Academic literature on the topic 'Flow and heat transfer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flow and heat transfer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Flow and heat transfer"
Gorin, Alexander V. "HEAT TRANSFER IN TURBULENT SEPARATED FLOWS(Flow around Cylinder 1)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 445–50. http://dx.doi.org/10.1299/jsmeicjwsf.2005.445.
Full textRyspekova, A., Zh Bolatov, and S. Kunakov. "Heat transfer of the uranium sphere in laminar cooling flow." International Journal of Mathematics and Physics 6, no. 1 (2015): 45–47. http://dx.doi.org/10.26577/2218-7987-2015-6-1-45-47.
Full textNakamura, Hirokazu, and Toshihiko Shakouchi. "Flow and Heat Transfer Characteristics of High Temperature Gas-Particle Air Jet Flow(Multiphase Flow 2)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 319–24. http://dx.doi.org/10.1299/jsmeicjwsf.2005.319.
Full textHosoi, Hideaki, Naoyuki Ishida, Naohisa Watahiki, and Kazuaki Kitou. "ICONE23-1630 HEAT TRANSFER TESTS FOR PASSIVE WATER-COOLING SYSTEM : (2) STEAM FLOW DISTRIBUTION AND HEAT TRANSFER IN TUBE BUNDLE." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_305.
Full textCoulson, J. M., J. F. Richardson, J. R. Backhurst, and J. H. Harker. "Fluid flow, heat transfer and mass transfer." Filtration & Separation 33, no. 2 (February 1996): 102. http://dx.doi.org/10.1016/s0015-1882(96)90353-5.
Full textAvramenko, A. A., M. M. Kovetskaya, E. A. Kondratieva, and T. V. Sorokina. "HEAT TRANSFER IN GRADIENT TURBULENT BOUNDARY LAYER." Thermophysics and Thermal Power Engineering 41, no. 4 (December 22, 2019): 19–26. http://dx.doi.org/10.31472/ttpe.4.2019.3.
Full textOhtake, Hiroyasu, Yasuo Koizumi, and Norihumi Higono. "ICONE15-10655 ANALYTICAL STUDY ON BOILING HEAT TRANSFER OF SUBCOOLED FLOW UNDER OSCILLATORY FLOW CONDITIONS." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2007.15 (2007): _ICONE1510. http://dx.doi.org/10.1299/jsmeicone.2007.15._icone1510_358.
Full textBabus'Haq, Ramiz, and S. Douglas Probert. "Heat transfer in turbulent flow." Applied Energy 40, no. 1 (January 1991): 81–82. http://dx.doi.org/10.1016/0306-2619(91)90054-2.
Full textCorzo, Santiago Francisco, Damian Enrique Ramajo, and Norberto Marcelo Nigro. "High-Rayleigh heat transfer flow." International Journal of Numerical Methods for Heat & Fluid Flow 27, no. 9 (September 4, 2017): 1928–54. http://dx.doi.org/10.1108/hff-05-2016-0176.
Full textAsianuaba, Ifeoma B. "Heat Transfer Augmentation." European Journal of Engineering Research and Science 5, no. 4 (April 25, 2020): 475–78. http://dx.doi.org/10.24018/ejers.2020.5.4.1869.
Full textDissertations / Theses on the topic "Flow and heat transfer"
Barker, Adam. "Heat transfer in unsteady pipe flow." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428390.
Full textWen, Dongsheng. "Flow boiling heat transfer in microgeometries." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414305.
Full textLeung, Sharon Shui Yee. "Heat transfer in microchannels : taylor flow." Thesis, The University of Sydney, 2012. http://hdl.handle.net/2123/17835.
Full textNajibi, Seyed Hesam. "Heat transfer and heat transfer fouling during subcooled flow boiling for electrolyte solutions." Thesis, University of Surrey, 1997. http://epubs.surrey.ac.uk/773/.
Full textWongl, Li Shing. "Flow and heat transfer in buoyancy induced rotating flow." Thesis, University of Sussex, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250118.
Full textSun, Guang. "Heat transfer in forced convective flow boiling." Thesis, Imperial College London, 1996. http://hdl.handle.net/10044/1/11255.
Full textMala, Gh Mohiuddin. "Heat transfer and fluid flow in microchannels." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0005/NQ39562.pdf.
Full textRobertson, Andrew J. "Extended surface flow and heat transfer studies." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302219.
Full textPutivisutisak, Sompong. "Computation of heat transfer and flow in compact heat-exchanger geometries." Thesis, Imperial College London, 1999. http://hdl.handle.net/10044/1/8536.
Full textMiró, Jané Arnau. "Flow and heat transfer of impinging synthetic jets." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667300.
Full textEls jets sintètics (SJ) són produïts pel moviment oscil·latori d'una membrana a l'interior d'una cavitat, cosa que fa que el líquid entri i surti per un petit orifici. Això es tradueix en un jet que és capaç de transferir energia cinètica i impuls a un medi fluid sense la necessitat d'una font externa. És per això que els SJ són interessants i tindran un paper clau en una àmplia gamma d'aplicacions rellevants, com ara el control actiu de flux, el refredament tèrmic o la barreja de combustible. Des del punt de vista fenomenològic, els SJ estan formats per patrons de flux elaborats per la seva naturalesa no lineal i, sota certes condicions, es poden observar fluxos complexos i inestables. Aquesta tesis està centrada en la investigació del flux de fluids i el rendiment tèrmic dels jets sintètics. S'estudien dues geometries diferents d’actuadors de SJ (és a dir, ranurats i circulars). Els jets en ambdues configuracions estan confinats per dues plaques isotèrmiques paral·leles amb una diferència de temperatura imposada i afecten a una placa escalfada situada a una certa distància de l'orifici de l'actuador. Les equacions tridimensionals inestables de Navier-Stokes es resolen per un nombre de Reynolds utilitzant simulacions numèriques precises en el temps. A més, es desenvolupa un model detallat de l'actuador que utilitza la formulació arbitrària lagrangiana-euleriana (ALE) per explicar el moviment de la membrana de l'actuador. Aquest model, basat en els números de govern del flux, s'utilitza per realitzar els anàlisis numèrics. Els fluxos obtinguts en ambdues configuracions són notablement diferents i tridimensionals per a gairebé tots els números de Reynolds considerats. El jet en la configuració ranurada està format per un parell de vòrtexs que experimenten una transició turbulenta que finalment formen el jet. El flux extern està dominat per dues recirculacions principals amb els seus homòlegs dins de la cavitat de l'actuador. Una nova estructura, observada en els jets ranurats confinats, apareix com una interacció del flux amb la paret inferior i provoca un canvi en els mecanismes de transferència de calor del jet. D'altra banda, el jet en la configuració circular presenta tres regions de flux diferents que s'han identificat segons la literatura: l'anell de vòrtex principal, el jet final i el nucli potencial. En aquest cas, el flux extern està dominat per l'anell de vòrtex principal i el jet de sortida, presentant així un comportament diferent de morfologia i transferència de calor que la configuració ranurada. Un anàlisi detallat de les trajectòries de vòrtex ha demostrat que els vòrtexs de la configuració circular arriben a la paret superior abans que els seus homòlegs ranurats. Les distribucions d'energia cinètica turbulenta a l'expulsió, entre altres, han revelat que el flux del jet circular es concentra majoritàriament a prop de la línia central del jet, mentre que és més estès per a la configuració ranurada. Per aquestes raons, a la mateixa velocitat d'ejecció del jet i geometria de l'actuador, la formació de SJ en la configuració circular pot produir-se a freqüències més altes que a la configuració ranurada. L'anàlisi de la temperatura de sortida dels SJ ha demostrat que assumir un perfil uniforme és raonable si el nombre de Reynolds és prou elevat. A més, la temperatura del jet de sortida és significativament superior a la temperatura de la placa freda. Les dues configuracions presenten diferents comportaments a causa de les diferències en el flux. L’anàlisi de la transferència de calor a la paret calenta ha revelat que la configuració circular arriba a un màxim de transferència de calor més gran que la configuració ranurada, però, la transferència de calor es desaccelera més ràpidament en la configuració circular quan s’allunya de la línia central. Finalment, es proposen correlacions per a la transferència de calor a la paret calenta i la temperatura de sortida amb el nombre de Reynolds. Poden ser útils per incloure els efectes de la cavitat quan s’utilitzen models simplificats que no tenen en compte la cavitat de l’actuador.
Books on the topic "Flow and heat transfer"
Agrawal, Amit, Hari Mohan Kushwaha, and Ravi Sudam Jadhav. Microscale Flow and Heat Transfer. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10662-1.
Full textS, El-Genk Mohamed, and American Institute of Chemical Engineers., eds. Heat transfer, Portland, 1995. New York: American Institute of Chemical Engineers, 1995.
Find full textS, El-Genk Mohamed, American Institute of Chemical Engineers., and National Heat Transfer Conference (31st : 1996 : Houston, Tex.), eds. Heat transfer, Houston, 1996. New York: American Institute of Chemical Engineers, 1996.
Find full textSrinivasacharya, D., and K. Srinivas Reddy, eds. Numerical Heat Transfer and Fluid Flow. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1903-7.
Full textWhalley, P. B. Two-phase flow and heat transfer. Oxford: Oxford University Press, 1996.
Find full textMewes, Dieter, and Lixin Cheng. Advances in multiphase flow and heat transfer. Edited by ebrary Inc. Saif Zone, Sharjah, United Arab Emirates]: Bentham Science Publishers Ltd., 2009.
Find full textNational Heat Transfer Conference (28th 1992 San Diego, Calif.). Heat transfer: San Diego, 1992. Edited by Volintine Brian G. 1951- and American Institute of Chemical Engineers. New York, N.Y: American Institute of Chemical Engineers, 1992.
Find full text1922-, Tang Y. S., ed. Boiling heat transfer and two-phase flow. 2nd ed. Washington, D.C: Taylor & Francis, 1997.
Find full textInternational Symposium on Multiphase Flow and Heat Transfer (2nd 1989 Xi'an, Shaanxi Sheng, China). Multiphase flow and heat transfer: Second international symposium. New York: Hemisphere Pub. Corp., 1991.
Find full textFaghri, Amir, and Yuwen Zhang. Fundamentals of Multiphase Heat Transfer and Flow. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-22137-9.
Full textBook chapters on the topic "Flow and heat transfer"
Venkateshan, S. P. "Convection in Turbulent Flow." In Heat Transfer, 685–725. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58338-5_14.
Full textVenkateshan, S. P. "Laminar Convection In Internal Flow." In Heat Transfer, 545–610. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58338-5_12.
Full textVenkateshan, S. P. "Laminar Convection in External Flow." In Heat Transfer, 611–84. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58338-5_13.
Full textBarron, Randall F., and Gregory F. Nellis. "Free Molecular Flow." In Cryogenic Heat Transfer, 469–96. Boca Raton : CRC Press, Taylor & Francis Group, 2015.: CRC Press, 2017. http://dx.doi.org/10.1201/b20225-9.
Full textSimonson, J. R. "Separated flow convection." In Engineering Heat Transfer, 136–43. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-19351-6_9.
Full textHan, Je-Chin, and Lesley M. Wright. "Turbulent Flow Heat Transfer." In Analytical Heat Transfer, 337–83. 2nd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003164487-10.
Full textBergles, A. E. "Heat Transfer Augmentation." In Two-Phase Flow Heat Exchangers, 343–73. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2790-2_10.
Full textHan, Je-Chin, and Lesley M. Wright. "Turbulent Flow Heat Transfer Enhancement." In Analytical Heat Transfer, 515–60. 2nd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003164487-16.
Full textJiji, Latif M. "HEAT TRANSFER IN CHANNEL FLOW." In Heat Convection, 203–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02971-4_6.
Full textDas, Sarit Kumar, and Dhiman Chatterjee. "Flow Boiling Heat Transfer." In Vapor Liquid Two Phase Flow and Phase Change, 209–41. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20924-6_9.
Full textConference papers on the topic "Flow and heat transfer"
Takeishi, K., Y. Oda, Y. Egawa, and T. Kitamura. "Film cooling with swirling coolant flow." In HEAT TRANSFER 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/ht100171.
Full textDougherty, T., C. Fighetti, G. Reddt, B. W. Yang, T. Jafri, Edward V. McAssey, Jr., and Z. Qureshi. "FLOW BOILING IN VERTICAL DOWN-FLOW." In International Heat Transfer Conference 9. Connecticut: Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.20.
Full textKessler, M. "Flow instabilities in a vertical tube reboiler." In HEAT TRANSFER 2014, edited by S. Kabelac. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/ht140291.
Full textTaitel, Yehuda. "FLOW PATTERN TRANSITION IN TWO PHASE FLOW." In International Heat Transfer Conference 9. Connecticut: Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.1930.
Full textSpindler, Klaus. "FLOW BOILING." In International Heat Transfer Conference 10. Connecticut: Begellhouse, 1994. http://dx.doi.org/10.1615/ihtc10.1930.
Full textNarain, Amitabh, G. Yu, and Q. Liu. "COMPUTATIONAL SIMULATION AND FLOW PHYSICS FOR STRATIFIED/ANNULAR CONDENSING FLOWS." In Microgravity Fluid Physics & Heat Transfer. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/mfpht-1999.60.
Full textLim, Kihoon, Junbeom Lee, and Jaeseon Lee. "TWO-PHASE FLOW ANALYSIS OF A DOUBLE LAYER COUNTER FLOW MINI-CHANNEL HEATSINK WITH 1D COUNTERCURRENT FLOW MODEL." In International Heat Transfer Conference 16. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.bae.023816.
Full textWadekar, V. V., and D. B. R. Kenning. "FLOW BOILING HEAT TRANSFER IN VERTICAL SLUG AND CHURN FLOW REGION." In International Heat Transfer Conference 9. Connecticut: Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.4210.
Full textLee, Kyu Hyun, Jong Pil Won, and Woe Ho Kim. "THERMAL FLOW STUDY OF MULTI-FLOW CONDENSER FOR AUTOMOTIVE AIR-CONDITIONER." In International Heat Transfer Conference 11. Connecticut: Begellhouse, 1998. http://dx.doi.org/10.1615/ihtc11.1400.
Full textKang, Tae-il. "EXPERIMENTAL STUDY ON FLOW RATE MEASUREMENT OF HELIUM-AIR EXCHANGE FLOW." In International Heat Transfer Conference 11. Connecticut: Begellhouse, 1998. http://dx.doi.org/10.1615/ihtc11.1680.
Full textReports on the topic "Flow and heat transfer"
Ulke, A., and I. Goldberg. Flow and heat transfer in vertical annuli. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10192986.
Full textTelionis, D. P., and T. E. Diller. Heat transfer in oscillatory flow: Final report. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/6908819.
Full textHartnett, J. P. Single phase channel flow forced convection heat transfer. Office of Scientific and Technical Information (OSTI), April 1999. http://dx.doi.org/10.2172/335180.
Full textUlke, A., and I. Goldberg. Flow regimes and heat transfer in vertical narrow annuli. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10192912.
Full textBassem F. Armaly. Convection Heat Transfer in Three-Dimensional Turbulent Separated/Reattached Flow. Office of Scientific and Technical Information (OSTI), October 2007. http://dx.doi.org/10.2172/918582.
Full textDykhuizen, R. C., R. G. Baca, and T. C. Bickel. Flow and heat transfer model for a rotating cryogenic motor. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10185933.
Full textXiong, Zhongmin, and Sanjiva K. Lele. Stagnation Point Flow and Heat Transfer Under Free-Stream Turbulence. Fort Belvoir, VA: Defense Technical Information Center, April 2004. http://dx.doi.org/10.21236/ada422883.
Full textLin, C. X. Heat Transfer Enhancement Through Self-Sustained Oscillating Flow in Microchannels. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada460536.
Full textGoldstein, R. J., and M. Y. Jabbari. The impact of separated flow on heat and mass transfer. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6546146.
Full textShiva, B. G. GMC-93-T03 Regenerative Heat Transfer in Reciprocating Compressors. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 1993. http://dx.doi.org/10.55274/r0011944.
Full text