Academic literature on the topic 'Fluid dynamical problems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fluid dynamical problems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fluid dynamical problems"
Nobumasa, Sugimoto. "IL12 THERMOACOUSTIC INSTABILITY AND ITS RELATED FLUID DYNAMICAL PROBLEMS." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _IL12–1_—_IL12–12_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._il12-1_.
Full textLim, H. A. "Lattice-gas automaton simulations of simple fluid dynamical problems." Mathematical and Computer Modelling 14 (1990): 720–27. http://dx.doi.org/10.1016/0895-7177(90)90276-s.
Full textZeytounian, R. Kh. "Well-posedness of problems in fluid dynamics (a fluid-dynamical point of view)." Russian Mathematical Surveys 54, no. 3 (June 30, 1999): 479–564. http://dx.doi.org/10.1070/rm1999v054n03abeh000152.
Full textKoumboulis, F. N., M. G. Skarpetis, and B. G. Mertzios. "Numerical integration of fluid dynamics problems by discrete dynamical systems." Chaos, Solitons & Fractals 11, no. 1-3 (January 2000): 193–206. http://dx.doi.org/10.1016/s0960-0779(98)00284-7.
Full textZarnescu, Arghir. "Mathematical problems of nematic liquid crystals: between dynamical and stationary problems." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2201 (May 24, 2021): 20200432. http://dx.doi.org/10.1098/rsta.2020.0432.
Full textRahman, Aminur, and Denis Blackmore. "Walking droplets through the lens of dynamical systems." Modern Physics Letters B 34, no. 34 (November 9, 2020): 2030009. http://dx.doi.org/10.1142/s0217984920300094.
Full textGeiser, Jürgen. "Modelling and analysis of multiscale systems related to fluid dynamical problems." Mathematical and Computer Modelling of Dynamical Systems 24, no. 4 (July 4, 2018): 315–18. http://dx.doi.org/10.1080/13873954.2018.1488743.
Full textWang, Hao Cheng, and Jian Liu. "On Dynamical Simulations in Abrasive Flow Finishing." Advanced Materials Research 320 (August 2011): 75–80. http://dx.doi.org/10.4028/www.scientific.net/amr.320.75.
Full textMoon, F. C. "Nonlinear Dynamical Systems." Applied Mechanics Reviews 38, no. 10 (October 1, 1985): 1284–86. http://dx.doi.org/10.1115/1.3143693.
Full textSalmon, John K., and Michael S. Warren. "Fast Parallel Tree Codes for Gravitational and Fluid Dynamical N-Body Problems." International Journal of Supercomputer Applications and High Performance Computing 8, no. 2 (June 1994): 129–42. http://dx.doi.org/10.1177/109434209400800205.
Full textDissertations / Theses on the topic "Fluid dynamical problems"
Zhen, Cui. "A study of three fluid dynamical problems." Thesis, University of Exeter, 2014. http://hdl.handle.net/10871/15119.
Full textShaw, G. J. "Multigrid methods in fluid dynamics." Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371582.
Full textZhao, Kun. "Initial-boundary value problems in fluid dynamics modeling." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31778.
Full textCommittee Chair: Pan, Ronghua; Committee Member: Chow, Shui-Nee; Committee Member: Dieci, Luca; Committee Member: Gangbo, Wilfrid; Committee Member: Yeung, Pui-Kuen. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Parolini, Nicola. "Computational fluid dynamics for naval engineering problems /." [S.l.] : [s.n.], 2004. http://library.epfl.ch/theses/?nr=3138.
Full textPark, Jungho. "Bifurcation and stability problems in fluid dynamics." [Bloomington, Ind.] : Indiana University, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3274924.
Full textSource: Dissertation Abstracts International, Volume: 68-07, Section: B, page: 4529. Adviser: Shouhong Wang. Title from dissertation home page (viewed Apr. 22, 2008).
Wright, Nigel George. "Multigrid solutions of elliptic fluid flow problems." Thesis, University of Leeds, 1988. http://etheses.whiterose.ac.uk/446/.
Full textNoever, David Anthony. "Problems in gas dynamics and biological fluids." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317799.
Full textAl-Wali, Azzam Ahmad. "Explicit alternating direction methods for problems in fluid dynamics." Thesis, Loughborough University, 1994. https://dspace.lboro.ac.uk/2134/6840.
Full textMora, Acosta Josue. "Numerical algorithms for three dimensional computational fluid dynamic problems." Doctoral thesis, Universitat Politècnica de Catalunya, 2001. http://hdl.handle.net/10803/6685.
Full textTheir efficient solution is one of the central aspects of this work. Low-cost parallel computers, for instance, PC clusters, are used to do so. The main bottle-neck of these computers is the notwork, that is too slow compared with their floating-point performance.
Before considering linear solution algorithms, an overview of the mathematical models used and discretization techniques in staggered cartesian and cylindrical meshes is provided.
The governing Navier-Stokes equations are solved using an implicit finite control volume method. Pressure-velocity coupling is solved with segregated approaches such as SIMPLEC.
Different algorithms for the solution of the linear equation systems are reviewed: from incomplete factorizations such as MSIP, Krylov solvers such as BICGSTAB and GMRESR to acceleration techniques such as the Algebraic Multi Grid and the Multi Resolution Analysis with wavelts. Special attention is paid to preconditioned Krylov solvers for their application to parallel CFD problems.
The fundamentals of parallel computing in distributed memory computers as well as implemetation details of these algorithms in combination with the domain decomposition method are given. Two different distributed memory computers, a Cray T3E and a PC cluster are used for several performance measures, including network throughput, performance of algebraic subroutines that affect to the overall efficiency of algorithms, and the solver performance. These measures are addressed to show the capabilities and drawbacks of parallel solvers for several processors and their partitioning configurations for a problem model.
Finally, in order to illustrate the potential of the different techniques presented, a three-dimensional CFD problem is solved using a PC cluster. The numerical results obtained are validated by comparison with other authors. The speedup up to 12 processors is measured. An analysis of the computing time shows that, as expected, most of the computational effort is due to the pressure-correction equation,here solved with BiCGSTAB. The computing time algorithm , for different problem sizes, is compared with Schur-Complement and Multigrid.
El trabajo de tesis se centra en la solución numérica de las ecuaciones de navier-Stokes en regimen transitorio, tridimensional y laminar. Los algoritmos utilizados son del tipo segregado (SIMPLEC)y se basan en el uso de técnicas de volumenes finitos, con mallas estructurales del tipo staggered y discretizaciones temporales implícitas. En este contexto, el pricipal, problema son los elevados tiempos de cálculo de las simulaciones, que en buena parte se deben a la solución de los sistemas de ecuaciones lineales. Se hace una revisión de diferentes métodos utilizados típicamente en ordenadores secuenciales: GMRES, BICGSTAB, ACM, MSPIP.
A fin de reducir los tiempos de cálculo se emplean ordenadores paralelos de memoria distribuida, basados en la agrupacion de ordenadores personales convencionales (PC clusters). Por lo que respecta a la potencia de cálculo por procesador, estos sistemas son comparables a los ordenadores paralelos de memoria distribuida convencionales (como el Cray T3E) siendo, su principal problema la baja capacidad de comunicación (elevada latencia, bajo ancho de banda). Este punto condiciona toda la estrategia computacional, obligando a reducir al máximo el número y el tamaño de los mensajes intercambiados. Este aspecto se cuantifica detalladamente en la tesis, realizando medidas de tiempos de cálculo en ambos ordenadores para diversas operaciones críticas para los algoritmos lineales. Tambien se miden y comparan los tiempos de cálculo y speed ups obtenidos en la solución de los sistemas lineales con diferentes algoritmos paralelos (Jacobi, MSIP, GMRES, BICGSTAB) y para diferentes tamaños de malla.
Finalmente, se utilizan las técnicas anteriores para resolver el caso denominado driven cavity, en situacionies tridimensionales y con numeros de Reynolds de hasta 8000. Los resultados obtenidos se utilizan para validar los códigos desarrollados, en base a resultados de otros códigos y también se basa en la comparación con resultados experimentales procedentes de la bibliografía. Se utilizan hasta 12 procesadores, obteniendose spped ups de hasta 9.7 en el cluster de PCs. Se analizan los tiempos de cálculo de cada fase del código, señalandose areas para futuras mejoras. Se comparan los tiempos de cálculo con los algoritmos implementados en otros trabajos. La conclusión final es que los clusters de PCs son una plataforma de gran potencia en los cálculos de dinámica de fluidos computacional.
Fabritius, Björn. "Application of genetic algorithms to problems in computational fluid dynamics." Thesis, University of Exeter, 2014. http://hdl.handle.net/10871/15236.
Full textBooks on the topic "Fluid dynamical problems"
Sharpe, G. J. Solving problems in fluid dynamics. Harlow, Essex, England: Longman Scientific & Technical, 1994.
Find full textD, Whyman, ed. Problems in fluid flow. London: E. Arnold, 1986.
Find full textRound, G. F. Applications of fluid dynamics. London: E. Arnold, 1986.
Find full textFluid mechanics: Problems and solutions. Berlin: Springer, 1997.
Find full textFluid mechanics. Berlin: Springer, 1997.
Find full textF, Hughes William. Schaum'soutline of theory and problems of fluid dynamics. 2nd ed. New York: McGraw-Hill, 1991.
Find full textKhoo, Boo Cheong, Zhilin Li, and Ping Lin, eds. Moving Interface Problems and Applications in Fluid Dynamics. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/conm/466.
Full textF, Hughes William. Schaum's outline of theory and problems of fluid dynamics. 2nd ed. New York: McGraw-Hill, 1991.
Find full textChossat, Pascal. The Couette-Taylor problem. New York: Springer-Verlag, 1994.
Find full textDorfman, A. Sh. Conjugate problems in convective heat transfer. Boca Raton, FL: CRC Press, 2009.
Find full textBook chapters on the topic "Fluid dynamical problems"
Sørensen, Jens N., Martin O. L. Hansen, and Erik Jensen. "Simulation of fluid dynamical flow problems." In Parallel Scientific Computing, 458–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0030173.
Full textWiggins, Stephen. "Convective Mixing and Transport Problems in Fluid Mechanics." In Chaotic Transport in Dynamical Systems, 81–120. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-3896-4_3.
Full textLindenberg, Katja, Bruce J. West, and J. Kottalam. "Fluctuations and Dissipation in Problems of Geophysical Fluid Dynamics." In Irreversible Phenomena and Dynamical Systems Analysis in Geosciences, 145–56. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4778-8_8.
Full textAkulenko, L. D., and S. V. Nesterov. "Oscillations of a Rigid Body with a Cavity Containing a Heterogeneous Fluid." In Dynamical Problems of Rigid-Elastic Systems and Structures, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84458-4_1.
Full textChernousko, F. L. "Asymptotic Analysis for Dynamics of Rigid Body Containing Elastic Elements and Viscous Fluid." In Dynamical Problems of Rigid-Elastic Systems and Structures, 55–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84458-4_7.
Full textKamal, Ahmad A. "Fluid Dynamics." In 1000 Solved Problems in Classical Physics, 391–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11943-9_9.
Full textFriedman, Avner. "Interdisciplinary computational fluid dynamics." In Mathematics in Industrial Problems, 10–17. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1858-6_2.
Full textvan Weert, Ch G. "Some problems in relativistic hydrodynamics." In Relativistic Fluid Dynamics, 290–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0084036.
Full textQuan, Pham Mau. "Problems Mathematiques En Hydrodynamique Relativiste." In Relativistic Fluid Dynamics, 1–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11099-3_1.
Full textCanuto, Claudio, M. Yousuff Hussaini, Alfio Quarteroni, and Thomas A. Zang. "Steady, Smooth Problems." In Spectral Methods in Fluid Dynamics, 375–414. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-84108-8_11.
Full textConference papers on the topic "Fluid dynamical problems"
Spakovszky, Zoltán S. "Instabilities Everywhere! Hard Problems in Aero-Engines." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-60864.
Full textArtini, Gianluca, and Daniel Broc. "Fluid Structure Interaction Homogenization for Tube Bundles: Significant Dissipative Effects." In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84344.
Full textReddy, Sandeep B., Allan Ross Magee, Rajeev K. Jaiman, J. Liu, W. Xu, A. Choudhary, and A. A. Hussain. "Reduced Order Model for Unsteady Fluid Flows via Recurrent Neural Networks." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96543.
Full textPolly, James B., and J. M. McDonough. "Application of the Poor Man’s Navier–Stokes Equations to Real-Time Control of Fluid Flow." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63564.
Full textKheiri, M., M. P. Pai¨doussis, and M. Amabili. "On the Feasibility of Using Linear Fluid Dynamics in an Overall Nonlinear Model for the Dynamics of Cantilevered Cylinders in Axial Flow." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30082.
Full textKowshik, Suhas A., Sumukha Shridhar, and N. C. W. Treleaven. "Towards Reduced Order Models of Small-Scale Acoustically Significant Components in Gas Turbine Combustion Chambers." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59601.
Full textVanharen, Julien, Rémi Feuillet, and Frederic Alauzet. "Mesh adaptation for fluid-structure interaction problems." In 2018 Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-3244.
Full textPark, Chul, and Michael Tauber. "Heatshielding problems of planetary entry - A review." In 30th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3415.
Full textDarrall, Bradley T., and Gary F. Dargush. "Mixed Convolved Action Principles for Dynamics of Linear Poroelastic Continua." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52728.
Full textNishikawa, Hiroaki, and Yi Liu. "Third-Order Edge-Based Scheme for Unsteady Problems." In 2018 Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-4166.
Full textReports on the topic "Fluid dynamical problems"
Chou, So-Hsiang. Computational Methods for Problems in Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, February 1989. http://dx.doi.org/10.21236/ada221946.
Full textAblowitz, Mark J., Gregory Beylkin, and Duane P. Sather. Nonlinear Problems in Fluid Dynamics and Inverse Scattering. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada266234.
Full textBeylkin, Gregory. Nonlinear Problems in Fluid Dynamics and Inverse Scattering. Propagation and Capturing of Singularities in Problems of Fluid Dynamics and Inverse Scattering. Fort Belvoir, VA: Defense Technical Information Center, July 1994. http://dx.doi.org/10.21236/ada282873.
Full textBeylkin, Gregory. Nonlinear Problems in Fluid Dynamics and Inverse Scattering: Propagation and capturing of singularities in problems of fluid dynamics and inverse scattering. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada289146.
Full textBeylkin, Gregory. Nonlinear Problems in Fluid Dynamics and Inverse Scattering: Propagation and Capturing of Singularities in Problems of Fluid Dynamics and Inverse Scattering. Fort Belvoir, VA: Defense Technical Information Center, May 1996. http://dx.doi.org/10.21236/ada327352.
Full textAbarbanel, H., K. Case, A. Despain, F. Dyson, and M. Freeman. Cellular Automata and Parallel Processing for Practical Fluid-Dynamics Problems. Fort Belvoir, VA: Defense Technical Information Center, September 1990. http://dx.doi.org/10.21236/ada229234.
Full textSaunders, Bonita V. The application of numerical grid generation to problems in computational fluid dynamics. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.6073.
Full textRichard W. Johnson and Richard R. Schultz. Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem. Office of Scientific and Technical Information (OSTI), July 2009. http://dx.doi.org/10.2172/963762.
Full textXia, Yidong, David Andrs, and Richard Charles Martineau. BIGHORN Computational Fluid Dynamics Theory, Methodology, and Code Verification & Validation Benchmark Problems. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1364471.
Full textAblowitz, Mark J. Nonlinear Problems in Fluid Dynamics and Inverse Scattering: Nonlinear Waves and Inverse Scattering. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada289148.
Full text