Academic literature on the topic 'Flowering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flowering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Flowering"
Kuitert, Arie Peterse, Wybe, and Arie Peterse. "Jananese flowering cherries." Journal of Forest Science 48, No. 7 (May 20, 2019): 328. http://dx.doi.org/10.17221/11892-jfs.
Full textBoden, Scott A., David Weiss, John J. Ross, Noel W. Davies, Ben Trevaskis, Peter M. Chandler, and Steve M. Swain. "EARLY FLOWERING3 Regulates Flowering in Spring Barley by Mediating Gibberellin Production and FLOWERING LOCUS T Expression." Plant Cell 26, no. 4 (April 2014): 1557–69. http://dx.doi.org/10.1105/tpc.114.123794.
Full textFukazawa, Jutarou, Yuki Ohashi, Ryuhei Takahashi, Kanako Nakai, and Yohsuke Takahashi. "DELLA degradation by gibberellin promotes flowering via GAF1-TPR-dependent repression of floral repressors in Arabidopsis." Plant Cell 33, no. 7 (April 3, 2021): 2258–72. http://dx.doi.org/10.1093/plcell/koab102.
Full textGiovannini, Annalisa. "Flowering." Journal of Crop Improvement 17, no. 1-2 (October 4, 2006): 227–44. http://dx.doi.org/10.1300/j411v17n01_08.
Full textNg-A-Fook, Nicholas. "Flowering Horizons." Cultural and Pedagogical Inquiry 12, no. 2 (April 24, 2021): 119. http://dx.doi.org/10.18733/cpi29591.
Full textMcFadden, Hugh, Fergus Allen, Micheal O'Siadhail, and Philip Casey. "Late Flowering." Books Ireland, no. 288 (2006): 225. http://dx.doi.org/10.2307/20632962.
Full textHennig, L. "Flowering Highlights." Journal of Experimental Botany 65, no. 22 (June 30, 2014): 6479. http://dx.doi.org/10.1093/jxb/eru076.
Full textBagnoli, Martina. "The Flowering." Art History 37, no. 3 (May 12, 2014): 566–69. http://dx.doi.org/10.1111/1467-8365.12088.
Full textP., R. "Flowering inferno." Nature 359, no. 6398 (October 1992): 776. http://dx.doi.org/10.1038/359776a0.
Full textMitchell, Roger. "Flowering Snow." Organization & Environment 10, no. 3 (September 1997): 314–15. http://dx.doi.org/10.1177/0921810697103010.
Full textDissertations / Theses on the topic "Flowering"
Wilson, Dale 1972. "Early-flowering mutants of a late-flowering ecotype of Arabidopsis thaliana." Monash University, Dept. of Biological Sciences, 2001. http://arrow.monash.edu.au/hdl/1959.1/8976.
Full textPetrenko, Olga. "Simulation of flowering plants." Thesis, Limoges, 2014. http://www.theses.fr/2014LIMO0067/document.
Full textPlants have always intrigued scientists as besides of its sheer importance for the earth, their beauty and enormous variety of shapes tempt to thoroughly inquire about its nature. One of the aspects of this inquiry is the creation of the virtual model in order to mimic real plants to a high degree of accuracy. The focus of our study is the flowering plants, which play a huge role in our life from nutritive and medical purposes to beautifying the environment. Obtaining an accurate geometrical model of a flower is quite useful as it plays an important role in the validation of the virtual model. Besides, the visualization of parameters not traceable directly in living flowering plants is a stand-by in studying their physiology. A huge biological diversity both within and between individuals provides a vast area of objectives which the image synthesis must challenge.Flower modelling constitutes a part of a larger research area, plant modelling. Flowering plants have their particular structural features which are different from the structure of trees, bushes or grass. Still not a lot of emphasis has been placed to date on this problem, as it was categorized within the modelling of plants in general. We chose a procedural modeling using L-systems as a base of our research. L-system is a very powerful method of plant simulation. It provides a means of characterizing the topology of a plant at every stage of its growth. Grasping the plant structure with just several lines of grammar attracted immediate interest and later on evolved into several powerful geometrical interpretation system used in plant modelling. Our purpose is to study efficient ways of describing the structure of flowering plants by means of L-systems. First, we will propose to represent the shapes of leafs, petals, stamens, carpels, etc. with an extension of L-systems – a model based on three dimensional generalized maps – 3Gmaps L-systems, which can be successfully applied for the modelling of flowering plants. The grammar description of the structure of the flowering plants provides an unlimited number of its geometrical interpretations. Second, we will improve the process of grammar writing by adding a new functionality of interactive parameter adjustment. Third, we will propose a new method of inverse modelling of flowering plants, where the user can interactively define the flower characteristics. The algorithm uses this information as an input, which is then analyzed and coded as L-systems grammar. Finally, we will present a method for creating virtual glades of flowers using Kinect gestures. We want to remark that our work has been done with 3Gmaps L-system software platform developed in the scope of the thesis to integrate all the proposed techniques
Suzuki, Mahoro. "Relationship between flowering schedule and reproductive success in two sequentially flowering Vaccinium species(Ericaceae)." 京都大学 (Kyoto University), 2002. http://hdl.handle.net/2433/150052.
Full textWilson, Ann Margaret. "Reproductive allocation in flowering plants." Thesis, University of Plymouth, 1986. http://hdl.handle.net/10026.1/2206.
Full textGerber, Audrey I. (Audrey Inga). "Inflorescence initiation and development, and the manipulation therof [sic], in selected cultivars of the genus Protea." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51799.
Full textENGLISH ABSTRACT: Little is understood regarding flowering in the genus Protea. The information available on inflorescence initiation and development in the family Proteaceae was reviewed and discussed. A number of experiments were conducted to investigate inflorescence initiation and development, and their manipulation for commercial production, in selected Protea cultivars, in the Western Cape, South Africa (33°S, Protea species can be allocated into groups according to similar times of flower initiation and of harvest. The stages occurring during flower initiation, and their synchrony relative to shoot growth were investigated for three cultivars, viz. Protea cv. Carnival (P. compacta x P. neriifolia), Protea cv. Lady Di (P. compacta x P. magnifica) and Protea cv. Sylvia (P. eximia x P. susannae), when flower initiation occurred on the spring growth flush. For all three cultivars the spring flush was preformed and enclosed in the apical bud before spring budbreak. During elongation of the spring flush the apical meristem produced floral primordia which differentiated into involucral bracts. After completion of the spring flush meristematic activity continued, to produce floral bracts with florets in their axils. The three cultivars showed differences and similarities in the time of budbreak, and the rates of shoot growth, appendage formation and flower development. The presence of mature leaves on an over-wintering shoot is essential for inflorescence initiation on the spring growth flush of 'Carnival'. Inflorescence initiation in 'Carnival' started at spring budbreak, and production of involucral bracts occurred concurrently with spring flush elongation. Shoots were defoliated at different degrees of severity at intervals from pre- to post- spring budbreak. Total defoliation applied earlier than 6-7 weeks before spring budbreak prevented flowering. Defoliation closer to spring budbreak affected characteristics of the spring flush and the inflorescence subtended by the spring flush. Effects were most marked following total defoliation and diminished with less severe treatments imposed by partial defoliation. Total defoliation applied before spring budbreak resulted in slower inflorescence development and lead to later anthesis. Defoliation treatments applied after completion of spring flush elongation had no effect on either vegetative or reproductive spring growth. The requirement for mature overwintering leaves to effect inflorescence initiation in 'Carnival' suggests that environmental factors, such as low temperature and daylength may play an inductive role. Shoots were in the induced state and committed to flowering 6-7 weeks before spring budbreak. A change in source size and position subsequent to different severalties of defoliation in 'Carnival' lead to reduced dry mass accumulation and altered partitioning. Mature leaves on the overwintering shoot supported growth of the spring flush and the early stages of inflorescence development. When these leaves were removed by total defoliation dry mass accumulation in the spring flush was reduced. A hierarchy of priorities between competing sinks was revealed by defoliation during growth of the spring flush and concomitant inflorescence development: formation of involucral bracts> leaf growth> stem elongation. Dry mass accumulation of the inflorescence subtended by the spring flush was supported by the spring flush leaves and was only indirectly affected by defoliation. Treatments which resulted in the production of a weaker spring flush lead to a reduction in dry mass accumulation of the inflorescence. Different severalties of partial defoliation, whereby either upper or lower leaves were removed from a shoot, indicated that the position of leaves relative to the active sink is more important, with respect to source availability, than the number of leaves on the shoot. Mature overwintering leaves are essential in 'Lady Di' for shoots to achieve the induced state for flowering; and are also crucial to the early stages of inflorescence initiation. Defoliation applied before formation of involucral bracts was complete prevented flowering. Defoliated shoots either remained vegetative or produced inflorescences which aborted. Reserve carbohydrates in the stem and leaves of overwintering shoots were low, and early growth and development of both the spring flush and inflorescence were, therefore, supported by current photosynthates from the overwintering leaves. Likewise, reserve carbohydrates available in the flowering shoot were insufficient to account for the dry mass increase during the major portion of growth of the spring flush and inflorescence. This rapid increase in dry mass occurred after elongation of the spring flush was complete and was supported by current photosynthates from the leaves of the spring flush. Defoliation treatments that did not prevent inflorescence initiation, had no effect on inflorescence development, and flowering time of 'Lady Di' was not delayed by defoliation. 'Sylvia' has an open window for inflorescence initiation and can initiate flowers throughout the year. Despite the 'open window' inflorescences are initiated more readily on the spring flush, when it is subtended by one or more overwintering shoots. This may be the expression of a facultative response to inductive conditions for which 'Carnival' and 'Lady Di' have an obligate requirement. The date of pruning affected flowering time of 'Sylvia' by influencing on which flush inflorescence initiation occurred, and the harvest could be manipulated to fall within the optimum marketing period for export to Europe. Flowers initiated on the spring flush reach anthesis in January and February; on the first summer flush predominantly in April and May; on the second summer flush in July and August; and on the autumn flush in November and December. Thus, shoots harvested within the optimum marketing period (September to February) initiated inflorescences on the autumn and spring flushes. Due to the readiness of shoots to initiate inflorescences on the spring flush many shoots harvested in January and February (following initiation in the previous spring) were short and were rendered unmarketable. For commercial production pruning in July is recommended. Long flowering stems will be harvested in October to November of the following year. Since the vegetative and reproductive cycles necessary to produce inflorescences on long stems span more than a year, a biennial cropping system is recommended.
AFRIKAANSE OPSOMMING: Bloeiwyse-inisiasie en -ontwikkeling, en die manipulasie daarvan, van geselekteerde cultivars van die genus Protea. Min word verstaan van blomvorming in die genus Protea. Die beskikbare inligting oor die bloeiwyse-inisiasie en -ontwikkeling in die familie Proteaceae is nagegaan en bespreek. 'n Aantal eksperimente is uitgevoer waarin geselekteerde Protea cultivars van die Wes-Kaap, Suid-Afrika (33°S, 19°0) se bloeiwyse-inisiasie en -ontwikkeling, asook die manipulasie daarvan vir kommersiële produksie ondersoek is. Protea spesies kan in groepe ingedeel word op grond van blominisiasietye en oestye wat ooreenstem. Die verskillende stadiums van blominisiasie en hulle sinchronisering relatieftot stingelgroei is ondersoek vir drie kultivars, naamlik Protea cv. Carnival (P. compacta x P. neriifolia), Protea cv. Lady Di (P. compacta x P. magnifica) en Protea cv. Sylvia (P. eximia x P. susannae) tydens blominisiasie op die lentegroeistuwing. By al drie die kultivars was die lentegroeistuwing reeds gevorm en omsluit in die apikale knop voor die lente-knopbreking. Gedurende die verlenging van die lentegroeistuwing het die apikale meristeem blomprimordia, wat in bloeiwyseomwindselskutblare gedifferensieer het, geproduseer. Na voltooiing van die lentegroeistuwing, het meristematiese aktiwiteit voortgeduur en blomskutblare met blommetjies in hulle oksels is gevorm. Die drie kultivars het verskille en ooreenkomste vertoon tydens die periode van knopbreking, asook in die tempo van stingelgroei, aanhangselformasie en blomontwikkeling. Die teenwoordigheid van volwasse blare op 'n oorwinteringstingel is noodsaaklik vit bloeiwyse-inisiasie op die lentegroeistuwing van 'Carnival'. Bloeiwyse-inisiasie in 'Carnival' het met lente-knopbreking begin en die produksie van bloeiwyseomwindselblare het gelyktydig met lentegroeistuwing verlenging plaasgevind. Stingels is met tussenposes, van voor tot na die lente-knopbreking, en met verskillende grade van felheid, ontblaar. Algehele ontblaring vroeër as 6-7 weke voor die lente-knopbreking het blomvorming verhoed. Ontblaring nader aan die lenteknopbreking het 'n invloed gehad op die eienskappe van die lentegroeistuwing asook die bloeiwyse gedra deur die lentegroeistuwing. Die effek was die duidelikste sigbaar by algehele ontblaring en het verminder namate die behandeling minder fel geword het by gedeeltelike ontblaring. Algehele ontblaring wat voor die lente-knopbreking gedoen is, het gelei tot stadiger bloeiwyse-ontwikkeling en later antese. Ontblaringsbehandelings wat na die voltooiing van die lentegroeistuwing verlenging toegepas is, het geen effek op die vegetatiewe of die reproduktiewe lentegroei gehad me. Die nodigheid van volwasse oorwinteringsblare vir bloeiwyse-inisiasie in 'Carnival' dui daarop dat omgewingsfaktore soos lae temperature en daglengte 'n induktiewe rol kan speel. Stingels was in die geïnduseerde toestand en verbind tot blomvorming 6-7 weke voor die lente-knopbreking. 'n Verandering in oorspronggrootte en -posisie as gevolg van verskille in die felheid van ontblaring by 'Carnival', het gelei tot verminderde droë-massa-akkumulasie en veranderde verdeling. Volwasse blare op die oorwinteringstingel het die groei van die lentegroeistuwing en die vroeë stadiums van bloeiwyse-ontwikkeling ondersteun. Toe hierdie blare verwyder is in 'n algehele ontblaring, het die droë-massa-akkumulasie in die lentegroeistuwing verminder. 'n Hiërargie van prioriteite tussen kompeterende sinke is blootgelê tydens ontblaring gedurende die lentegroeistuwing en saamlopende bloeiwyse-ontwikkeling: vorming van bloeiwyse-omwindselblare > blaargroei > stamverlenging. Droë-massa-akkumulasie van die bloeiwyse onderspan deur die lentegroeistuwing is ondersteun deur die blare van die lentegroeistuwing en is slegs op 'n indirekte wyse deur ontblaring geaffekteer. Behandelings wat tot die produksie van 'n swakker lentegroeistuwing gelei het, het tot 'n vermindering in die droë-massaakkumulasie van die bloeiwyse gelei. Verskille in die felheid van gedeeltelike ontblaring, waartydens óf die boonste óf die onderste blare van 'n stingel verwyder is, het aangetoon dat die posisie van die blare relatief tot die aktiewe sink belangriker is, met betrekking tot die beskikbaarheid van die oorsprong, as die aantal blare op die stingel. By 'Lady Di' is volwasse oorwinteringsblare noodsaaklik VIr stingels om die geïnduseerde stadium van blomvorming te bereik en hulle is ook van die uiterste belang in die vroeë stadiums van bloeiwyse-inisiasie. Waar ontblaring gedoen is voordat die vorming van bloeiwyse-omwindsel voltooi was, het blomvorming nie plaasgevind nie. Ontblaarde stingels het ófvegetatief gebly ófbloeiwyses geproduseer wat geaborteer het. Reserwe-koolhidrate in die stam en blare van die oorwinteringstingels was laag en die vroeë groei en ontwikkeling van beide die lentegroeistuwing en die bloeiwyse is dus deur die bestaande fotosintate van die oorwinteringsblare onderhou. Net so was die reserwe-koolhidrate beskikbaar in die blomdraende stingels nie voldoende om die toename in droë massa gedurende die grootste deel van die groei van die lentegroeistuwing en die bloeiwyse te verklaar nie. Hierdie vinnige toename in droë massa het plaasgevind nadat die verlenging van die lentegroeistuwing voltooi was en is deur die bestaande fotosintate van die blare van die lentegroeistuwing onderhou. Ontblaringsbehandelings wat nie bloeiwyse-inisiasie verhoed het nie, het geen effek op bloeiwyse-ontwikkeling gehad nie en die blomtyd van 'Lady Di' is nie deur ontblaring vertraag nie. 'Sylvia' beskik oor 'n oop venster vir bloeiwyse-inisiasie en kan regdeur die jaar blomme inisieer. Ten spyte van die 'oop venster', word bloeiwyses tog meer geredelik in die lentegroeistuwing geïnisieer, wanneer dit deur een of meer van die oorwinteringstingels gedra word. Dit mag die uitdrukking wees van 'n fakultatiewe respons op induktiewe toestande wat vir 'Carnival' en 'Lady Di' 'n verpligte vereiste is. 'Sylvia' se blomtyd is deur die snoeidatum geaffekteer omdat die snoeidatum 'n invloed gehad het op die keuse van by watter groeistuwing bloeiwyse-inisiasie plaasgevind het. Die oestyd kon gemanipuleer word om binne die optimum bemarkingstydperk vir uitvoer na Europa te val. Blomme wat op die lentegroeistuwing geïnisieer is, bereik antese in Januarie en Februarie; dié wat op die eerste somergroeistuwing geïnisieer is, bereik antese hoofsaaklik in April en Mei; dié wat op die tweede somergroeistuwing geïnisieer is, bereik antese in Julie en Augustus en dié wat op die herfsgroeistuwing geïnisieer is, bereik antese in November en Desember. Stingels wat in die optimum bemarkingsperiode (September tot Februarie) geoes is, het dus bloeiwyses op die herfs- en lente-groeistuwings geïnisieer. As gevolg van die gereedheid van stingels om bloeiwyses op die lentegroeistuwings te inisieer, was baie van die stingels wat in Januarie en Februarie geoes is, kort en kon nie bemark word nie. Vir kommersiële doeleindes word snoei in Julie aanbeveel. Lang blomdraende stingels sal in Oktober en November van die volgende jaar geoes word. Aangesien die vegetatiewe en reproduktiewe siklusse wat nodig is om bloeiwyses met lang stingels te produseer oor meer as fn jaar strek, word fn tweejaarlikse oesinsamelingstelsel aanbeveel.
Haliday, Karen Jane. "Phytochromes and the photocontrol of flowering." Thesis, University of Leicester, 1996. http://hdl.handle.net/2381/35462.
Full textKurokura, Takeshi. "Molecular physiology of flowering in Fragaria vesca." Thesis, University of Reading, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511675.
Full textLoeppky, Heather Ann. "Flowering and seed production in meadow bromegrass." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ43515.pdf.
Full textLing, Adrain C. K. "Molecular study of flowering in Fragaria vesca." Thesis, University of Reading, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.553040.
Full textXi, Zhenxiang. "Phylogenomics of the Flowering Plant Clade Malpighiales." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10661.
Full textBooks on the topic "Flowering"
Mohlenbrock, Robert H. Flowering plants: Flowering rushes to rushes. 2nd ed. Carbondale: Southern Illinois University Press, 2006.
Find full textTakhtadzhi︠a︡n, A. L. Flowering plants. 2nd ed. [New York]: Springer, 2009.
Find full textKhan, Aisha Saleem. Flowering Plants. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119262794.
Full textBhattacharyya, Bharati, and B. M. Johri. Flowering Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-11754-5.
Full textTakhtajan, Armen, ed. Flowering Plants. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9609-9.
Full textMacleod, Sinclair. Flowering plants. Aylesbury: Ginn, 1989.
Find full textBoyce, Louise Elaine. Flowering: Poems. Stoughton, Mass: Grand Teton Press, 2000.
Find full textFlowering Judas. Thorndike, Me: G.K. Hall, 1998.
Find full textMadgwick, Wendy. Flowering plants. Austin, Tex: Steck-Vaughn Library, 1990.
Find full textElizabeth, Palmer. Flowering Judas. London: Arrow, 1996.
Find full textBook chapters on the topic "Flowering"
Arteca, Richard N. "Flowering." In Plant Growth Substances, 177–87. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2451-6_8.
Full textTsuji, Hiroyuki, and Ko Shimamoto. "Flowering." In Genetics and Genomics of Rice, 269–78. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7903-1_18.
Full textAtherton, J. G., and G. P. Harris. "Flowering." In The Tomato Crop, 167–200. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3137-4_4.
Full textMoore, Paul H., and Nils Berding. "Flowering." In Sugarcane: Physiology, Biochemistry, and Functional Biology, 379–410. Chichester, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118771280.ch15.
Full textKour, Kiran, Bikramjit Singh, and Tanjeet Singh Chahal. "Flowering." In Strawberries, 301–19. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/b21441-203.
Full textBhatla, Satish C., and Manju A. Lal. "Flowering." In Plant Physiology, Development and Metabolism, 565–82. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5736-1_25.
Full textDennis, F. G. "Flowering." In Physiological Basis of Crop Growth and Development, 237–64. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, 2015. http://dx.doi.org/10.2135/1984.physiologicalbasis.c9.
Full textLin, Shu-Yen, and Po-An Chen. "Flowering." In Guava: botany, production and uses, 186–202. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789247022.0009.
Full textBentley, A. R., E. F. Jensen, I. J. Mackay, H. Hönicka, M. Fladung, K. Hori, M. Yano, et al. "Flowering Time." In Genomics and Breeding for Climate-Resilient Crops, 1–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37048-9_1.
Full textAlderson, Pauline, and Martin Rowland. "Flowering Plants." In Making Use of Biology, 117–28. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13563-9_9.
Full textConference papers on the topic "Flowering"
Glišić, Ivan, Radmila Ilić, Tomo Milošević, Gorica Paunović, Ivana Glišić, and Zorica Radičević. "FLOWERING PHENOPHASE OF SOME APRICOT („P. armeniaca L.“) CULTIVARS DEPENDING ON AIR TEMPERATURE." In 1st International Symposium on Biotechnology. University of Kragujevac, Faculty of Agronomy, 2023. http://dx.doi.org/10.46793/sbt28.125g.
Full textWang, X. H. "Flowering characteristics ofNeosinocalamus affinisKeng in China." In International Conference on Environmental Science and Biological Engineering. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/esbe140461.
Full textKirubakaran, M. Manoj, K. Madhumitha, M. Francis Ajay, V. Ellakkiya, and M. Saravana Mohan. "IOT Based Protection for Flowering Plants." In 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA). IEEE, 2021. http://dx.doi.org/10.1109/icaeca52838.2021.9675733.
Full textBrovkina, T. Ya, and T. V. Fomenko. "Agrobiological characteristics, decorativity and productivity of flowering of tagetes hybrids on flower-garden of Krasnodar." In Растениеводство и луговодство. Тимирязевская сельскохозяйственная академия, 2020. http://dx.doi.org/10.26897/978-5-9675-1762-4-2020-169.
Full textMalasheva, Petya, Veska Georgieva, and Valentin Kazandjiev. "DETERMINATION OF THE HEAT REQUIREMENTS DURING THE ECODORMANCY FOR THE CHERRY (PRUNUS AVIUM) IN BULGARIA." In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/4.1/s19.34.
Full textNemesio A. Baliuag, Neil. "PHENOTYPIC AND GENOTYPIC ANALYSIS FOR EARLY MORNING FLOWERING TRAITS AT FLOWERING STAGE IN RICE (Oryza sativa L.)." In International Conference on Fisheries and Aquaculture. TIIKM, 2016. http://dx.doi.org/10.17501/icoaf.2016.2114.
Full textHadžic, Svetlana, Alma Mičijevic, and Vedrana Komlenr. "UTICAJ AGROEKOLOŠKIH USLOVA I FAZA RAZVOJA HELJDE (Fagopyrum esculentum Moench) NA SADRŽAJ RUTINA." In SAVETOVANJE o biotehnologiji sa međunarodnim učešćem. University of Kragujevac, Faculty of Agronomy, 2021. http://dx.doi.org/10.46793/sbt26.113h.
Full textWang, Zhenglin, Brijesh Verma, Kerry B. Walsh, Phul Subedi, and Anand Koirala. "Automated mango flowering assessment via refinement segmentation." In 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ). IEEE, 2016. http://dx.doi.org/10.1109/ivcnz.2016.7804426.
Full textGuanduo Li, A. Kruger, J. J. Niemeier, and H. E. Lintz. "Automated sensor for flowering and vegetative budburst." In 2013 IEEE Sensors Applications Symposium (SAS). IEEE, 2013. http://dx.doi.org/10.1109/sas.2013.6493576.
Full textShaker Mahmoud, Raam, and Ammar Al-Zubade. "Effect of Gibberellin Spraying On Yield of Bean and Its Components." In IX. International Scientific Congress of Pure, Applied and Technological Sciences. Rimar Academy, 2023. http://dx.doi.org/10.47832/minarcongress9-11.
Full textReports on the topic "Flowering"
Casler, Michael, and Yiwei Jiang. Genetic Control of Flowering in Switchgrass. Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1513212.
Full textLarson, Brent. Waterhemp Flowering Guide-Paper and Guide. Ames (Iowa): Iowa State University, January 2021. http://dx.doi.org/10.31274/cc-20240624-1595.
Full textSartain, Bradley, Damian Walter, and Kurt Getsinger. Flowering rush control in hydrodynamic systems : part 2 : field demonstrations for chemical control of flowering rush. Engineer Research and Development Center (U.S.), June 2024. http://dx.doi.org/10.21079/11681/48732.
Full textBloemhard, C. M. J., and G. J. Messelink. Flowering plants for supporting hoverflies in greenhouse crops. BioGreenhouse, 2016. http://dx.doi.org/10.18174/373597.
Full textRiemenschneider, Don E. Water Stress Promotes Early Flowering in Jack Pine. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station, 1985. http://dx.doi.org/10.2737/nc-rn-331.
Full textSamach, Alon, Douglas Cook, and Jaime Kigel. Molecular mechanisms of plant reproductive adaptation to aridity gradients. United States Department of Agriculture, January 2008. http://dx.doi.org/10.32747/2008.7696513.bard.
Full textGera, Abed, Abed Watad, P. Ueng, Hei-Ti Hsu, Kathryn Kamo, Peter Ueng, and A. Lipsky. Genetic Transformation of Flowering Bulb Crops for Virus Resistance. United States Department of Agriculture, January 2001. http://dx.doi.org/10.32747/2001.7575293.bard.
Full textWagner, D. Ry, Eliezer Lifschitz, and Steve A. Kay. Molecular Genetic Analysis of Flowering in Arabidopsis and Tomato. United States Department of Agriculture, May 2002. http://dx.doi.org/10.32747/2002.7585198.bard.
Full textOzias-Akins, P., and R. Hovav. molecular dissection of the crop maturation trait in peanut. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134157.bard.
Full textHäfliger, Patrick, Carol Ellison, and Hariet Hinz. Investigations into biological control for common reed and flowering rush. Engineer Research and Development Center (U.S.), August 2019. http://dx.doi.org/10.21079/11681/33795.
Full text