Journal articles on the topic 'Flow visualization'

To see the other types of publications on this topic, follow the link: Flow visualization.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Flow visualization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

TANEDA, Sadatoshi. "Flow visualization." Doboku Gakkai Ronbunshu, no. 387 (1987): 1–10. http://dx.doi.org/10.2208/jscej.1987.387_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vivek Verma and A. Pang. "Comparative flow visualization." IEEE Transactions on Visualization and Computer Graphics 10, no. 6 (November 2004): 609–24. http://dx.doi.org/10.1109/tvcg.2004.39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

MAEDA, Keita, Akira MIZUKAMI, and Hiroshi FUJITA. "Computational Flow Visualization." Journal of the Visualization Society of Japan 10, no. 1Supplement (1990): 95–96. http://dx.doi.org/10.3154/jvs.10.1supplement_95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bank, W., P. Freymuth, and M. Palmer. "Complementary Flow Visualization." Physics of Fluids 28, no. 9 (September 1985): 2633. http://dx.doi.org/10.1063/1.4738794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bryanstoncross, P. J. "Holographic Flow Visualization." Journal of Photographic Science 37, no. 1 (January 1989): 8–13. http://dx.doi.org/10.1080/00223638.1989.11737002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

GHARIB, MORY, FRANCISCO PEREIRA, DANA DABIRI, and DARIUS MODARRESS. "Quantitative Flow Visualization." Annals of the New York Academy of Sciences 972, no. 1 (October 2002): 1–9. http://dx.doi.org/10.1111/j.1749-6632.2002.tb04546.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gardner, R. A. "Colorimetric flow visualization." Experiments in Fluids 3, no. 1 (1985): 33–34. http://dx.doi.org/10.1007/bf00285268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sinton, D. "Microscale flow visualization." Microfluidics and Nanofluidics 1, no. 1 (August 19, 2004): 2–21. http://dx.doi.org/10.1007/s10404-004-0009-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Keffer, J. F. "Flow visualization IV." International Journal of Heat and Fluid Flow 9, no. 3 (September 1988): 348. http://dx.doi.org/10.1016/0142-727x(88)90052-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schmidt, Mark C. "Flow visualization V." International Journal of Heat and Fluid Flow 12, no. 3 (September 1991): 287. http://dx.doi.org/10.1016/0142-727x(91)90066-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Goto, Susumu, Shigeo Kida, and Shohei Fujiwara. "Flow visualization using reflective flakes." Journal of Fluid Mechanics 683 (August 18, 2011): 417–29. http://dx.doi.org/10.1017/jfm.2011.299.

Full text
Abstract:
AbstractThe pattern in an image of flow visualizations using reflective flakes stems from their non-uniform orientation rather than their spatial accumulation. It is shown, based on the assumption that flakes are infinitely thin elliptic discs without inertia, that the temporal evolution of their orientations is identical to that for infinitesimal material surface elements. In general, bright regions in a visualized image are the superposition of those where the flake (i.e. the material surface element) orientation is isotropic and those where flakes tend to align in the direction for which the incident rays are reflected into the line of sight. A non-trivial example of the visualization of a steady flow in a precessing sphere is given to verify these conclusions.
APA, Harvard, Vancouver, ISO, and other styles
12

ARAI, Takakage, Hiromu SUGIYAMA, Yoichiro KOBAYASHI, Satoru KONNO, and Kazunori KAMISANGOU. "Flow visualization of cross flow fan." Journal of the Visualization Society of Japan 14, Supplement2 (1994): 57–60. http://dx.doi.org/10.3154/jvs.14.supplement2_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Jaw, S. Y., C. J. Chen, and R. R. Hwang. "Flow visualization of bubble collapse flow." Journal of Visualization 10, no. 1 (March 2007): 21–24. http://dx.doi.org/10.1007/bf03181797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

KIKURA, Hiroshige, Masahiro MOTOSUKE, and Sanehiro WADA. "Flow Visualization Using UVP." Journal of the Visualization Society of Japan 36, no. 142 (2016): 6. http://dx.doi.org/10.3154/jvs.36.142_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

NIIMI, Hideyuki. "Flow visualization in microcirculation." JOURNAL OF THE FLOW VISUALIZATION SOCIETY OF JAPAN 5, no. 17 (1985): 82–85. http://dx.doi.org/10.3154/jvs1981.5.82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

KIMURA, Ryuji. "Flow visualization by nature." JOURNAL OF THE FLOW VISUALIZATION SOCIETY OF JAPAN 6, no. 23 (1986): 56–61. http://dx.doi.org/10.3154/jvs1981.6.23_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

HARA, Nobutoshi. "Laser holographic flow visualization." JOURNAL OF THE FLOW VISUALIZATION SOCIETY OF JAPAN 7, no. 24 (1987): 18–24. http://dx.doi.org/10.3154/jvs1981.7.18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

YANAGI, Ryoji. "Flow Visualization using DGV." Journal of the Visualization Society of Japan 16, no. 1Supplement (1996): 19–22. http://dx.doi.org/10.3154/jvs.16.1supplement_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

ADRIAN, RONALD J. "Particle-Based Flow Visualization." Journal of the Visualization Society of Japan 17, Supplement1 (1997): 3–11. http://dx.doi.org/10.3154/jvs.17.supplement1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

OKUNO, Taketoshi, Hisakazu FUJIWARA, and Nozomu TANIMOTO. "Flow Visualization around Oloid." Journal of the Visualization Society of Japan 22, no. 1Supplement (2002): 295–98. http://dx.doi.org/10.3154/jvs.22.1supplement_295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

KIMURA, Nobuhiro, and Ryuji MAEKAWA. "Feature : Cryogenic Flow Visualization." TEION KOGAKU (Journal of the Cryogenic Society of Japan) 43, no. 3 (2008): 66. http://dx.doi.org/10.2221/jcsj.43.66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

ITO, Singo, Atushi KANEKO, Yasuaki KOHAMA, Kimio SAKATA, Kunio NAKAGAWA, Yosio MORITA, Michitoshi TAKAGI, Shohachi YASU, and Hirotoshi FUJIEDA. "Flow Visualization on Vehicles." Journal of the Visualization Society of Japan 13, no. 48 (1993): 4–15. http://dx.doi.org/10.3154/jvs.13.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lu, F. K. "Surface oil flow visualization." European Physical Journal Special Topics 182, no. 1 (April 2010): 51–63. http://dx.doi.org/10.1140/epjst/e2010-01225-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

van Wijk, Jarke J. "Image based flow visualization." ACM Transactions on Graphics 21, no. 3 (July 2002): 745–54. http://dx.doi.org/10.1145/566654.566646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Georgiadis, John G. "Multiphase Flow Quantitative Visualization." Applied Mechanics Reviews 47, no. 6S (June 1, 1994): S315—S319. http://dx.doi.org/10.1115/1.3124433.

Full text
Abstract:
Full-field quantitative visualization of multiphase flows requires the introduction of high resolution noninvasive methods. Two such methods are presented: Scanning Confocal Microscopy (SCM), and Magnetic Resonance Imaging (MRI). SCM has higher resolution, contrast, and depth discrimination than conventional light microscopy. A modern SCM system operating in reflection mode performs optical sectioning of 3D surfaces with submicron resolution at video rates, and this suggests its use in reconstructing evolving interfaces. MRI is a versatile tool for mapping the distribution of liquids (primarily water) in 3D space and for performing multicomponent velocity measurements. MRI is the only practical solution in systems that are strongly refracting or opaque to visible light. SCM is employed (for the first time) to image frost growing under ambient conditions, and MRI is used to visualize phase change and to measure local velocity in natural convection in water-saturated porous media. These problems reflect the research interests of the author but also serve to show the potential of the techniques in probing multiphase flows containing complex interfaces.
APA, Harvard, Vancouver, ISO, and other styles
26

Karch, Grzegorz K., Filip Sadlo, Daniel Weiskopf, Charles D. Hansen, Guo-Shi Li, and Thomas Ertl. "Dye-Based Flow Visualization." Computing in Science & Engineering 14, no. 6 (November 2012): 80–86. http://dx.doi.org/10.1109/mcse.2012.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Netzel, Rudolf, and Daniel Weiskopf. "Texture-Based Flow Visualization." Computing in Science & Engineering 15, no. 6 (November 2013): 96–102. http://dx.doi.org/10.1109/mcse.2013.131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ionut, BRINZA, and PRICOP Mihai-Victor. "Methods of flow visualization." INCAS BULLETIN 1, no. 1 (September 24, 2009): 96–97. http://dx.doi.org/10.13111/2066-8201.2009.1.1.18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Edmunds, Matt, Robert S. Laramee, Guoning Chen, Nelson Max, Eugene Zhang, and Colin Ware. "Surface-based flow visualization." Computers & Graphics 36, no. 8 (December 2012): 974–90. http://dx.doi.org/10.1016/j.cag.2012.07.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fujii, Kozo. "Computers and flow visualization." Journal of Visualization 4, no. 2 (June 2001): 113. http://dx.doi.org/10.1007/bf03182558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Smith, Robert E., and Eric L. Everton. "Numerical flow field visualization." Computers & Structures 30, no. 1-2 (January 1988): 411–19. http://dx.doi.org/10.1016/0045-7949(88)90247-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ebert, D. S., and C. D. Shaw. "Minimally immersive flow visualization." IEEE Transactions on Visualization and Computer Graphics 7, no. 4 (2001): 343–50. http://dx.doi.org/10.1109/2945.965348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Koehler, Christopher, Ryan Durscher, Philip Beran, and Nitin Bhagat. "Adjoint-enhanced flow visualization." Journal of Visualization 21, no. 5 (April 13, 2018): 819–34. http://dx.doi.org/10.1007/s12650-018-0490-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Van Sciver, Steven W. "Low temperature flow visualization." Cryogenics 49, no. 10 (October 2009): 525–27. http://dx.doi.org/10.1016/j.cryogenics.2009.09.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

HASEGAWA, Koji, and Shimpei SAITO. "Visualization of Multiphase Flow." Journal of the Visualization Society of Japan 42, no. 163 (2022): 2. http://dx.doi.org/10.3154/jvs.42.163_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Prenel, Jean-Pierre, and Dario Ambrosini. "Flow visualization and beyond." Optics and Lasers in Engineering 50, no. 1 (January 2012): 1–7. http://dx.doi.org/10.1016/j.optlaseng.2011.10.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lopez, J. M. "Axisymmetric vortex breakdown Part 1. Confined swirling flow." Journal of Fluid Mechanics 221 (December 1990): 533–52. http://dx.doi.org/10.1017/s0022112090003664.

Full text
Abstract:
A comparison between the experimental visualization and numerical simulations of the occurrence of vortex breakdown in laminar swirling flows produced by a rotating endwall is presented. The experimental visualizations of Escudier (1984) were the first to detect the presence of multiple recirculation zones and the numerical model presented here, consisting of a numerical solution of the unsteady axisymmetric Navier-Stokes equations, faithfully reproduces these phenomena and all other observed characteristics of the flow. Further, the numerical calculations elucidate the onset of oscillatory flow, an aspect of the flow that was not clearly resolved by the flow visualization experiments. Part 2 of the paper examines the underlying physics of these vortex flows.
APA, Harvard, Vancouver, ISO, and other styles
38

Someya, Satoshi. "Flow visualization of heat and fluid flow." Journal of the Atomic Energy Society of Japan 58, no. 9 (2016): 558–62. http://dx.doi.org/10.3327/jaesjb.58.9_558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

KAWAGUCHI, Kryoshi, and Kazuma MATSUl. "Flow Visualization around Axial Flow Fan Blades." Bulletin of JSME 29, no. 248 (1986): 466–75. http://dx.doi.org/10.1299/jsme1958.29.466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Richards, Clive, and Yuri Engelhardt. "The DNA of information design for charts and diagrams." Information Design Journal 25, no. 3 (December 31, 2019): 277–92. http://dx.doi.org/10.1075/idj.25.3.05ric.

Full text
Abstract:
Abstract A comprehensive framework is presented for analyzing and specifying an extensive range of visualizations, such as statistical charts, maps, family trees, Venn diagrams, flow charts, texts using indenting, technical drawings and scientific illustrations. This paper describes how the fundamental ‘DNA’ building blocks of visual encoding and composition can be combined into ‘visualization patterns’ that specify these and other types of visualizations. We offer different ways of specifying each visualization pattern, including through a DNA tree diagram and through a rigorously systematic natural language sentence. Using this framework, a design tool is proposed for exploring visualization design options.
APA, Harvard, Vancouver, ISO, and other styles
41

Denney, Dennis. "Reservoir Simulation and Visualization: Fracture-Flow Modeling and Visualization." Journal of Petroleum Technology 56, no. 04 (April 1, 2004): 64–65. http://dx.doi.org/10.2118/0404-0064-jpt.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Umeda, Shinzaburo, and Wen-Jei Yang. "INTERSECTING DUCTS: FLOW VISUALIZATION METHODS." Journal of Flow Visualization and Image Processing 24, no. 1-4 (2017): 101–12. http://dx.doi.org/10.1615/jflowvisimageproc.v24.i1-4.70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

SAKAMOTO, Yuki, Shinichiro ITO, Masaki HIRATSUKA, and Akihisa HITOTSUBASHI. "Visualization of soccer ball flow." Proceedings of Mechanical Engineering Congress, Japan 2020 (2020): J23303. http://dx.doi.org/10.1299/jsmemecj.2020.j23303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Choi, Je-Eun, and Hiromichi Obara. "Visualization of multi phase flow." Journal of the Visualization Society of Japan 32, no. 126 (2012): 1. http://dx.doi.org/10.3154/jvs.32.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

MORI, Hideo, and Shigeyuki TOMIMATSU. "Flow Visualization in Fluid Machinery." Journal of the Visualization Society of Japan 39, no. 153 (2019): 1. http://dx.doi.org/10.3154/jvs.39.153_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

TAKAGI, Michitoshi. "Flow visualization in automotive engineering." JOURNAL OF THE FLOW VISUALIZATION SOCIETY OF JAPAN 5, no. 19 (1985): 355–59. http://dx.doi.org/10.3154/jvs1981.5.355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

YAMAKAWA, Masanori, Michio MURASE, and Kengo IWASHIGE. "Flow visualization on nuclear reactors." JOURNAL OF THE FLOW VISUALIZATION SOCIETY OF JAPAN 6, no. 23 (1986): 90–97. http://dx.doi.org/10.3154/jvs1981.6.23_90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

ADACHI, Hiroshi, Yushi HIRATA, and Ryuzo ITO. "Visualization of turbulent pipe flow." JOURNAL OF THE FLOW VISUALIZATION SOCIETY OF JAPAN 7, no. 26 (1987): 175–78. http://dx.doi.org/10.3154/jvs1981.7.175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

ITO, Ryuzo, Yushi HIRATA, and Hiroshi ADACHI. "Visualization of turbulent pipe flow." JOURNAL OF THE FLOW VISUALIZATION SOCIETY OF JAPAN 8, no. 30 (1988): 251–54. http://dx.doi.org/10.3154/jvs1981.8.251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

NOZAKI, Osamu. "Flow visualization in numerical simulations." JOURNAL OF THE FLOW VISUALIZATION SOCIETY OF JAPAN 8, no. 28 (1988): 39–44. http://dx.doi.org/10.3154/jvs1981.8.39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography