Journal articles on the topic 'Fluid-structural'

To see the other types of publications on this topic, follow the link: Fluid-structural.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fluid-structural.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bendiksen, O. O., and G. Seber. "Fluid–structure interactions with both structural and fluid nonlinearities." Journal of Sound and Vibration 315, no. 3 (August 2008): 664–84. http://dx.doi.org/10.1016/j.jsv.2008.03.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miller, Brent A., and Jack J. McNamara. "Efficient Fluid-Thermal-Structural Time Marching with Computational Fluid Dynamics." AIAA Journal 56, no. 9 (September 2018): 3610–21. http://dx.doi.org/10.2514/1.j056572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kyzyma, O. A., A. V. Tomchuk, M. V. Avdeev, T. V. Tropin, V. L. Aksenov, and M. V. Korobov. "Structural Researches of Carbonic Fluid Nanosystems." Ukrainian Journal of Physics 60, no. 9 (September 2015): 835–43. http://dx.doi.org/10.15407/ujpe60.09.0835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Changhao, and L. E. Payne. "Structural stability for a Brinkman fluid." Mathematical Methods in the Applied Sciences 30, no. 5 (2007): 567–78. http://dx.doi.org/10.1002/mma.799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matsuda, K., S. Naruse, K. Hayashi, K. Tamura, M. Inui, and Y. Kajihara. "Structural study of expanded fluid cesium." Journal of Physics: Conference Series 98, no. 1 (February 1, 2008): 012003. http://dx.doi.org/10.1088/1742-6596/98/1/012003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bowling, J. D., and Y. W. Kwon. "Coupled structural response via fluid medium." Multiscale and Multidisciplinary Modeling, Experiments and Design 1, no. 3 (July 6, 2018): 221–36. http://dx.doi.org/10.1007/s41939-018-0023-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tamura, Kozaburo, and Shinya Hosokawa. "Structural studies of expanded fluid mercury." Journal of Non-Crystalline Solids 156-158 (May 1993): 646–49. http://dx.doi.org/10.1016/0022-3093(93)90038-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Giorgetti, Giovanna, Maria Luce Frezzotti, and Claudio Ghezzo. "Structural and microthermometric studies of fluid inclusions in the Gallura intrusive complex (N Sardinia)." European Journal of Mineralogy 4, no. 5 (October 14, 1992): 1175–86. http://dx.doi.org/10.1127/ejm/4/5/1175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bilston, L. E., S. Cheng, D. F. Fletcher, and M. A. Stoodley. "Fluid-structure interactions in structural neurological diseases." Journal of Biomechanics 39 (January 2006): S366. http://dx.doi.org/10.1016/s0021-9290(06)84471-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Le Tallec, P., and J. Mouro. "Fluid structure interaction with large structural displacements." Computer Methods in Applied Mechanics and Engineering 190, no. 24-25 (March 2001): 3039–67. http://dx.doi.org/10.1016/s0045-7825(00)00381-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Meng, Wei Jia, Zhan Wen Huang, Yan Ju Liu, Xiao Rong Wu, and Yi Sun. "Structural Optimization Design of MR Fluid Clutch." Materials Science Forum 546-549 (May 2007): 1673–76. http://dx.doi.org/10.4028/www.scientific.net/msf.546-549.1673.

Full text
Abstract:
Magnetorheological (MR) fluids are suspensions of micron sized ferromagnetic particles dispersed in varying proportions of a variety of non-ferromagnetic fluids. MR fluids exhibit rapid, reversible and significant changes in their rheological (mechanical) properties while subjected to an external magnetic field. In this paper, a double-plate magneto-rheological fluid (MRF) clutch with controllable torque output have been designed. Electromagnetic finite element analysis is used to optimize the design of the clutch by using the commercial FEA software ANSYS.
APA, Harvard, Vancouver, ISO, and other styles
12

Carter, Benjamin M. G. D., Francesco Turci, Pierre Ronceray, and C. Patrick Royall. "Structural covariance in the hard sphere fluid." Journal of Chemical Physics 148, no. 20 (May 28, 2018): 204511. http://dx.doi.org/10.1063/1.5024462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Matsuda, K., M. Inui, Y. Kajihara, and K. Tamura. "Structural studies of expanded fluid alkali metals." Acta Crystallographica Section A Foundations of Crystallography 64, a1 (August 23, 2008): C64. http://dx.doi.org/10.1107/s010876730809795x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kassemi, M., D. Deserranno, and J. G. Oas. "Fluid–structural interactions in the inner ear." Computers & Structures 83, no. 2-3 (January 2005): 181–89. http://dx.doi.org/10.1016/j.compstruc.2004.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Liu, Mei, Wanquan Jian, Sheng Wang, Shouhu Xuan, Linfeng Bai, Min Sang, and Xinglong Gong. "Shear thickening fluid with tunable structural colors." Smart Materials and Structures 27, no. 9 (August 6, 2018): 095012. http://dx.doi.org/10.1088/1361-665x/aad587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Meng, Andrew, Ke-Bin Low, Junmei Wei, Nicholas Favate, Thomas Gegan, Ivan Petrovic, and Eric Stach. "Structural Evolution in Zeolite Fluid Cracking Catalyst." Microscopy and Microanalysis 27, S1 (July 30, 2021): 1806–7. http://dx.doi.org/10.1017/s1431927621006607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Alizadeh, Ali-Asghar, Hamid Reza Mirdamadi, and Ahmadreza Pishevar. "Reliability analysis of pipe conveying fluid with stochastic structural and fluid parameters." Engineering Structures 122 (September 2016): 24–32. http://dx.doi.org/10.1016/j.engstruct.2016.04.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chen, P. C., and I. Jadic. "Interfacing of Fluid and Structural Models via Innovative Structural Boundary Element Method." AIAA Journal 36, no. 2 (February 1998): 282–87. http://dx.doi.org/10.2514/2.7513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Cho, Haeseong, JunYoung Kwak, SangJoon Shin, Namhun Lee, and Seungsoo Lee. "Flapping-Wing Fluid–Structural Interaction Analysis Using Corotational Triangular Planar Structural Element." AIAA Journal 54, no. 8 (August 2016): 2265–76. http://dx.doi.org/10.2514/1.j054567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yeo, Hyeonsoo, and Mark Potsdam. "Rotor Structural Loads Analysis Using Coupled Computational Fluid Dynamics/Computational Structural Dynamics." Journal of Aircraft 53, no. 1 (January 2016): 87–105. http://dx.doi.org/10.2514/1.c033194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chen, P. C., and I. Jadic. "Interfacing of fluid and structural models via innovative structural boundary element method." AIAA Journal 36 (January 1998): 282–87. http://dx.doi.org/10.2514/3.13810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wang, Simin, Guanping Jian, Juan Xiao, Jian Wen, Zaoxiao Zhang, and Jiyuan Tu. "Fluid-thermal-structural analysis and structural optimization of spiral-wound heat exchanger." International Communications in Heat and Mass Transfer 95 (July 2018): 42–52. http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.03.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lee, Jong-Sun. "Structural Analysis of Synthetic Heat Transfer Fluid Boiler." Journal of the Korea Academia-Industrial cooperation Society 13, no. 8 (August 31, 2012): 3352–57. http://dx.doi.org/10.5762/kais.2012.13.8.3352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lespinasse, M. "Are fluid inclusion planes useful in structural geology?" Journal of Structural Geology 21, no. 8-9 (August 1999): 1237–43. http://dx.doi.org/10.1016/s0191-8141(99)00027-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hughes, T. J. R., and A. Tucker. "Symposium on Structural Acoustics and Fluid-Structure Interaction." Applied Mechanics Reviews 43, no. 5S (May 1, 1990): S353. http://dx.doi.org/10.1115/1.3120839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Terunuma, Akimitsu, Kyoji Takahara, and Toshiyuki Sato. "105 Experimental Application of Fluid-Structural Coupling System." Proceedings of Ibaraki District Conference 2005 (2005): 9–10. http://dx.doi.org/10.1299/jsmeibaraki.2005.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bandyopadhyay, Alak, Alok Majumdar, and Paul Schallhorn. "Numerical Modeling of Fluid Transients with Structural Compliance." Journal of Aerospace Engineering 34, no. 2 (March 2021): 06021001. http://dx.doi.org/10.1061/(asce)as.1943-5525.0001243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

de la Calleja-Mora, E. M., Leandro B. Krott, and M. C. Barbosa. "Order–disorder structural transition in a confined fluid." Physica A: Statistical Mechanics and its Applications 449 (May 2016): 18–26. http://dx.doi.org/10.1016/j.physa.2015.10.110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

MATSUDA, Kazuhiro, and Kozaburo TAMURA. "Structural Study of Low-Density Fluid Alkali Metals." Review of High Pressure Science and Technology 18, no. 4 (2008): 313–20. http://dx.doi.org/10.4131/jshpreview.18.313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Tamura, K., K. Matsuda, and M. Inui. "Structural and electronic properties of expanding fluid metals." Journal of Physics: Condensed Matter 20, no. 11 (February 20, 2008): 114102. http://dx.doi.org/10.1088/0953-8984/20/11/114102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Tao, R., and Qi Jiang. "Structural transitions of an electrorheological and magnetorheological fluid." Physical Review E 57, no. 5 (May 1, 1998): 5761–65. http://dx.doi.org/10.1103/physreve.57.5761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lefrançois, E., G. Dhatt, and D. Vandromme. "Fluid-structural interaction with application to rocket engines." International Journal for Numerical Methods in Fluids 30, no. 7 (August 15, 1999): 865–95. http://dx.doi.org/10.1002/(sici)1097-0363(19990815)30:7<865::aid-fld870>3.0.co;2-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sibson, Richard H. "Structural permeability of fluid-driven fault-fracture meshes." Journal of Structural Geology 18, no. 8 (August 1996): 1031–42. http://dx.doi.org/10.1016/0191-8141(96)00032-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Upadhyay, R. V., V. K. Aswal, and Rucha Desai. "Micro-structural characterisation of water-based magnetic fluid." International Journal of Nanoparticles 5, no. 3 (2012): 243. http://dx.doi.org/10.1504/ijnp.2012.048015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bouas-Laurent, Henri, Jean-Pierre Desvergne, Alain Castellan, and René Lapouyade. "Photodimerization of anthracenes in fluid solution: structural aspects." Chemical Society Reviews 29, no. 1 (2000): 43–55. http://dx.doi.org/10.1039/a801821i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Tamura, Kozaburo. "Structural Studies on Expanded Fluid Mercury and Selenium." Zeitschrift für Physikalische Chemie 184, Part_1_2 (January 1994): 85–106. http://dx.doi.org/10.1524/zpch.1994.184.part_1_2.085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hahn, Steven R., and Aldo A. Ferri. "Structural sensitivity analysis in structure‐fluid interaction problems." Journal of the Acoustical Society of America 102, no. 5 (November 1997): 3090. http://dx.doi.org/10.1121/1.420456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Polunin, V. M., P. A. Ryapolov, A. M. Storozhenko, and I. A. Shabanova. "Structural-acoustic analysis of a nanodispersed magnetic fluid." Russian Physics Journal 54, no. 1 (May 31, 2011): 9–15. http://dx.doi.org/10.1007/s11182-011-9572-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

De Vequi-Suplicy, Cíntia C., Carlos R. Benatti, and M. Teresa Lamy. "Laurdan in Fluid Bilayers: Position and Structural Sensitivity." Journal of Fluorescence 16, no. 3 (May 2006): 431–39. http://dx.doi.org/10.1007/s10895-005-0059-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wieting, Allan R., Pramote Dechaumphai, Kim S. Bey, Earl A. Thornton, and Ken Morgan. "Application of integrated fluid-thermal-structural analysis methods." Thin-Walled Structures 11, no. 1-2 (January 1991): 1–23. http://dx.doi.org/10.1016/0263-8231(91)90008-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Sedunov, Boris I. "Structural Transition in Supercritical Fluids." Journal of Thermodynamics 2011 (October 10, 2011): 1–5. http://dx.doi.org/10.1155/2011/194353.

Full text
Abstract:
The extension of the saturation curve on the PT diagram in the supercritical region for a number of monocomponent supercritical fluids by peak values for different thermophysical properties, such as heat capacities and and compressibility has been studied. These peaks signal about some sort of fluid structural transition in the supercritical region. Different methods give similar but progressively diverging curves for this transition. The zone of temperatures and pressures near these curves can be named as the zone of the fluid structural transition. The outstanding properties of supercritical fluids in this zone help to understand the physical sense of the fluid structural transition.
APA, Harvard, Vancouver, ISO, and other styles
42

Caresta, Mauro, and Nicole J. Kessissoglou. "Structural and acoustic responses of a fluid-loaded cylindrical hull with structural discontinuities." Applied Acoustics 70, no. 7 (July 2009): 954–63. http://dx.doi.org/10.1016/j.apacoust.2008.11.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Eichhubl, P., H. G. Greene, T. Naehr, and N. Maher. "Structural control of fluid flow: offshore fluid seepage in the Santa Barbara Basin, California." Journal of Geochemical Exploration 69-70 (June 2000): 545–49. http://dx.doi.org/10.1016/s0375-6742(00)00107-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kalumuck, K. "Bubble dynamics fluid-structure interaction simulation by coupling fluid BEM and structural FEM codes." International Journal of Multiphase Flow 22 (December 1996): 131. http://dx.doi.org/10.1016/s0301-9322(97)88440-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Guzowski, Jan, and Bopil Gim. "Particle clusters at fluid–fluid interfaces: equilibrium profiles, structural mechanics and stability against detachment." Soft Matter 15, no. 24 (2019): 4921–38. http://dx.doi.org/10.1039/c9sm00425d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kalumuck, K. M., R. Duraiswami, and G. L. Chahine. "Bubble Dynamics Fluid-Structure Interaction Simulation by Coupling Fluid Bem and Structural Fem Codes." Journal of Fluids and Structures 9, no. 8 (November 1995): 861–83. http://dx.doi.org/10.1006/jfls.1995.1049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kessissoglou, Nicole J., and Jie Pan. "Active Control of the Structural and Acoustic Responses of a Fluid-Loaded Plate; Part I: Analysis of the Physical System." Journal of Low Frequency Noise, Vibration and Active Control 17, no. 1 (March 1998): 11–25. http://dx.doi.org/10.1177/026309239801700102.

Full text
Abstract:
The nature of the fluid–loading on a line–driven elastic plate significantly affects the structural and acoustic responses. As the fluid–loading increases, the fluid–structure interaction affects the wave propagation in the structure, as well as both the level and directivity of the sound radiation from the structure into the fluid field. The structural and acoustic responses of a line–force driven infinite plate under various fluid–loading conditions are considered. A detailed understanding of the fluid–structure interaction, including the effects of both heavy and light fluid–loading on the radiated sound pressure, sound power and structural response are clearly illustrated by numerical examples using the exact solution of the system equations. The results from this analysis of the physical system also provide useful information for the design of an active control system to effectively reduce the structural and acoustic responses of the fluid–loaded plate.
APA, Harvard, Vancouver, ISO, and other styles
48

Rathnasingham, Ruben, and Kenneth S. Breuer. "Coupled Fluid-Structural Characteristics of Actuators for Flow Control." AIAA Journal 35, no. 5 (May 1997): 832–37. http://dx.doi.org/10.2514/2.7454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Inui, Masanori, and Kozaburo Tamura. "Structural studies of supercritical fluid metals using synchrotron radiation." Journal of Non-Crystalline Solids 312-314 (October 2002): 247–55. http://dx.doi.org/10.1016/s0022-3093(02)01674-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Tamura, K., M. Inui, I. Nakaso, Y. Oh'ishi, K. Funakoshi, and W. Utsumi. "Structural studies of expanded fluid mercury using synchrotron radiation." Journal of Non-Crystalline Solids 250-252 (August 1999): 148–53. http://dx.doi.org/10.1016/s0022-3093(99)00224-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography