Academic literature on the topic 'Flow and heat transfer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flow and heat transfer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Flow and heat transfer"

1

Gorin, Alexander V. "HEAT TRANSFER IN TURBULENT SEPARATED FLOWS(Flow around Cylinder 1)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 445–50. http://dx.doi.org/10.1299/jsmeicjwsf.2005.445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ryspekova, A., Zh Bolatov, and S. Kunakov. "Heat transfer of the uranium sphere in laminar cooling flow." International Journal of Mathematics and Physics 6, no. 1 (2015): 45–47. http://dx.doi.org/10.26577/2218-7987-2015-6-1-45-47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nakamura, Hirokazu, and Toshihiko Shakouchi. "Flow and Heat Transfer Characteristics of High Temperature Gas-Particle Air Jet Flow(Multiphase Flow 2)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 319–24. http://dx.doi.org/10.1299/jsmeicjwsf.2005.319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hosoi, Hideaki, Naoyuki Ishida, Naohisa Watahiki, and Kazuaki Kitou. "ICONE23-1630 HEAT TRANSFER TESTS FOR PASSIVE WATER-COOLING SYSTEM : (2) STEAM FLOW DISTRIBUTION AND HEAT TRANSFER IN TUBE BUNDLE." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Coulson, J. M., J. F. Richardson, J. R. Backhurst, and J. H. Harker. "Fluid flow, heat transfer and mass transfer." Filtration & Separation 33, no. 2 (February 1996): 102. http://dx.doi.org/10.1016/s0015-1882(96)90353-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Avramenko, A. A., M. M. Kovetskaya, E. A. Kondratieva, and T. V. Sorokina. "HEAT TRANSFER IN GRADIENT TURBULENT BOUNDARY LAYER." Thermophysics and Thermal Power Engineering 41, no. 4 (December 22, 2019): 19–26. http://dx.doi.org/10.31472/ttpe.4.2019.3.

Full text
Abstract:
Effect of pressure gradient on heat transfer in turbulent boundary layer is constantly investigated during creation and improvement of heat exchange equipment for energy, aerospace, chemical and biological systems. The paper deals with problem of steady flow and heat transfer in turbulent boundary layer with variable pressure in longitudinal direction. The mathematical model is presented and the analytical solution of heat transfer in the turbulent boundary layer problem at positive and negative pressure gradients is given. Dependences for temperature profiles and coefficient of heat transfer on flow parameters were obtained. At negative longitudinal pressure gradient (flow acceleration) heat transfer coefficient can both increase and decrease. At beginning of acceleration zone, when laminarization effects are negligible, heat transfer coefficient increases. Then, as the flow laminarization increases, heat transfer coefficient decreases. This is caused by flow of turbulent energy transfers to accelerating flow. In case of positive longitudinal pressure gradient, temperature profile gradient near wall decreases. It is because of decreasing velocity gradient before zone of possible boundary layer separation.
APA, Harvard, Vancouver, ISO, and other styles
7

Ohtake, Hiroyasu, Yasuo Koizumi, and Norihumi Higono. "ICONE15-10655 ANALYTICAL STUDY ON BOILING HEAT TRANSFER OF SUBCOOLED FLOW UNDER OSCILLATORY FLOW CONDITIONS." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2007.15 (2007): _ICONE1510. http://dx.doi.org/10.1299/jsmeicone.2007.15._icone1510_358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Babus'Haq, Ramiz, and S. Douglas Probert. "Heat transfer in turbulent flow." Applied Energy 40, no. 1 (January 1991): 81–82. http://dx.doi.org/10.1016/0306-2619(91)90054-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Corzo, Santiago Francisco, Damian Enrique Ramajo, and Norberto Marcelo Nigro. "High-Rayleigh heat transfer flow." International Journal of Numerical Methods for Heat & Fluid Flow 27, no. 9 (September 4, 2017): 1928–54. http://dx.doi.org/10.1108/hff-05-2016-0176.

Full text
Abstract:
Purpose The purpose of this paper is to assess the Boussinesq approach for a wide range of Ra (10 × 6 to 10 × 11) in two-dimensional (square cavity) and three-dimensional (cubic cavity) problems for air- and liquid-filled domains. Design/methodology/approach The thermal behavior in “differentially heated cavities” filled with air (low and medium Rayleigh) and water (high Rayleigh) is solved using computational fluid dynamics (CFDs) (OpenFOAM) with a non-compressible (Boussinesq) and compressible approach (real water properties from the IAPWS database). Findings The results from the wide range of Rayleigh numbers allowed for the establishment of the limitation of the Boussinesq approach in problems where the fluid has significant density changes within the operation temperature range and especially when the dependence of density with temperature is not linear. For these cases, the symmetry behavior predicted by Boussinesq is far from the compressible results, thus inducing a transient heat imbalance and leading to a higher mean temperature. Research limitations/implications The main limitation of the present research can be found in the shortage of experimental data for very high Rayleigh problems. Practical implications Practical implications of the current research could be use of the Boussinesq approach by carefully observing its limitations, especially for sensible problems such as the study of pressure vessels, nuclear reactors, etc. Originality/value The originality of this paper lies in addressing the limitations of the Boussinesq approach for high Rayleigh water systems. This fluid is commonly used in numerous industrial equipment. This work presents valuable conclusions about the limitations of the currently used models to carry out industrial simulations.
APA, Harvard, Vancouver, ISO, and other styles
10

Asianuaba, Ifeoma B. "Heat Transfer Augmentation." European Journal of Engineering Research and Science 5, no. 4 (April 25, 2020): 475–78. http://dx.doi.org/10.24018/ejers.2020.5.4.1869.

Full text
Abstract:
This article presents a brief review of various methodologies applied for heat transfer enhancement in laminar flow convection regime. Experimental setup for laminar flow convection heat transfer enhancement using insertions has been explained along with the associated results. Nusselt’s number is found to be a key parameter for investigatigation in order to perceive the enhancement in heat transfer. Similarly, the magnetohydrodynamic mixed convection heat transfer enhancement technique has also been explored. The results of isotherms and fluid flow parameters are discussed which directly affect the heat transfer coefficient. This review article complements the literature in related field and thus will be helpful in order to carry out further experiments in heat transfer enhancement in future.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Flow and heat transfer"

1

Barker, Adam. "Heat transfer in unsteady pipe flow." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wen, Dongsheng. "Flow boiling heat transfer in microgeometries." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leung, Sharon Shui Yee. "Heat transfer in microchannels : taylor flow." Thesis, The University of Sydney, 2012. http://hdl.handle.net/2123/17835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Najibi, Seyed Hesam. "Heat transfer and heat transfer fouling during subcooled flow boiling for electrolyte solutions." Thesis, University of Surrey, 1997. http://epubs.surrey.ac.uk/773/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wongl, Li Shing. "Flow and heat transfer in buoyancy induced rotating flow." Thesis, University of Sussex, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sun, Guang. "Heat transfer in forced convective flow boiling." Thesis, Imperial College London, 1996. http://hdl.handle.net/10044/1/11255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mala, Gh Mohiuddin. "Heat transfer and fluid flow in microchannels." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0005/NQ39562.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Robertson, Andrew J. "Extended surface flow and heat transfer studies." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Putivisutisak, Sompong. "Computation of heat transfer and flow in compact heat-exchanger geometries." Thesis, Imperial College London, 1999. http://hdl.handle.net/10044/1/8536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miró, Jané Arnau. "Flow and heat transfer of impinging synthetic jets." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667300.

Full text
Abstract:
Synthetic jets are produced by the oscillatory movement of a membrane inside a cavity, causing fluid to enter and leave through a small orifice. This results in a net jet that is able to transfer kinetic energy and momentum to a fluid medium without the need of an external fluid source. This is why synthetic jets are interesting and will have key roles in a wide range of relevant applications such as active flow control, thermal cooling or fuel mixing. From the phenomenological point of view, synthetic jets are formed by elaborate flow patterns given their non-linear nature and, under certain conditions, unstable complex flows can be observed. The present dissertation is focused on the investigation of the fluid flow and thermal performance of synthetic jets. Two different synthetic jet actuator geometries (i.e., slotted and circular) are studied. The jets in both configurations are confined by two parallel isothermal plates with an imposed temperature difference, and impinge into a heated plate located at a certain distance from the actuator orifice. The unsteady three-dimensional Navier-Stokes equations are solved for a range of Reynolds numbers using time-accurate numerical simulations. Moreover, a detailed model of the actuator that uses Arbitrary Lagrangian-Eulerian (ALE) formulation to account for the movement of the actuator membrane is developed. This model, based on the governing numbers of the flow, is used to conduct the numerical analyses. The flows obtained in both configurations are noticeably different and three-dimensional for almost all the Reynolds numbers considered. The jet in the slotted configuration is formed by a pair of vortices that undergo turbulent transition and eventually coalesce into the jet. The external flow is dominated by two major recirculation structures that find their counterparts inside the actuator cavity. A new vortical structure, observed in confined slotted jets, appears as an interaction of the synthetic jet flow with the bottom wall and results in a change on the jet’s heat transfer mechanisms. On the other hand, the jet in the circular configuration presents three different flow regions that have been identified according to the literature: the main vortex ring, the trailing jet and the potential core. In this case, the external flow is dominated by the main vortex ring and the trailing jet, thus presenting a different morphology and heat transfer behavior than the slotted configuration. A detailed analysis of the vortex trajectories has shown that the advected vortices on the circular configuration reach the impingement before their slotted counterparts. Distributions of turbulent kinetic energy at the expulsion and vortex swirl and shear strength have revealed that the flow on the circular jet is mostly concentrated near the jet centerline, while it is more spread for the slotted configuration. For these reasons, at the same jet ejection velocity and actuator geometry, synthetic jet formation on the circular configuration can occur at higher frequencies than on the slotted configuration. The analysis of the synthetic jet outlet temperature has shown that assuming a uniform profile is reasonable if the Reynolds number is high enough. Moreover, the outlet jet temperature is significantly higher than the cold plate temperature. The two configurations present different impinging behaviors due to the differences on the flow. Heat transfer analysis on the hot wall has revealed that the circular configuration reaches a higher heat transfer peak than the slotted configuration, however, heat transfer decays faster in the circular configuration when moving away from the jet centerline. Eventually, correlations for the heat transfer at the hot wall and the outlet temperature with the Reynolds number are proposed. They can be useful to include the cavity effects when using simplified models that do not account for actuator cavity.
Els jets sintètics (SJ) són produïts pel moviment oscil·latori d'una membrana a l'interior d'una cavitat, cosa que fa que el líquid entri i surti per un petit orifici. Això es tradueix en un jet que és capaç de transferir energia cinètica i impuls a un medi fluid sense la necessitat d'una font externa. És per això que els SJ són interessants i tindran un paper clau en una àmplia gamma d'aplicacions rellevants, com ara el control actiu de flux, el refredament tèrmic o la barreja de combustible. Des del punt de vista fenomenològic, els SJ estan formats per patrons de flux elaborats per la seva naturalesa no lineal i, sota certes condicions, es poden observar fluxos complexos i inestables. Aquesta tesis està centrada en la investigació del flux de fluids i el rendiment tèrmic dels jets sintètics. S'estudien dues geometries diferents d’actuadors de SJ (és a dir, ranurats i circulars). Els jets en ambdues configuracions estan confinats per dues plaques isotèrmiques paral·leles amb una diferència de temperatura imposada i afecten a una placa escalfada situada a una certa distància de l'orifici de l'actuador. Les equacions tridimensionals inestables de Navier-Stokes es resolen per un nombre de Reynolds utilitzant simulacions numèriques precises en el temps. A més, es desenvolupa un model detallat de l'actuador que utilitza la formulació arbitrària lagrangiana-euleriana (ALE) per explicar el moviment de la membrana de l'actuador. Aquest model, basat en els números de govern del flux, s'utilitza per realitzar els anàlisis numèrics. Els fluxos obtinguts en ambdues configuracions són notablement diferents i tridimensionals per a gairebé tots els números de Reynolds considerats. El jet en la configuració ranurada està format per un parell de vòrtexs que experimenten una transició turbulenta que finalment formen el jet. El flux extern està dominat per dues recirculacions principals amb els seus homòlegs dins de la cavitat de l'actuador. Una nova estructura, observada en els jets ranurats confinats, apareix com una interacció del flux amb la paret inferior i provoca un canvi en els mecanismes de transferència de calor del jet. D'altra banda, el jet en la configuració circular presenta tres regions de flux diferents que s'han identificat segons la literatura: l'anell de vòrtex principal, el jet final i el nucli potencial. En aquest cas, el flux extern està dominat per l'anell de vòrtex principal i el jet de sortida, presentant així un comportament diferent de morfologia i transferència de calor que la configuració ranurada. Un anàlisi detallat de les trajectòries de vòrtex ha demostrat que els vòrtexs de la configuració circular arriben a la paret superior abans que els seus homòlegs ranurats. Les distribucions d'energia cinètica turbulenta a l'expulsió, entre altres, han revelat que el flux del jet circular es concentra majoritàriament a prop de la línia central del jet, mentre que és més estès per a la configuració ranurada. Per aquestes raons, a la mateixa velocitat d'ejecció del jet i geometria de l'actuador, la formació de SJ en la configuració circular pot produir-se a freqüències més altes que a la configuració ranurada. L'anàlisi de la temperatura de sortida dels SJ ha demostrat que assumir un perfil uniforme és raonable si el nombre de Reynolds és prou elevat. A més, la temperatura del jet de sortida és significativament superior a la temperatura de la placa freda. Les dues configuracions presenten diferents comportaments a causa de les diferències en el flux. L’anàlisi de la transferència de calor a la paret calenta ha revelat que la configuració circular arriba a un màxim de transferència de calor més gran que la configuració ranurada, però, la transferència de calor es desaccelera més ràpidament en la configuració circular quan s’allunya de la línia central. Finalment, es proposen correlacions per a la transferència de calor a la paret calenta i la temperatura de sortida amb el nombre de Reynolds. Poden ser útils per incloure els efectes de la cavitat quan s’utilitzen models simplificats que no tenen en compte la cavitat de l’actuador.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Flow and heat transfer"

1

Agrawal, Amit, Hari Mohan Kushwaha, and Ravi Sudam Jadhav. Microscale Flow and Heat Transfer. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10662-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

S, El-Genk Mohamed, and American Institute of Chemical Engineers., eds. Heat transfer, Portland, 1995. New York: American Institute of Chemical Engineers, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

S, El-Genk Mohamed, American Institute of Chemical Engineers., and National Heat Transfer Conference (31st : 1996 : Houston, Tex.), eds. Heat transfer, Houston, 1996. New York: American Institute of Chemical Engineers, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Srinivasacharya, D., and K. Srinivas Reddy, eds. Numerical Heat Transfer and Fluid Flow. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1903-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Whalley, P. B. Two-phase flow and heat transfer. Oxford: Oxford University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mewes, Dieter, and Lixin Cheng. Advances in multiphase flow and heat transfer. Edited by ebrary Inc. Saif Zone, Sharjah, United Arab Emirates]: Bentham Science Publishers Ltd., 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

National Heat Transfer Conference (28th 1992 San Diego, Calif.). Heat transfer: San Diego, 1992. Edited by Volintine Brian G. 1951- and American Institute of Chemical Engineers. New York, N.Y: American Institute of Chemical Engineers, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1922-, Tang Y. S., ed. Boiling heat transfer and two-phase flow. 2nd ed. Washington, D.C: Taylor & Francis, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

International Symposium on Multiphase Flow and Heat Transfer (2nd 1989 Xi'an, Shaanxi Sheng, China). Multiphase flow and heat transfer: Second international symposium. New York: Hemisphere Pub. Corp., 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Faghri, Amir, and Yuwen Zhang. Fundamentals of Multiphase Heat Transfer and Flow. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-22137-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Flow and heat transfer"

1

Venkateshan, S. P. "Convection in Turbulent Flow." In Heat Transfer, 685–725. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58338-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Venkateshan, S. P. "Laminar Convection In Internal Flow." In Heat Transfer, 545–610. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58338-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Venkateshan, S. P. "Laminar Convection in External Flow." In Heat Transfer, 611–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58338-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barron, Randall F., and Gregory F. Nellis. "Free Molecular Flow." In Cryogenic Heat Transfer, 469–96. Boca Raton : CRC Press, Taylor & Francis Group, 2015.: CRC Press, 2017. http://dx.doi.org/10.1201/b20225-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Simonson, J. R. "Separated flow convection." In Engineering Heat Transfer, 136–43. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-19351-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Han, Je-Chin, and Lesley M. Wright. "Turbulent Flow Heat Transfer." In Analytical Heat Transfer, 337–83. 2nd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003164487-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bergles, A. E. "Heat Transfer Augmentation." In Two-Phase Flow Heat Exchangers, 343–73. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2790-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Han, Je-Chin, and Lesley M. Wright. "Turbulent Flow Heat Transfer Enhancement." In Analytical Heat Transfer, 515–60. 2nd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003164487-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jiji, Latif M. "HEAT TRANSFER IN CHANNEL FLOW." In Heat Convection, 203–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02971-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Das, Sarit Kumar, and Dhiman Chatterjee. "Flow Boiling Heat Transfer." In Vapor Liquid Two Phase Flow and Phase Change, 209–41. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20924-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Flow and heat transfer"

1

Takeishi, K., Y. Oda, Y. Egawa, and T. Kitamura. "Film cooling with swirling coolant flow." In HEAT TRANSFER 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/ht100171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dougherty, T., C. Fighetti, G. Reddt, B. W. Yang, T. Jafri, Edward V. McAssey, Jr., and Z. Qureshi. "FLOW BOILING IN VERTICAL DOWN-FLOW." In International Heat Transfer Conference 9. Connecticut: Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kessler, M. "Flow instabilities in a vertical tube reboiler." In HEAT TRANSFER 2014, edited by S. Kabelac. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/ht140291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Taitel, Yehuda. "FLOW PATTERN TRANSITION IN TWO PHASE FLOW." In International Heat Transfer Conference 9. Connecticut: Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.1930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Spindler, Klaus. "FLOW BOILING." In International Heat Transfer Conference 10. Connecticut: Begellhouse, 1994. http://dx.doi.org/10.1615/ihtc10.1930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Narain, Amitabh, G. Yu, and Q. Liu. "COMPUTATIONAL SIMULATION AND FLOW PHYSICS FOR STRATIFIED/ANNULAR CONDENSING FLOWS." In Microgravity Fluid Physics & Heat Transfer. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/mfpht-1999.60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lim, Kihoon, Junbeom Lee, and Jaeseon Lee. "TWO-PHASE FLOW ANALYSIS OF A DOUBLE LAYER COUNTER FLOW MINI-CHANNEL HEATSINK WITH 1D COUNTERCURRENT FLOW MODEL." In International Heat Transfer Conference 16. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.bae.023816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wadekar, V. V., and D. B. R. Kenning. "FLOW BOILING HEAT TRANSFER IN VERTICAL SLUG AND CHURN FLOW REGION." In International Heat Transfer Conference 9. Connecticut: Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.4210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Kyu Hyun, Jong Pil Won, and Woe Ho Kim. "THERMAL FLOW STUDY OF MULTI-FLOW CONDENSER FOR AUTOMOTIVE AIR-CONDITIONER." In International Heat Transfer Conference 11. Connecticut: Begellhouse, 1998. http://dx.doi.org/10.1615/ihtc11.1400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kang, Tae-il. "EXPERIMENTAL STUDY ON FLOW RATE MEASUREMENT OF HELIUM-AIR EXCHANGE FLOW." In International Heat Transfer Conference 11. Connecticut: Begellhouse, 1998. http://dx.doi.org/10.1615/ihtc11.1680.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Flow and heat transfer"

1

Ulke, A., and I. Goldberg. Flow and heat transfer in vertical annuli. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10192986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Telionis, D. P., and T. E. Diller. Heat transfer in oscillatory flow: Final report. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/6908819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hartnett, J. P. Single phase channel flow forced convection heat transfer. Office of Scientific and Technical Information (OSTI), April 1999. http://dx.doi.org/10.2172/335180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ulke, A., and I. Goldberg. Flow regimes and heat transfer in vertical narrow annuli. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10192912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bassem F. Armaly. Convection Heat Transfer in Three-Dimensional Turbulent Separated/Reattached Flow. Office of Scientific and Technical Information (OSTI), October 2007. http://dx.doi.org/10.2172/918582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dykhuizen, R. C., R. G. Baca, and T. C. Bickel. Flow and heat transfer model for a rotating cryogenic motor. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10185933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xiong, Zhongmin, and Sanjiva K. Lele. Stagnation Point Flow and Heat Transfer Under Free-Stream Turbulence. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada422883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lin, C. X. Heat Transfer Enhancement Through Self-Sustained Oscillating Flow in Microchannels. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada460536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goldstein, R. J., and M. Y. Jabbari. The impact of separated flow on heat and mass transfer. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6546146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shiva, B. G. GMC-93-T03 Regenerative Heat Transfer in Reciprocating Compressors. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 1993. http://dx.doi.org/10.55274/r0011944.

Full text
Abstract:
Evaluates the impact of heat transfer on reciprocating compressor performance, especially with respect to flow capacity. This paper gives results of the experimental measurements done to determine the contribution of regenerative heat transfer to suction gas heating and its comparison with earlier empirical models. It forms part of ongoing research on estimating the effects of heat transfer on compressor performance with a view to modeling such effects for improved prediction of compressor performance.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography