Academic literature on the topic 'Flight recovery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flight recovery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Flight recovery"
Gawron, Valerie J., and Jeff Peer. "Evaluation of Airplane Upset Recovery Training." Aviation Psychology and Applied Human Factors 4, no. 2 (July 1, 2014): 74–85. http://dx.doi.org/10.1027/2192-0923/a000059.
Full textGee, C., and R. Robertson. "Recovery of the flight system following ablation of the tegulae in immature adult locusts." Journal of Experimental Biology 199, no. 6 (June 1, 1996): 1395–403. http://dx.doi.org/10.1242/jeb.199.6.1395.
Full textWang, Nianyi, Huiling Wang, Shan Pei, and Boyu Zhang. "A Data-Driven Heuristic Method for Irregular Flight Recovery." Mathematics 11, no. 11 (June 4, 2023): 2577. http://dx.doi.org/10.3390/math11112577.
Full textShao, Quan, Mengxue Shao, Yunpeng Bin, Pei Zhu, and Yan Zhou. "Flight Recovery Method of Regional Multiairport Based on Risk Control Model." Mathematical Problems in Engineering 2020 (April 29, 2020): 1–18. http://dx.doi.org/10.1155/2020/7105381.
Full textBeer, Jeremy, Bria Morse, Todd Dart, Samantha Adler, and Paul Sherman. "Lingering Altitude Effects During Piloting and Navigation in a Synthetic Cockpit." Aerospace Medicine and Human Performance 94, no. 3 (March 1, 2023): 135–41. http://dx.doi.org/10.3357/amhp.6149.2023.
Full textWang, Jin, Peng Zhao, Zhe Zhang, Ting Yue, Hailiang Liu, and Lixin Wang. "Aircraft Upset Recovery Strategy and Pilot Assistance System Based on Reinforcement Learning." Aerospace 11, no. 1 (January 11, 2024): 70. http://dx.doi.org/10.3390/aerospace11010070.
Full textBratu, Stephane, and Cynthia Barnhart. "Flight operations recovery: New approaches considering passenger recovery." Journal of Scheduling 9, no. 3 (June 2006): 279–98. http://dx.doi.org/10.1007/s10951-006-6781-0.
Full textBlue, Rebecca S., Sean C. Norton, Jennifer Law, James M. Pattarini, Erik L. Antonsen, Alejandro Garbino, Jonathan B. Clark, and Matthew W. Turney. "Emergency Medical Support for a Manned Stratospheric Balloon Test Program." Prehospital and Disaster Medicine 29, no. 5 (September 5, 2014): 532–37. http://dx.doi.org/10.1017/s1049023x14000958.
Full textFernandez-Montesinos, Aznar M., G. Schram, H. B. Verbruggen, and R. A. Vingerhoeds. "Enhancing Flight Safety: Recovery from Windshear." IFAC Proceedings Volumes 31, no. 29 (October 1998): 104–6. http://dx.doi.org/10.1016/s1474-6670(17)38371-4.
Full textvon Kroge, S., EM Wölfel, LB Buravkova, DA Atiakshin, EA Markina, T. Schinke, T. Rolvien, B. Busse, and K. Jähn-Rickert. "Bone loss recovery in mice following microgravity with concurrent bone-compartment-specific osteocyte characteristics." European Cells and Materials 42 (October 13, 2021): 220–31. http://dx.doi.org/10.22203/ecm.v042a16.
Full textDissertations / Theses on the topic "Flight recovery"
Lettovsky, Ladislav. "Airline operations recovery : an optimization approach." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/24326.
Full textGee, Christine Elizabeth. "The capacity for functional recovery in the flight system of Locusta migratoria migratorioides." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq22458.pdf.
Full textWalsh, Allan R. "A computer model for in-flight black liquor combustion in a kraft recovery furnace." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/7060.
Full textRafi, Melvin. "Response and recovery of an MRAC adaptive flight control system to adverse atmospheric encounters." Thesis, Wichita State University, 2013. http://hdl.handle.net/10057/10642.
Full textThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Aerospace Engineering
Cunis, Torbjørn. "Modeling, analysis, and control for upset recovery : from system theory to unmanned aircraft flight." Thesis, Toulouse, ISAE, 2019. http://www.theses.fr/2019ESAE0027.
Full textUpset flight dynamics are characterised by unstable, highly nonlinear behaviourof the aircraft aerodynamic system. As upsets often lead to in-flight loss-of-control (LOC-I) accidents,it still poses a severe threat to today’s commercial aviation. Contributing to almost everysecond fatality in civil aviation while representing merely 10% of the total accidents (both fataland nonfatal), the International Air Transport Association has classified LOC-I as the “highestrisk to aviation safety”. Considerable effort has been undertaken in response by academics,manufacturers, commercial airlines, and authorities to predict and prevent LOC-I events as wellas recover from upset conditions into the nominal flight envelope. As result, researchers fromboth aeronautical engineering and system theory have made significant contributions towardsaviation safety; however, approaches from engineering and theory are rather disparate. This thesistherefore focuses on the application and transfer of system theoretical results to engineeringapplications.In particular, we have found simple polynomial models for aircraft dynamics, despite commonin the system theoretical literature, failing to represent full-envelope aerodynamics accurately.Advanced fitting methods such as multi-variate splines, on the other hand, are unsuitable forsome of the proposed functional analysis methods. Instead, a simple piecewise defined polynomialmodel proves to be accurate in fitting the aerodynamic coefficients for low and high angles ofattack. State-of-the-art bifurcation analysis and analysis based on sum-of-squares programmingtechniques are extended for this class of models and applied to a piecewise equations of motionof the Generic Transport Model (GTM). In the same spirit, we develop a model for a small,fixed-wing aircraft based on static continuous fluid dynamics (CFD) simulations. In the lackof dynamic coefficients from CFD, we identify a pitch-damping model comparing bifurcationanalysis and flight data that predicts well dynamics and stability of deep-stall flight.Previous developments in sum-of-squares programming have been promising for the certificationof nonlinear dynamics and flight control laws, yet their application in aeronauticalengineering halted. In combination with piecewise polynomial modeling, we are able to re-applythis technique for analysis in an accurate but computationally feasible manner to verify stablerecovery. Subsequently, we synthesise inherently stable linear and polynomial feedback laws fordeep-stall recovery. We further extend the estimation of regions of attraction for the piecewisepolynomial model towards an improved algorithm for local stability analysis of arbitrary switchingsystems, such as splines, thus making our work available for future analysis and certificationof highly accurate algebraic models.With highly nonlinear dynamics and critical state and input constraints challenging upsetrecovery, model-predictive control (MPC) with receding horizon is a powerful approach. MPCfurther provides a mature stability theory contributing towards the needs for flight control certification.Yet, for realistic control systems careful algebraic or semi-algebraic considerationsare necessary in order to rigorously prove closed-loop stability. Employing sum-of-squares programming,we provide a stability proof for a deep-stall recovery strategy minimising the loss ofaltitude during recovery. We further demonstrate MPC schemes for recovery from spiral andoscillatory spin upsets in an uncertain environment making use of the well-known and freelyavailable high-fidelity GTM desktop simulation.The results of this thesis are thus promising for future system theoretic approaches in modeling,analysis, and control of aircraft upset dynamics for the development and certification offlight control systems in order to prevent in-flight loss-of-control accidents
Rozenbeek, David, and Keyserlingk Erik von. "Recovery and Flight Data Recording System for Free Falling Units Ejected From Sounding Rocket." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214743.
Full textPratt, Kevin S. "Analysis of VTOL MAV use during rescue and recovery operations following Hurricane Katrina." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002209.
Full textVaaben, Bo, and Jesper Larsen. "Mitigation of airspace congestion impact on airline networks." Elsevier, 2015. https://publish.fid-move.qucosa.de/id/qucosa%3A72734.
Full textHallman, L. (Lauri). "Single photon detection based devices and techniques for pulsed time-of-flight applications." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526210445.
Full textTiivistelmä Tässä työssä kehitettiin uudentyyppinen, tehostettua "gain-switchingiä" hyödyntävä laserdiodilähetin käytettäväksi yksittäisten fotonien avalanche-ilmaisimien (SPAD) kanssa, ja sitä testattiin pulssin lentoaikaan perustuvassa laseretäisyysmittaussovelluksessa. Useita laserdiodiversioita testattiin ja ohjauselektroniikkaa kehitettiin. Ohjauselektroniikan parannukset mahdollistivat jopa 1 MHz pulssitustaajuuden, kun taas laserin maksimiteho oli noin 5–40 W riippuen laserdiodin dimensioista. Suuri lähtöteho on edullinen varsinkin vahvoissa taustafotoniolosuhteissa ulkona. Laserpulssin pituus vastaa tyypillisen SPAD-ilmaisimen jitteriä tarjoten useita etuja. Uusi laserpulssitinrakenne mahdollistaa esimerkiksi kompaktin etäisyysmittarin 50 m mittausetäisyydelle ulkona aurinkoisessa olosuhteessa mm–cm -mittaustarkkuudella (σ-arvo) yli 10 kHz mittaustahdilla. Yksittäisten fotonien lentoaikamittaustekniikan osoitettiin myös mahdollistavan soodakattilan keon korkeuden mittauksen, jossa on voimakkaasti vaimentavaa ja dispersoivaa savukaasua. Lisäksi portitetun yksittäisten fotonien ilmaisutekniikan osoitettiin hylkäävän fluoresenssin synnyttämiä fotoneita Raman-spektroskoopissa, joka johtaa selvästi parempaan signaali-kohinasuhteeseen. Fotoni-ilmiöitä tutkittiin myös lineaarista valoilmaisinta hyödyntävän pulssin kulkuaikamittaukseen perustuvan lasertutkan tapauksessa. Osoitettiin, että signaalin fotonikohina vaikuttaa optimaaliseen ilmaisinkonfiguraatioon, ja että pulssin ilmaisujitteri voidaan minimoida sopivalla ajoitusdiskriminaattorilla
Nikolic, Mark I. "The human-machine teams create, explain, and recover from coordination breakdowns: a simulator study of disturbance management on modern flight decks." The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1092808745.
Full textBooks on the topic "Flight recovery"
E, Hudlicka, and Langley Research Center, eds. Flight crew aiding for recovery from subsystem failures. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Find full textUnited States. Dept. of the Air Force, ed. Civil engineer readiness flight response and recovery handbook. [Washington, D.C.?]: Dept. of the Air Force, 1997.
Find full textBollendorf, Robert F. Flight of the loon: One family's battle with recovery. Glen Ellyn, IL: College of DuPage Press, 2008.
Find full textBollendorf, Robert F. The flight of the loon: One family's battle with recovery. Chicago, Ill: ACTA Publications, 1992.
Find full textHinton, David A. Piloted-simulation evaluation of recovery guidance for microburst wind shear encounters. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Find full textHinton, David A. Piloted-simulation evaluation of recovery guidance for microburst wind shear encounters. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Find full textHinton, David A. Piloted-simulation evaluation of recovery guidance for microburst wind shear encounters. Hampton, Va: Langley Research Center, 1989.
Find full textHinton, David A. Piloted-simulation evaluation of recovery guidance for microburst wind shear encounters. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1989.
Find full textSchaefer, Otto. Preliminary system design of a three arm capture mechanism (TACM) flight demonstration article. Huntsville, Ala: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1993.
Find full textUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Program., SRI International, and Langley Research Center, eds. Formal specification and verification of a fault-masking and transient-recovery model for digital flight-control systems. [Washington, D.C.?]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1991.
Find full textBook chapters on the topic "Flight recovery"
Pottmeyer, Felix, Viktor Dück, and Natalia Kliewer. "Crew Recovery with Flight Retiming." In Operations Research Proceedings 2008, 295–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00142-0_48.
Full textWan, Yu-jie, Guo-qing Wang, and Miao Wang. "Coupling Evaluation Model of Abnormal Flight Recovery Strategy." In 2023 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2023) Proceedings, 672–86. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3998-1_57.
Full textHale, N. Wayne. "Flying the Shuttle: Operations from Preparation through Flight to Recovery." In Space Shuttle Legacy, 173–89. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2013. http://dx.doi.org/10.2514/5.9781624102172.0173.0190.
Full textZhou, Tianwei, Pengcheng He, Churong Zhang, Yichen Lai, Huifen Zhong, and Xusheng Wu. "An Improved Particle Swarm Optimization Algorithm for Irregular Flight Recovery Problem." In Lecture Notes in Computer Science, 190–200. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09677-8_17.
Full textWang, Zhurong, Feng Wang, Xinhong Hei, and Haining Meng. "The Model of Flight Recovery Problem with Decision Factors and Its Optimization." In Intelligent Computing Theories and Application, 679–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95930-6_68.
Full textGao, Qiang, Xiaowei Tang, and Jinfu Zhu. "Research on Greedy Simulated Annealing Algorithm for Irregular Flight Schedule Recovery Model." In Understanding Complex Systems, 503–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13938-3_44.
Full textLüdtke, Andreas, Jan-Patrick Osterloh, Tina Mioch, Frank Rister, and Rosemarijn Looije. "Cognitive Modelling of Pilot Errors and Error Recovery in Flight Management Tasks." In Lecture Notes in Computer Science, 54–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11750-3_5.
Full textRushby, John. "A Fault-Masking and Transient-Recovery Model for Digital Flight-Control Systems." In Formal Techniques in Real-Time and Fault-Tolerant Systems, 109–36. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3220-0_5.
Full textGan, Xiaobing, Tianwei Zhou, Yuhan Mai, Huifen Zhong, Xiuyun Zhang, and Qinge Xiao. "An Improved Fireworks Algorithm for Integrated Flight Timetable and Crew Schedule Recovery Problem." In Lecture Notes in Computer Science, 329–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09677-8_28.
Full textZhou, Tianwei, Junrui Lu, Wenwen Zhang, Pengcheng He, and Ben Niu. "Irregular Flight Timetable Recovery Under COVID-19: An Approach Based on Genetic Algorithm." In Data Mining and Big Data, 240–49. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7476-1_22.
Full textConference papers on the topic "Flight recovery"
HILL, STEVEN, and TODD MCCUSKER. "COMET Recovery System flight dynamics." In Flight Simulation and Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3693.
Full textMARTIN, C., and S. HILL. "Prediction of aircraft spin recovery." In 16th Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-3363.
Full textLACKEY, J., B. MCNAMARA, and M. STEVENS. "F/A-18 departure recovery improvement evaluation." In Flight Simulation and Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3671.
Full textGOUSMAN, K., R. LOSCHKE, R. ROONEY, and J. JUANG. "Aircraft deep stall analysis and recovery." In 18th Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-2888.
Full textMCCUSKER, TODD, and STEVEN HILL. "Landing dispersions for the Commercial Experiment Transporter Recovery System." In Flight Simulation and Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3695.
Full textFRENCH, K. "Flight test experience with an RPV emergency (parachute) recovery system." In 4th Flight Test Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2139.
Full textKhrabrov, A., M. Sidoryuk, and M. Goman. "Aerodynamic model development and simulation of airliner spin for upset recovery." In Progress in Flight Physics, edited by P. Reijasse, D. Knight, M. Ivanov, and I. Lipatov. Les Ulis, France: EDP Sciences, 2013. http://dx.doi.org/10.1051/eucass/201305621.
Full textWilson, Charles B., Michael L. Anderson, Michael Hyde, and Kent Jensen. "Optical Target Tracking with User Input for Automated RPA Recovery." In AIAA Atmospheric Flight Mechanics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-3709.
Full textXiuli, Zhao, and Guo Yanchi. "An improved GRASP for irregular flight recovery." In 2012 International Conference on System Science and Engineering (ICSSE). IEEE, 2012. http://dx.doi.org/10.1109/icsse.2012.6257229.
Full textTu, Zhan, Fan Fei, Matthew Eagon, Dongyan Xu, and Xinyan Deng. "Flight Recovery of MAVs with Compromised IMU." In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019. http://dx.doi.org/10.1109/iros40897.2019.8968145.
Full textReports on the topic "Flight recovery"
Ferguson, S. T., and J. C. Bryant. Design and Testing of An Airborne Global Positioning System[gps] Navigation and Flight Path Recovery System. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/131486.
Full textTran, M., W. A. Nicholas, J. Chen, Z. Hong, J. Sohn, T. Whiteway, J. Pugh, and C. Thun. Summary of analyses undertaken on debris recovered during the search for flight MH370: a collation of reports describing quarantine and parts analysis undertaken by Geoscience Australia. Geoscience Australia, 2017. http://dx.doi.org/10.11636/record.2017.011.
Full text