Academic literature on the topic 'Floating offshore wind turbines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Floating offshore wind turbines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Floating offshore wind turbines"
Sclavounos, Paul. "Floating Offshore Wind Turbines." Marine Technology Society Journal 42, no. 2 (June 1, 2008): 39–43. http://dx.doi.org/10.4031/002533208786829151.
Full textPham, Thanh-Dam, Minh-Chau Dinh, Hak-Man Kim, and Thai-Thanh Nguyen. "Simplified Floating Wind Turbine for Real-Time Simulation of Large-Scale Floating Offshore Wind Farms." Energies 14, no. 15 (July 28, 2021): 4571. http://dx.doi.org/10.3390/en14154571.
Full textBarooni, Mohammad, Turaj Ashuri, Deniz Velioglu Sogut, Stephen Wood, and Shiva Ghaderpour Taleghani. "Floating Offshore Wind Turbines: Current Status and Future Prospects." Energies 16, no. 1 (December 20, 2022): 2. http://dx.doi.org/10.3390/en16010002.
Full textAhmad, Aabas. "Load Reduction of Floating Wind Turbines Using Tuned Mass Dampers." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 1298–303. http://dx.doi.org/10.22214/ijraset.2021.38178.
Full textRoddier, Dominique, and Joshua Weinstein. "Floating Wind Turbines." Mechanical Engineering 132, no. 04 (April 1, 2010): 28–32. http://dx.doi.org/10.1115/1.2010-apr-2.
Full textLi, Jiawen, Jingyu Bian, Yuxiang Ma, and Yichen Jiang. "Impact of Typhoons on Floating Offshore Wind Turbines: A Case Study of Typhoon Mangkhut." Journal of Marine Science and Engineering 9, no. 5 (May 17, 2021): 543. http://dx.doi.org/10.3390/jmse9050543.
Full textPham, Thi Quynh Mai, Sungwoo Im, and Joonmo Choung. "Prospects and Economics of Offshore Wind Turbine Systems." Journal of Ocean Engineering and Technology 35, no. 5 (October 31, 2021): 382–92. http://dx.doi.org/10.26748/ksoe.2021.061.
Full textMaimon, Aurel Dan. "Floating offshore wind turbines - technology and potential." Analele Universităţii "Dunărea de Jos" din Galaţi. Fascicula XI, Construcţii navale/ Annals of "Dunărea de Jos" of Galati, Fascicle XI, Shipbuilding 43 (December 15, 2020): 89–94. http://dx.doi.org/10.35219/annugalshipbuilding.2020.43.11.
Full textYang, Wenxian, Wenye Tian, Ole Hvalbye, Zhike Peng, Kexiang Wei, and Xinliang Tian. "Experimental Research for Stabilizing Offshore Floating Wind Turbines." Energies 12, no. 10 (May 21, 2019): 1947. http://dx.doi.org/10.3390/en12101947.
Full textRaisanen, Jack H., Stig Sundman, and Troy Raisanen. "Unmoored: a free-floating wind turbine invention and autonomous open-ocean wind farm concept." Journal of Physics: Conference Series 2362, no. 1 (November 1, 2022): 012032. http://dx.doi.org/10.1088/1742-6596/2362/1/012032.
Full textDissertations / Theses on the topic "Floating offshore wind turbines"
Lindeberg, Eivind. "Optimal Control of Floating Offshore Wind Turbines." Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9933.
Full textFloating Offshore Wind Power is an emerging and promising technology that is particularly interesting from a Norwegian point of view because of our long and windy coast. There are however still several remaining challenges with this technology and one of them is a possible stability problem due to positive feedback from tilt motion of the turbine tower. The focus of this report is to develope a simulator for a floating offshore wind turbine that includes individual, vibrating blades. Several controllers are developed, aiming to use the blade pitch angle and the generator power to control the turbine speed and output power, while at the same time limit the low-frequent motions of the tower and the high-frequent motions of the turbine blades. The prime effort is placed on developing a solution using Model Predictive Control(MPC). On the issue of blade vibrations no great progress has been made. It is not possible to conclude from the simulation results that the designed controllers are able to reduce the blade vibrations. However, the MPC controller works very well for the entire operating range of the turbine. A "fuzzy"-inspired switching algorithm is developed and this handles the transitions between the different operating ranges of the turbine convincingly. The problem of positive feedback from the tower motion is handled well, and the simulations do not indicate that this issue should jeopardize the viability of floating offshore wind turbines.
Naqvi, Syed Kazim. "Scale Model Experiments on Floating Offshore Wind Turbines." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/1196.
Full textHenderson, Andrew Raphael. "Analysis tools for large floating offshore wind farms." Thesis, University of London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341705.
Full textPolverini, Silvia. "Analysis and control of floating offshore wind turbines." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13883/.
Full textAhmadi, Mehran. "Analysis and Study of Floating Offshore Wind Turbines." University of Toledo / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1376643304.
Full textSönmez, Nurcan. "Investigating Wind Data and Configuration of Wind Turbines for a Turning Floating Platform." Thesis, KTH, Mekanik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148957.
Full textProskovics, Roberts. "Dynamic response of spar-type offshore floating wind turbines." Thesis, University of Strathclyde, 2015. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=26017.
Full textNematbakhsh, Ali. "A Nonlinear Computational Model of Floating Wind Turbines." Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-dissertations/170.
Full textHomer, Jeffrey R. "Physics-based control-oriented modelling for floating offshore wind turbines." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54891.
Full textApplied Science, Faculty of
Mechanical Engineering, Department of
Graduate
Castillo, Florian Thierry Stephan. "Floating Offshore Wind Turbines : Mooring System Optimization for LCOE Reduction." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284565.
Full textHavsbaserad vindkraft har en stor potential när det gäller elproduktion och intresset för dess utveckling växer enormt för att kunna möjliggöra en enorm expansion av ren förnyelsebar energiproduktion. Samtidigt som havsbaserade vindturbiner stöter på tuffa miljöförhållanden och möter utmaningar vid utbyggnad och underhåll, de jämna och pålitliga vindresurserna till havs är en stor fördel som kan tas tillvara. Ju längre fjärran från kusten desto högre och mer regelbundna vindhastigheterna blir jämfört med vindkraftverk på land, samtidigt som havsgrunden blir djupare och svårare för turbinbyggnad. Flytande havsbaserade vindkraftverk (Floating Offshore Wind Turbines, FOWT) i djupa vatten ger möjlighet att öka tillgängligheten och frigöra en enorm resursbas genom kostnadseffektiva lösningar längre ut till havs. De tillhörande kostnaderna är dock fortfarande relativt höga jämfört med andra energikällor. Dessa kostnader kan minskas genom vidareutvecklingen av tekniska genombrott och förbättrade designprocesser. Examensarbetet härmed är en del av H2020 EU-projektet COREWIND, som syftar till att minska FOWT-kostnaderna genom optimering av förtöjningssystemstekniken och genom införandet av dynamiska förtöjningslösningar. I synnerhet, det huvudsakliga målet för denna studie är att utveckla ett optimeringsverktyg för design av kostnadseffektiva och pålitliga ankarsystem för flytande havsbaserade vindkraftverk. Studiens omfattning inkluderar utvecklingen av en optimeringsstrategi som involverar Isight – en mjukvara från Dassault Systems som använts för analysen. Arbetet involverar också OrcaFlex, en programvara för finite element analys som utvecklats av Orcina, tillämpad i dynamiska analysmetoder. En Python-baserad kod skapades för att förverkliga kopplingen mellan de två programvaruverktygen. OrcaFlex-simuleringsmodeller byggdes för två testfall, validering av dessa modeller utfördes baserat på resultat erhållna med hjälp av FAST. Slutligen presenteras och analyseras resultat som erhållits för en fallstudie med en flottör och en särskild position för COREWIND-projektet. Fallstudien involverar utvecklingen av ett förtöjningssystem med det härmed validerade optimeringsverktyget; och testar dess integritet i kritiska belastningsförhållanden. Arbetet har visat hur ett optimeringsverktyg kan konstrueras och tillämpas för att förbättra designprocessen och minska kostnaderna.
Books on the topic "Floating offshore wind turbines"
Robertson, Amy N. Loads analysis of several offshore floating wind turbine concepts. Golden, CO: National Renewable Energy Laboratory, U.S. Dept. of Energy, Office of Energy Efficienty and Renewable Energy, 2011.
Find full textNational Renewable Energy Laboratory (U.S.), ed. Challenges in simulation of aerodynamics, hydrodynamics, and mooring-line dynamics of floating offshore wind turbines. Golden, CO: National Renewable Energy Laboratory, U.S. Dept. of Energy, Office of Energy Efficiency and Renewable Energy, 2011.
Find full textMasciola, Marco. Investigation of a FAST-OrcaFlex coupling module for integrating turbine and mooring dynamics of offshore floating wind turbines: Preprint. Golden, CO: National Renewable Energy Laboratory, U.S. Dept. of Energy, Office of Energy Efficiency and Renewable Energy, 2011.
Find full textNational Renewable Energy Laboratory (U.S.), ed. Offshore code comparison collaboration, continuation phase II: Results of a floating semisubmersible wind system : preprint. Golden, CO: National Renewable Energy Laboratory, 2012.
Find full textNational Renewable Energy Laboratory (U.S.), ed. Model development and loads analysis of an offshore wind turbine on a tension leg platform with a comparison to other floating turbine concepts: April 2009. Golden, Colo: National Renewable Energy Laboratory, U.S. Dept. of Energy, Office of Energy Efficiency & Renewable Energy, 2010.
Find full textCastro-Santos, Laura, and Vicente Diaz-Casas, eds. Floating Offshore Wind Farms. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27972-5.
Full textCruz, Joao, and Mairead Atcheson, eds. Floating Offshore Wind Energy. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29398-1.
Full textFerrer, Esteban, and Adeline Montlaur, eds. CFD for Wind and Tidal Offshore Turbines. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16202-7.
Full textOffshore wind: A comprehensive guide to successful offshore wind farm installation. Waltham. MA: Elsevier/Academic Press, 2012.
Find full textLesny, Kerstin. Foundations for offshore wind turbines: Tools for planning and design. Essen: VGE Verlag GmbH, 2010.
Find full textBook chapters on the topic "Floating offshore wind turbines"
Karimirad, Madjid. "Floating Offshore Wind Turbines." In Offshore Energy Structures, 53–76. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12175-8_4.
Full textSantos, Fernando P., Ângelo P. Teixeira, and Carlos Guedes Soares. "Operation and Maintenance of Floating Offshore Wind Turbines." In Floating Offshore Wind Farms, 181–93. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27972-5_10.
Full textJiang, Zhiyu, Xiangqian Zhu, and Weifei Hu. "Modeling and Analysis of Offshore Floating Wind Turbines." In Advanced Wind Turbine Technology, 247–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78166-2_9.
Full textUtsunomiya, T., I. Sato, T. Shiraishi, E. Inui, and S. Ishida. "Floating Offshore Wind Turbine, Nagasaki, Japan." In Large Floating Structures, 129–55. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-137-4_6.
Full textLeimeister, Mareike. "Floating Offshore Wind Turbine Systems." In Reliability-Based Optimization of Floating Wind Turbine Support Structures, 45–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96889-2_3.
Full textPeiffer, Antoine, and Dominique Roddier. "Floating Wind Turbines: The New Wave in Offshore Wind Power." In Alternative Energy and Shale Gas Encyclopedia, 69–79. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119066354.ch6.
Full textBachynski, Erin E. "Fixed and Floating Offshore Wind Turbine Support Structures." In Offshore Wind Energy Technology, 103–42. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119097808.ch4.
Full textUtsunomiya, Tomoaki, Iku Sato, and Takashi Shiraishi. "Floating Offshore Wind Turbines in Goto Islands, Nagasaki, Japan." In Lecture Notes in Civil Engineering, 103–13. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5144-4_6.
Full textUtsunomiya, Tomoaki, Iku Sato, and Takashi Shiraishi. "Floating Offshore Wind Turbines in Goto Islands, Nagasaki, Japan." In Lecture Notes in Civil Engineering, 359–72. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8743-2_20.
Full textChen, Jianbing, Yupeng Song, and Jie Li. "Structural Global Reliability Analysis of Floating Offshore Wind Turbines." In Handbook of Smart Energy Systems, 1–24. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-72322-4_91-1.
Full textConference papers on the topic "Floating offshore wind turbines"
Bosch, C. "Machine Learning for Wind Turbine Fault Prediction through the Combination of Datasets from Same Type Turbines." In Floating Offshore Energy Devices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901731-7.
Full textDao, P. B. "Cointegration Modelling for Health and Condition Monitoring of Wind Turbines - An Overview." In Floating Offshore Energy Devices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901731-2.
Full textJodha, Shweta, Vibha Dinesh Sharma, and Arundhathi Arul. "Review on Floating Offshore Wind Turbines." In Offshore Technology Conference Asia. OTC, 2022. http://dx.doi.org/10.4043/31391-ms.
Full textPeña-Sanchez, Y. "Frequency-Domain Identification of Radiation Forces for Floating Wind Turbines by Moment-Matching." In Floating Offshore Energy Devices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901731-9.
Full textBoutrot, Jonathan, and Aude Leblanc. "Certification Scheme for Offshore Floating Wind Turbines." In ASME 2018 1st International Offshore Wind Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/iowtc2018-1011.
Full textThys, Maxime, Alessandro Fontanella, Federico Taruffi, Marco Belloli, and Petter Andreas Berthelsen. "Hybrid Model Tests for Floating Offshore Wind Turbines." In ASME 2019 2nd International Offshore Wind Technical Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/iowtc2019-7575.
Full textSebastian, Thomas, and Matthew Lackner. "Offshore Floating Wind Turbines - An Aerodynamic Perspective." In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-720.
Full textChen, Xiaohong, and Qing Yu. "Design Requirements for Floating Offshore Wind Turbines." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-11365.
Full textHopstad, Anne Lene Haukanes, Kimon Argyriadis, Andreas Manjock, Jarett Goldsmith, and Knut O. Ronold. "DNV GL Standard for Floating Wind Turbines." In ASME 2018 1st International Offshore Wind Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/iowtc2018-1035.
Full textJeon, Minu, Seunghoon Lee, and Soogab Lee. "Wake Influence on Dynamic Characteristics of Offshore Floating Wind Turbines." In 33rd Wind Energy Symposium. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1203.
Full textReports on the topic "Floating offshore wind turbines"
Jonkman, Jason, Alan D. Wright, Gregory Hayman, and Amy N. Robertson. Full-System Linearization for Floating Offshore Wind Turbines in OpenFAST: Preprint. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1489323.
Full textGriffith, D. Todd, Matthew F. Barone, Joshua Paquette, Brian Christopher Owens, Diana L. Bull, Carlos Simao-Ferriera, Andrew Goupee, and Matt Fowler. Design Studies for Deep-Water Floating Offshore Vertical Axis Wind Turbines. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1459118.
Full textEnnis, Brandon Lee, and D. Todd Griffith. System Levelized Cost of Energy Analysis for Floating Offshore Vertical-Axis Wind Turbines. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1466530.
Full textWang, Wei, Michael Brown, Matteo Ciantia, and Yaseen Sharif. DEM simulation of cyclic tests on an offshore screw pile for floating wind. University of Dundee, December 2021. http://dx.doi.org/10.20933/100001231.
Full textBranlard, Emmanuel, Matthew Hall, Andrew Platt, Amy Robertson, Greg Hayman, and Jason Jonkman. Implementation of Substructure Flexibility and Member-Level Load Capabilities for Floating Offshore Wind Turbines in OpenFAST. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1665796.
Full textRoald, L., J. Jonkman, and A. Robertson. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine. Office of Scientific and Technical Information (OSTI), May 2014. http://dx.doi.org/10.2172/1132170.
Full textJonkman, J. M. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/921803.
Full textGevorgian, Vahan. Grid Simulator for Testing a Wind Turbine on Offshore Floating Platform. Office of Scientific and Technical Information (OSTI), February 2012. http://dx.doi.org/10.2172/1036049.
Full textBull, Diana L., Matthew Fowler, and Andrew Goupee. A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1150233.
Full textKim, MooHyun. Development of mooring-anchor program in public domain for coupling with floater program for FOWTs (Floating Offshore Wind Turbines). Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1178273.
Full text