude of these vehicles and the proximity of their routes to extremely densely populated areas. In particular, both the aerodynamic and aeroacoustic optimization of the propulsive system and of its interaction with the airframe are key aspects of unmanned aerial vehicle design that can signify the success or the failure of their mission. The industrial challenge involves finding the best performance in terms of loading, efficiency and weight, and, at the same time, the most silent configuration. For these reasons, research has focused on an initial localization of the noise sources and, on further analysis, of the noise generation mechanism, focusing particularly on directivity and scattering. The aim of the present study is to review the noise source mechanisms and the state-of-the-art control strategies, available in the literature, for its suppression, focusing especially on the fluid-dynamic aspects of low Reynolds numbers of the propulsive system and on the interaction of the propulsive system flow with the airframe.
APA, Harvard, Vancouver, ISO, and other styles
13

Al-Okbi, Yasir, Tze Pei Chong, and Oksana Stalnov. "Leading Edge Blowing to Mimic and Enhance the Serration Effects for Aerofoil." Applied Sciences 11, no. 6 (March 15, 2021): 2593. http://dx.doi.org/10.3390/app11062593.

Full text
Abstract:
Leading edge serration is now a well-established and effective passive control device for the reduction of turbulence–leading edge interaction noise, and for the suppression of boundary layer separation at high angle of attack. It is envisaged that leading edge blowing could produce the same mechanisms as those produced by a serrated leading edge to enhance the aeroacoustics and aerodynamic performances of aerofoil. Aeroacoustically, injection of mass airflow from the leading edge (against the incoming turbulent flow) can be an effective mechanism to decrease the turbulence intensity, and/or alter the stagnation point. According to classical theory on the aerofoil leading edge noise, there is a potential for the leading edge blowing to reduce the level of turbulence–leading edge interaction noise radiation. Aerodynamically, after the mixing between the injected air and the incoming flow, a shear instability is likely to be triggered owing to the different flow directions. The resulting vortical flow will then propagate along the main flow direction across the aerofoil surface. These vortical flows generated indirectly owing to the leading edge blowing could also be effective to mitigate boundary layer separation at high angle of attack. The objectives of this paper are to validate these hypotheses, and combine the serration and blowing together on the leading edge to harvest further improvement on the aeroacoustics and aerodynamic performances. Results presented in this paper strongly indicate that leading edge blowing, which is an active flow control method, can indeed mimic and even enhance the bio-inspired leading edge serration effectively.
APA, Harvard, Vancouver, ISO, and other styles
14

Klein, Levin, Jonas Gude, Florian Wenz, Thorsten Lutz, and Ewald Krämer. "Advanced computational fluid dynamics (CFD)–multi-body simulation (MBS) coupling to assess low-frequency emissions from wind turbines." Wind Energy Science 3, no. 2 (October 17, 2018): 713–28. http://dx.doi.org/10.5194/wes-3-713-2018.

Full text
Abstract:
Abstract. The low-frequency emissions from a generic 5 MW wind turbine are investigated numerically. In order to regard airborne noise and structure-borne noise simultaneously, a process chain is developed. It considers fluid–structure coupling (FSC) of a computational fluid dynamics (CFD) solver and a multi-body simulations (MBSs) solver as well as a Ffowcs-Williams–Hawkings (FW-H) acoustic solver. The approach is applied to a generic 5 MW turbine to get more insight into the sources and mechanisms of low-frequency emissions from wind turbines. For this purpose simulations with increasing complexity in terms of considered components in the CFD model, degrees of freedom in the structural model and inflow in the CFD model are conducted. Consistent with the literature, it is found that aeroacoustic low-frequency emission is dominated by the blade-passing frequency harmonics. In the spectra of the tower base loads, which excite seismic emission, the structural eigenfrequencies become more prominent with increasing complexity of the model. The main source of low-frequency aeroacoustic emissions is the blade–tower interaction, and the contribution of the tower as an acoustic emitter is stronger than the contribution of the rotor. Aerodynamic tower loads also significantly contribute to the external excitation acting on the structure of the wind turbine.
APA, Harvard, Vancouver, ISO, and other styles
15

Gaudard, Éric, Philippe Druault, Régis Marchiano, and François Van Herpe. "POD and Fourier analyses of a fluid-structure-acoustic interaction problem related to interior car noise." Mechanics & Industry 18, no. 2 (2017): 201. http://dx.doi.org/10.1051/meca/2016027.

Full text
Abstract:
In order to approach a flow configuration revealing the aerodynamic noise contribution in the interior of road vehicles due to the A-pillar vortex, a numerical simulation of a Forward Facing Step (FFS) coupled with a vibrating structure is performed. This numerical study is based on a weak coupling of three solvers to compute (i) the flow field in interaction with the FFS, (ii) the vibration of the structure and (iii) the acoustic radiation in the open cavity. The purpose of this work is then to evaluate the ability of two different post-processing methods: Proper Orthogonal Decomposition and Fourier Decomposition to identify the origin of the noise radiated into a cavity surrounded by an unsteady flow. Fourier and POD decompositions are then successively performed to extract the part of the aeroacoustic wall pressure field impacting the upper part of an upward step mainly related to the radiated acoustic pressure in the cavity. It is observed that the acoustic part, extracted from the wavenumber frequency decomposition (Fourier analysis) of the wall pressure field generates a non-negligible part of the interior cavity noise. However, this contribution is of several orders smaller than the one related to the aerodynamic part of the pressure field. Moreover, it is shown that the most energetic part of the pressure field (POD analysis) is due to the shear flapping motion and mainly contributes to the low-frequency noise in the cavity. Such post-processing results are of particular interest for future analyzes related to the noise radiated inside a car.
APA, Harvard, Vancouver, ISO, and other styles
16

Petrosino, Francesco, Mattia Barbarino, and Martin Staggat. "Aeroacoustics Assessment of an Hybrid Aircraft Configuration with Rear-Mounted Boundary Layer Ingested Engine." Applied Sciences 11, no. 7 (March 25, 2021): 2936. http://dx.doi.org/10.3390/app11072936.

Full text
Abstract:
Hybrid electric propulsion is a promising solution to reduce aircraft emissions, thus improving the sustainability of the air transport. In this work, a hybrid aircraft configuration with a rear-mounted boundary layer ingestion (BLI) engine has been investigated. The partial embedding of the engine into the fuselage generates a distortion of the ingested inflow causing additional tonal and broadband BLI noise sources, and, at the same time, alters the existing one, such as the rotor–stator interaction noise (RSI). This work is focused on the tonal RSI noise modeling, with and without the distortion generated by the BLI, and the far-field propagation including the acoustic masking contribution due to the engine–fuselage integration. As the main result, this work shows the contributions of BLI and the engine–aircraft integration on the RSI noise. Both effects should be properly taken into account in the early aircraft design stage for an effective noise reduction even at ground level.
APA, Harvard, Vancouver, ISO, and other styles
17

Purohit, Ashish, Ashish K. Darpe, and SP Singh. "Influence of flow velocity and flexural rigidity on the flow induced vibration and acoustic characteristics of a flexible plate." Journal of Vibration and Control 24, no. 11 (February 8, 2017): 2284–300. http://dx.doi.org/10.1177/1077546316685227.

Full text
Abstract:
A numerical investigation on the influence of structural flexibility and flow velocity on the flow-induced acoustic and vibration response of a plate is presented. Simulations are performed on a test geometry of rigid square bluff body with a trailing flexible plate in low Reynolds number flow stream. The focus of the study is to characterize the flow-induced vibration and associated aerodynamic far field sound radiation from a flexible structure in flow. The role of flow velocity and level of structural flexibility on the acoustic radiation is thoroughly investigated. A linearized Euler equation based computational aeroacoustic hybrid method and a surface source approach for coupling the flow and acoustic domains are implemented with a bi-directional fluid structure interaction. The vortex shedding frequency of the coupled fluid-structure system synchronizes with the fundamental frequency of the trailing plate and steady-state vibration of the plate is observed. The results indicate that the relation between vibration level and the flow velocity as well as structural flexibility is not linearly related. For a particular combination of flow velocity and plate stiffness, the coupled fluid-structure system shows the resonance condition. The observed resonance frequency is slightly different from the free vibration (natural) frequency of the plate. Computation of the acoustic shows that the magnitude and spectral nature of the far field sound depends on the amplitude of the vibration and a higher acoustic pressure and the sound rich in tones is observed at resonance condition.
APA, Harvard, Vancouver, ISO, and other styles
18

Lilley, Geoffrey M. "The Source of Aerodynamic Noise." International Journal of Aeroacoustics 2, no. 3 (July 2003): 241–53. http://dx.doi.org/10.1260/147547203322986133.

Full text
Abstract:
This paper is a tribute to Alan Powell's achievements and his extensive publications in hydro and aeroacoustics.1 The theory of Aerodynamic Noise was established by Sir James Lighthill in 1952. The beauty of Lighthill's treatment was that he based this theory on the exact Navier-Stokes equations and showed, by their rearrangement, how the source of aerodynamic noise could be obtained from exact time-accurate calculations or experiment. Lighthill used the emission or propagation theory whereby an observer in a uniform medium at rest receives acoustic radiation from a distribution of moving sources of sound. Their properties are found using an acoustic analogy. The relevant fluctuations in a turbulent fluid flow can be expressed in terms of Lighthill's stress tensor Tij, which is used to define a distribution of equivalent acoustic sources, which move through an otherwise uniform stationary fluid. An alternative procedure is to concentrate on the acoustic generation and to regard the sources of sound at rest or in motion in a uniform medium moving at a constant speed. (The approach can be extended to consider any arbitrary mean fluid motion.) The advantage of the present approach, involving the convective wave equation is that flow-acoustic interaction becomes part of the solution. In Lighthill's theory, flow-acoustic interaction is either ignored or at best is included as an equivalent source. The purpose of the present paper is to show there is no unique source of aerodynamic noise for it depends on the flow quantity used to describe the radiated sound. The convective wave equation is introduced and shown to involve similar sources to those found by Lighthill for the wave equation in a medium at rest. The source function found for the convective wave equation for a turbulent flow is shown to involve a modified Lighthill's stress tensor, which is non-linear in velocity and temperature fluctuations. It is further shown when the rate of dilatation covariance is examined, which can be derived from Lighthill's solution, that this small quantity, which Lighthill so carefully treated in retaining the exact properties of the compressible flow, is itself directly responsible for the rate of change of volume in the fluid and the creation of the noise which is radiated from the turbulent flow.
APA, Harvard, Vancouver, ISO, and other styles
19

Melnikova, Valeriia G., Andrey S. Epikhin, and Matvey V. Kraposhin. "The Eulerian–Lagrangian Approach for the Numerical Investigation of an Acoustic Field Generated by a High-Speed Gas-Droplet Flow." Fluids 6, no. 8 (August 4, 2021): 274. http://dx.doi.org/10.3390/fluids6080274.

Full text
Abstract:
This paper presents the Eulerian–Lagrangian approach for numerical modeling of high-speed gas-droplet flows and aeroacoustics. The proposed hybrid approach is implemented using the OpenFOAM library and two different methods. The first method is based on a hybrid convective terms approximation method employing a Kurganov–Tadmor and PIMPLE scheme. The second method employs the regularized or quasi-gas dynamic equations. The Lagrangian part of the flow description uses the OpenFOAM cloud model. Within this model, the injected droplets are simulated as packages (parcels) of particles with constant mass and diameter within each parcel. According to this model, parcels moving in the gas flow could undergo deceleration, heating, evaporation, and breakup due to hydrodynamic instabilities. The far-field acoustic noise is predicted using Ffowcs Williams and Hawking’s analogy. The Lagrangian model is verified using the cases with droplet evaporation and motion. Numerical investigation of water microjet injection into the hot ideally expanded jet allowed studying acoustic properties and flow structures, which emerged due to the interaction of gas and liquid. Simulation results showed that water injection with a mass flow rate equal to 13% of the gas jet mass flow rate reduced the noise by approximately 2 dB. This result was in good coincidence with the experimental observations, where maximum noise reduction was about 1.6 dB.
APA, Harvard, Vancouver, ISO, and other styles
20

Clark, Christopher J., and Justin W. Jaworski. "Introduction to the Symposium: Bio-Inspiration of Quiet Flight of Owls and Other Flying Animals: Recent Advances and Unanswered Questions." Integrative and Comparative Biology 60, no. 5 (September 10, 2020): 1025–35. http://dx.doi.org/10.1093/icb/icaa128.

Full text
Abstract:
Synopsis Animal wings produce an acoustic signature in flight. Many owls are able to suppress this noise to fly quietly relative to other birds. Instead of silent flight, certain birds have conversely evolved to produce extra sound with their wings for communication. The papers in this symposium synthesize ongoing research in “animal aeroacoustics”: the study of how animal flight produces an acoustic signature, its biological context, and possible bio-inspired engineering applications. Three papers present research on flycatchers and doves, highlighting work that continues to uncover new physical mechanisms by which bird wings can make communication sounds. Quiet flight evolves in the context of a predator–prey interaction, either to help predators such as owls hear its prey better, or to prevent the prey from hearing the approaching predator. Two papers present work on hearing in owls and insect prey. Additional papers focus on the sounds produced by wings during flight, and on the fluid mechanics of force production by flapping wings. For instance, there is evidence that birds such as nightbirds, hawks, or falcons may also have quiet flight. Bat flight appears to be quieter than bird flight, for reasons that are not fully explored. Several research avenues remain open, including the role of flapping versus gliding flight or the physical acoustic mechanisms by which flight sounds are reduced. The convergent interest of the biology and engineering communities on quiet owl flight comes at a time of nascent developments in the energy and transportation sectors, where noise and its perception are formidable obstacles.
APA, Harvard, Vancouver, ISO, and other styles
21

Thai, Austin David, Elisa De Paola, Alessandro Di Marco, Luana Georgiana Stoica, Roberto Camussi, Roberto Tron, and Sheryl Marie Grace. "Experimental and Computational Aeroacoustic Investigation of Small Rotor Interactions in Hover." Applied Sciences 11, no. 21 (October 26, 2021): 10016. http://dx.doi.org/10.3390/app112110016.

Full text
Abstract:
This paper investigates the aeroacoustic interactions of small hovering rotors, using both experiments and computations. The experiments were conducted in an anechoic chamber with arrays of microphones setup to evaluate the azimuthal and polar directivity. The computational methodology consists of high fidelity detached eddy simulations coupled to the Ffowcs-Williams and Hawkings equation, supplemented by a trailing edge broadband noise code. The aerodynamics and aeroacoustics of a single rotor are investigated first. The simulations capture a Reynolds number effect seen in the performance parameters that results in the coefficient of thrust changing with the RPM. The acoustic analysis enables the identification of self-induced noise sources. Next, dual side-by-side rotors are studied in both counter-rotating and co-rotating configurations to quantify the impact of their interactions. Higher harmonics appear due to the interactions and it is verified that the counter-rotating case leads to more noise and a less uniform azimuthal directivity. Difficulties that arise when trying to validate small rotor calculations against experiments are discussed. Comparisons of computational and experimental results yield further insight into the noise mechanisms that are captured by each methodology.
APA, Harvard, Vancouver, ISO, and other styles
22

KAM, E. W. S., R. C. K. LEUNG, R. M. C. SO, and X. M. LI. "A LATTICE BOLTZMANN METHOD FOR COMPUTATION OF AEROACOUSTIC INTERACTION." International Journal of Modern Physics C 18, no. 04 (April 2007): 463–72. http://dx.doi.org/10.1142/s0129183107010693.

Full text
Abstract:
This paper reports a study of the ability of an improved LBM in replicating acoustic interaction. With a BGK model with two relaxation times approximating the collison term, the improved LBM is shown not only able to recover the equation of state, but also replicates the specific heat ratio, the fluid viscosity and thermal conductivity correctly. With these improvements, the recovery of full set of unsteady compressible Navier-Stokes equations is possible. Two complex aeroacoustic interaction problems, namely the interaction of three fundamental aeroacoustic pulses and scattering of short wave by a zero circulation vortex, are calculated. The LBM solutions are compared with DNS results. In the first case it has been shown that the improved LBM is as effective as the DNS in simulating aeroacoustic interaction of three pulses. Both methods obtain essentially same results using same truncated domains. In the scattering problem, LBM is able to replicate the directivity of scattered acoustic wave from the vortex but it does not accurately reproduce the symmetry as calculated using DNS.
APA, Harvard, Vancouver, ISO, and other styles
23

Liu, Zhen, Chen Bu, Xiangxu Kong, Dong Yang, and Bingfei Li. "Computational investigation of noise interaction for a nano counter-rotating rotor in a static condition." International Journal of Computational Materials Science and Engineering 07, no. 01n02 (June 2018): 1850004. http://dx.doi.org/10.1142/s2047684118500045.

Full text
Abstract:
The interaction between the upper and lower rotors greatly influences the aeroacoustic characteristics of a counter-rotating nano-coaxial rotor. To study this influence, a numerical investigation was carried out. The unsteady flow field of a single upper rotor was first studied with a large-eddy simulation computational fluid dynamics method coupled with a sliding-mesh technique. The Ffowcs Williams–Hawking equation method was used to investigate the aeroacoustic characteristics of the upper rotor based on the flow field. An experimental setup was established to validate the computational approach. The experimental results matched well with the computational results. Additionally, results show that the peak value of the total sound pressure level appeared near the blade tip, which verified that the tip vortex was one of the most important sources of rotor noise. Then the aeroacoustic noise of the nano-coaxial rotor was studied numerically. It was found that the total sound pressure level of the nano-coaxial rotor was greater than that of the upper rotor. Flow field analysis showed that the shedding vortices of the upper rotor interacted with the lower rotor, resulting in a blade–vortex interaction. It was evident that the aeroacoustic noise was enhanced by the interference between the upper and lower rotors.
APA, Harvard, Vancouver, ISO, and other styles
24

Xing, Jing Tang. "Fluid-Structure Interaction." Strain 39, no. 4 (November 2003): 186–87. http://dx.doi.org/10.1046/j.0039-2103.2003.00067.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bazilevs, Yuri, Kenji Takizawa, and Tayfun E. Tezduyar. "Fluid–structure interaction." Computational Mechanics 55, no. 6 (May 10, 2015): 1057–58. http://dx.doi.org/10.1007/s00466-015-1162-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ortiz, Jose L., and Alan A. Barhorst. "Modeling Fluid-Structure Interaction." Journal of Guidance, Control, and Dynamics 20, no. 6 (November 1997): 1221–28. http://dx.doi.org/10.2514/2.4180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ko, Sung H. "Structure–fluid interaction problems." Journal of the Acoustical Society of America 88, no. 1 (July 1990): 367. http://dx.doi.org/10.1121/1.399912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Takizawa, Kenji, Yuri Bazilevs, and Tayfun E. Tezduyar. "Computational fluid mechanics and fluid–structure interaction." Computational Mechanics 50, no. 6 (September 18, 2012): 665. http://dx.doi.org/10.1007/s00466-012-0793-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bazilevs, Yuri, Kenji Takizawa, and Tayfun E. Tezduyar. "Biomedical fluid mechanics and fluid–structure interaction." Computational Mechanics 54, no. 4 (July 15, 2014): 893. http://dx.doi.org/10.1007/s00466-014-1056-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Souli, M., K. Mahmadi, and N. Aquelet. "ALE and Fluid Structure Interaction." Materials Science Forum 465-466 (September 2004): 143–50. http://dx.doi.org/10.4028/www.scientific.net/msf.465-466.143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chung, H., and M. D. Bernstein. "Topics in Fluid Structure Interaction." Journal of Pressure Vessel Technology 107, no. 1 (February 1, 1985): 99. http://dx.doi.org/10.1115/1.3264418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

van Rij, J., T. Harman, and T. Ameel. "Slip flow fluid-structure-interaction." International Journal of Thermal Sciences 58 (August 2012): 9–19. http://dx.doi.org/10.1016/j.ijthermalsci.2012.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Izadpanah, Kamran, Robert L. Harder, Raj Kansakar, and Mike Reymond. "Coupled fluid-structure interaction analysis." Finite Elements in Analysis and Design 7, no. 4 (February 1991): 331–42. http://dx.doi.org/10.1016/0168-874x(91)90049-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Tijsseling, A. S., and C. S. W. Lavooij. "Waterhammer with fluid-structure interaction." Applied Scientific Research 47, no. 3 (July 1990): 273–85. http://dx.doi.org/10.1007/bf00418055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hsiao, George C., Francisco-Javier Sayas, and Richard J. Weinacht. "Time-dependent fluid-structure interaction." Mathematical Methods in the Applied Sciences 40, no. 2 (March 19, 2015): 486–500. http://dx.doi.org/10.1002/mma.3427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

GUTMARK, Ephraim Jeff, Bryan William CALLENDER, and Steve MARTENS. "Aeroacoustics of Turbulent Jets: Flow Structure, Noise Sources, and Control." JSME International Journal Series B 49, no. 4 (2006): 1078–85. http://dx.doi.org/10.1299/jsmeb.49.1078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Jensen, J. S. "FLUID TRANSPORT DUE TO NONLINEAR FLUID–STRUCTURE INTERACTION." Journal of Fluids and Structures 11, no. 3 (April 1997): 327–44. http://dx.doi.org/10.1006/jfls.1996.0080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Semenov, Yuriy A. "Fluid/Structure Interactions." Journal of Marine Science and Engineering 10, no. 2 (January 26, 2022): 159. http://dx.doi.org/10.3390/jmse10020159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Huerta, A., and W. K. Liu. "Viscous Flow Structure Interaction." Journal of Pressure Vessel Technology 110, no. 1 (February 1, 1988): 15–21. http://dx.doi.org/10.1115/1.3265561.

Full text
Abstract:
Considerable research activities in vibration and seismic analysis for various fluid-structure systems have been carried out in the past two decades. Most of the approaches are formulated within the framework of finite elements, and the majority of work deals with inviscid fluids. However, there has been little work done in the area of fluid-structure interaction problems accounting for flow separation and nonlinear phenomenon of steady streaming. In this paper, the Arbitrary Lagrangian Eulerian (ALE) finite element method is extended to address the flow separation and nonlinear phenomenon of steady streaming for arbitrarily shaped bodies undergoing large periodic motion in a viscous fluid. The results are designed to evaluate the fluid force acting on the body; thus, the coupled rigid body-viscous flow problem can be simplified to a standard structural problem using the concept of added mass and added damping. Formulas for these two constants are given for the particular case of a cylinder immersed in an infinite viscous fluid. The finite element modeling is based on a pressure-velocity mixed formulation and a streamline upwind Petrov/Galerkin technique. All computations are performed using a personal computer.
APA, Harvard, Vancouver, ISO, and other styles
40

Lefrançois, Emmanuel. "Fluid-structure interaction in rocket engines." European Journal of Computational Mechanics 19, no. 5-7 (January 2010): 637–52. http://dx.doi.org/10.3166/ejcm.19.637-652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chen, Wenli, Zifeng Yang, Gang Hu, Haiquan Jing, and Junlei Wang. "New Advances in Fluid–Structure Interaction." Applied Sciences 12, no. 11 (May 26, 2022): 5366. http://dx.doi.org/10.3390/app12115366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Meywerk, M., F. Decker, and J. Cordes. "Fluid-structure interaction in crash simulation." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 214, no. 7 (July 2000): 669–73. http://dx.doi.org/10.1243/0954407001527547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lohner, R., J. Cebral, Chi Yang, J. D. Baum, E. Mestreau, C. Charman, and D. Pelessone. "Large-scale fluid-structure interaction simulations." Computing in Science & Engineering 6, no. 3 (May 2004): 27–37. http://dx.doi.org/10.1109/mcise.2004.1289306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Oden, J. T., L. Demkowicz, and J. Bennighof. "Fluid-Structure Interaction in Underwater Acoustics." Applied Mechanics Reviews 43, no. 5S (May 1, 1990): S374—S380. http://dx.doi.org/10.1115/1.3120843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Benaroya, Haym, and Rene D. Gabbai. "Modelling vortex-induced fluid–structure interaction." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1868 (November 5, 2007): 1231–74. http://dx.doi.org/10.1098/rsta.2007.2130.

Full text
Abstract:
The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid–structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid–structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion. Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid–structure interaction models entails formulating generalized equations of motion, as a superset of the flow-oscillator models; and developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion. The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier–Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.
APA, Harvard, Vancouver, ISO, and other styles
46

Souli, Mhamed, and Nicolas Aquelet. "Fluid Structure Interaction for Hydraulic Problems." La Houille Blanche, no. 6 (December 2011): 5–10. http://dx.doi.org/10.1051/lhb/2011054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Benyahia, Nabil, and Ferhat Souidi. "Fluid-structure interaction in pipe flow." Progress in Computational Fluid Dynamics, An International Journal 7, no. 6 (2007): 354. http://dx.doi.org/10.1504/pcfd.2007.014685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chakraborty, Debadi, J. Ravi Prakash, James Friend, and Leslie Yeo. "Fluid-structure interaction in deformable microchannels." Physics of Fluids 24, no. 10 (October 2012): 102002. http://dx.doi.org/10.1063/1.4759493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

TAKIZAWA, KENJI, and TAYFUN E. TEZDUYAR. "SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS." Mathematical Models and Methods in Applied Sciences 22, supp02 (July 25, 2012): 1230001. http://dx.doi.org/10.1142/s0218202512300013.

Full text
Abstract:
Since its introduction in 1991 for computation of flow problems with moving boundaries and interfaces, the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation has been applied to a diverse set of challenging problems. The classes of problems computed include free-surface and two-fluid flows, fluid–object, fluid–particle and fluid–structure interaction (FSI), and flows with mechanical components in fast, linear or rotational relative motion. The DSD/SST formulation, as a core technology, is being used for some of the most challenging FSI problems, including parachute modeling and arterial FSI. Versions of the DSD/SST formulation introduced in recent years serve as lower-cost alternatives. More recent variational multiscale (VMS) version, which is called DSD/SST-VMST (and also ST-VMS), has brought better computational accuracy and serves as a reliable turbulence model. Special space–time FSI techniques introduced for specific classes of problems, such as parachute modeling and arterial FSI, have increased the scope and accuracy of the FSI modeling in those classes of computations. This paper provides an overview of the core space–time FSI technique, its recent versions, and the special space–time FSI techniques. The paper includes test computations with the DSD/SST-VMST technique.
APA, Harvard, Vancouver, ISO, and other styles
50

Gorla, Rama Subba Reddy, Shantaram S. Pai, and Jeffrey J. Rusick. "Probabilistic study of fluid structure interaction." International Journal of Engineering Science 41, no. 3-5 (March 2003): 271–82. http://dx.doi.org/10.1016/s0020-7225(02)00205-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography