Journal articles on the topic 'Flavivirus Infection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Flavivirus Infection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Fontoura, Marina Alves, Rebeca Fróes Rocha, and Rafael Elias Marques. "Neutrophil Recruitment and Participation in Severe Diseases Caused by Flavivirus Infection." Life 11, no. 7 (July 20, 2021): 717. http://dx.doi.org/10.3390/life11070717.
Full textMusso, Didier, and Philippe Desprès. "Serological Diagnosis of Flavivirus-Associated Human Infections." Diagnostics 10, no. 5 (May 14, 2020): 302. http://dx.doi.org/10.3390/diagnostics10050302.
Full textWu, Bingan, Zhongtian Qi, and Xijing Qian. "Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development." Viruses 15, no. 4 (March 23, 2023): 813. http://dx.doi.org/10.3390/v15040813.
Full textQiu, Yang, Yan-Peng Xu, Miao Wang, Meng Miao, Hui Zhou, Jiuyue Xu, Jing Kong, et al. "Flavivirus induces and antagonizes antiviral RNA interference in both mammals and mosquitoes." Science Advances 6, no. 6 (February 2020): eaax7989. http://dx.doi.org/10.1126/sciadv.aax7989.
Full textKe, Po-Yuan. "The Multifaceted Roles of Autophagy in Flavivirus-Host Interactions." International Journal of Molecular Sciences 19, no. 12 (December 7, 2018): 3940. http://dx.doi.org/10.3390/ijms19123940.
Full textZhao, Rong, Meiyue Wang, Jing Cao, Jing Shen, Xin Zhou, Deping Wang, and Jimin Cao. "Flavivirus: From Structure to Therapeutics Development." Life 11, no. 7 (June 25, 2021): 615. http://dx.doi.org/10.3390/life11070615.
Full textLedermann, Jeremy P., Maria A. Lorono-Pino, Christine Ellis, Kali D. Saxton-Shaw, Bradley J. Blitvich, Barry J. Beaty, Richard A. Bowen, and Ann M. Powers. "Evaluation of Widely Used Diagnostic Tests To Detect West Nile Virus Infections in Horses Previously Infected with St. Louis Encephalitis Virus or Dengue Virus Type 2." Clinical and Vaccine Immunology 18, no. 4 (February 23, 2011): 580–87. http://dx.doi.org/10.1128/cvi.00201-10.
Full textLiao, Ching-Len, Yi-Ling Lin, Bi-Ching Wu, Chang-Huei Tsao, Mei-Chuan Wang, Chiu-I. Liu, Yue-Ling Huang, Jui-Hui Chen, Jia-Pey Wang, and Li-Kuang Chen. "Salicylates Inhibit Flavivirus Replication Independently of Blocking Nuclear Factor Kappa B Activation." Journal of Virology 75, no. 17 (September 1, 2001): 7828–39. http://dx.doi.org/10.1128/jvi.75.17.7828-7839.2001.
Full textWahaab, Abdul, Bahar E. Mustafa, Muddassar Hameed, Nigel J. Stevenson, Muhammad Naveed Anwar, Ke Liu, Jianchao Wei, Yafeng Qiu, and Zhiyong Ma. "Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-flavivirus Drug Discovery Employing Animal Cells and Models: A Review." Viruses 14, no. 1 (December 28, 2021): 44. http://dx.doi.org/10.3390/v14010044.
Full textHabarugira, Gervais, Jasmin Moran, Jessica J. Harrison, Sally R. Isberg, Jody Hobson-Peters, Roy A. Hall, and Helle Bielefeldt-Ohmann. "Evidence of Infection with Zoonotic Mosquito-Borne Flaviviruses in Saltwater Crocodiles (Crocodylus porosus) in Northern Australia." Viruses 14, no. 5 (May 21, 2022): 1106. http://dx.doi.org/10.3390/v14051106.
Full textQian, Xijing, and Zhongtian Qi. "Mosquito-Borne Flaviviruses and Current Therapeutic Advances." Viruses 14, no. 6 (June 5, 2022): 1226. http://dx.doi.org/10.3390/v14061226.
Full textReyes-Ruiz, José Manuel, Juan Fidel Osuna-Ramos, Luis Adrián De Jesús-González, Selvin Noé Palacios-Rápalo, Carlos Daniel Cordero-Rivera, Carlos Noe Farfan-Morales, Arianna Mahely Hurtado-Monzón, et al. "The Regulation of Flavivirus Infection by Hijacking Exosome-Mediated Cell–Cell Communication: New Insights on Virus–Host Interactions." Viruses 12, no. 7 (July 16, 2020): 765. http://dx.doi.org/10.3390/v12070765.
Full textPardy, Ryan D., and Martin J. Richer. "Protective to a T: The Role of T Cells during Zika Virus Infection." Cells 8, no. 8 (August 3, 2019): 820. http://dx.doi.org/10.3390/cells8080820.
Full textGomes da Silva, Priscilla, José Augusto Seixas dos Reis, Marcio Nogueira Rodrigues, Quézia da Silva Ardaya, and João Rodrigo Mesquita. "Serological Cross-Reactivity in Zoonotic Flaviviral Infections of Medical Importance." Antibodies 12, no. 1 (February 24, 2023): 18. http://dx.doi.org/10.3390/antib12010018.
Full textSilvia, Ondine J., Geoffrey R. Shellam, and Nadezda Urosevic. "Innate resistance to flavivirus infection in mice controlled by Flv is nitric oxide-independent." Journal of General Virology 82, no. 3 (March 1, 2001): 603–7. http://dx.doi.org/10.1099/0022-1317-82-3-603.
Full textZheng, Xiaoyan, and Ran Wang. "Metabolomic Analysis of Key Regulatory Metabolites in the Urine of Flavivirus-Infected Mice." Journal of Tropical Medicine 2022 (June 1, 2022): 1–12. http://dx.doi.org/10.1155/2022/4663735.
Full textNeufeldt, Christopher J., Mirko Cortese, Pietro Scaturro, Berati Cerikan, Jeremy Wideman, Keisuke Tabata, Thais Morase, Olga Oleksiuk, Andreas Pichlmair, and Ralf Bartenschlager. "ER-Shaping Atlastin Proteins Act as Central Hubs to Promote Flavivirus Replication and Virion Assembly." Proceedings 50, no. 1 (June 10, 2020): 31. http://dx.doi.org/10.3390/proceedings2020050031.
Full textLee, Chyan-Jang, Hui-Ru Lin, Ching-Len Liao, and Yi-Ling Lin. "Cholesterol Effectively Blocks Entry of Flavivirus." Journal of Virology 82, no. 13 (April 30, 2008): 6470–80. http://dx.doi.org/10.1128/jvi.00117-08.
Full textHou, Baohua, Hui Chen, Na Gao, and Jing An. "Cross-Reactive Immunity among Five Medically Important Mosquito-Borne Flaviviruses Related to Human Diseases." Viruses 14, no. 6 (June 2, 2022): 1213. http://dx.doi.org/10.3390/v14061213.
Full textGack, Michaela U. "TRIMming Flavivirus Infection." Cell Host & Microbe 10, no. 3 (September 2011): 175–77. http://dx.doi.org/10.1016/j.chom.2011.08.012.
Full textErrico, John M., Laura A. VanBlargan, Christopher A. Nelson, Michael S. Diamond, and Daved H. Fremont. "Structural and Antigenic Features of Powassan Virus Envelope Protein." Journal of Immunology 200, no. 1_Supplement (May 1, 2018): 126.27. http://dx.doi.org/10.4049/jimmunol.200.supp.126.27.
Full textBerneck, Beatrice Sarah, Alexandra Rockstroh, Jasmin Fertey, Thomas Grunwald, and Sebastian Ulbert. "A Recombinant Zika Virus Envelope Protein with Mutations in the Conserved Fusion Loop Leads to Reduced Antibody Cross-Reactivity upon Vaccination." Vaccines 8, no. 4 (October 13, 2020): 603. http://dx.doi.org/10.3390/vaccines8040603.
Full textLee, Tae Hee, Byung-Hak Song, Sang-Im Yun, Hye Ryun Woo, Young-Min Lee, Michael S. Diamond, and Kyung Min Chung. "A cross-protective mAb recognizes a novel epitope within the flavivirus NS1 protein." Journal of General Virology 93, no. 1 (January 1, 2012): 20–26. http://dx.doi.org/10.1099/vir.0.036640-0.
Full textBlahove, Maria Raisa, and James Richard Carter. "Flavivirus Persistence in Wildlife Populations." Viruses 13, no. 10 (October 18, 2021): 2099. http://dx.doi.org/10.3390/v13102099.
Full textSuzuki, Youichi, and Takeshi Murakawa. "Restriction of Flaviviruses by an Interferon-Stimulated Gene SHFL/C19orf66." International Journal of Molecular Sciences 23, no. 20 (October 20, 2022): 12619. http://dx.doi.org/10.3390/ijms232012619.
Full textChiou, Shyan-Song, Wayne D. Crill, Li-Kuang Chen, and Gwong-Jen J. Chang. "Enzyme-Linked Immunosorbent Assays Using Novel Japanese Encephalitis Virus Antigen Improve the Accuracy of Clinical Diagnosis of Flavivirus Infections." Clinical and Vaccine Immunology 15, no. 5 (March 12, 2008): 825–35. http://dx.doi.org/10.1128/cvi.00004-08.
Full textWhelan, Jillian N., Nicholas A. Parenti, Joshua Hatterschide, David M. Renner, Yize Li, Hanako M. Reyes, Beihua Dong, Erick R. Perez, Robert H. Silverman, and Susan R. Weiss. "Zika virus employs the host antiviral RNase L protein to support replication factory assembly." Proceedings of the National Academy of Sciences 118, no. 22 (May 24, 2021): e2101713118. http://dx.doi.org/10.1073/pnas.2101713118.
Full textDelfin-Riela, Triana, Martín Rossotti, Romina Alvez-Rosado, Carmen Leizagoyen, and Gualberto González-Sapienza. "Highly Sensitive Detection of Zika Virus Nonstructural Protein 1 in Serum Samples by a Two-Site Nanobody ELISA." Biomolecules 10, no. 12 (December 9, 2020): 1652. http://dx.doi.org/10.3390/biom10121652.
Full textCook, Shelley, Shannon N. Bennett, Edward C. Holmes, Reine De Chesse, Gregory Moureau, and Xavier de Lamballerie. "Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico." Journal of General Virology 87, no. 4 (April 1, 2006): 735–48. http://dx.doi.org/10.1099/vir.0.81475-0.
Full textGöertz, G. P., J. J. Fros, P. Miesen, C. B. F. Vogels, M. L. van der Bent, C. Geertsema, C. J. M. Koenraadt, R. P. van Rij, M. M. van Oers, and G. P. Pijlman. "Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes." Journal of Virology 90, no. 22 (August 31, 2016): 10145–59. http://dx.doi.org/10.1128/jvi.00930-16.
Full textChuang, Fu-Kai, Ching-Len Liao, Ming-Kuan Hu, Yi-Lin Chiu, An-Rong Lee, Shih-Ming Huang, Yu-Lung Chiu, et al. "Antiviral Activity of Compound L3 against Dengue and Zika Viruses In Vitro and In Vivo." International Journal of Molecular Sciences 21, no. 11 (June 5, 2020): 4050. http://dx.doi.org/10.3390/ijms21114050.
Full textCarro, Stephen D., and Sara Cherry. "Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses." Viruses 13, no. 1 (December 23, 2020): 13. http://dx.doi.org/10.3390/v13010013.
Full textTorres, Francisco J., Rhys Parry, Leon E. Hugo, Andrii Slonchak, Natalee D. Newton, Laura J. Vet, Naphak Modhiran, et al. "Reporter Flaviviruses as Tools to Demonstrate Homologous and Heterologous Superinfection Exclusion." Viruses 14, no. 7 (July 8, 2022): 1501. http://dx.doi.org/10.3390/v14071501.
Full textBalingit, Jean Claude, Minh Huong Phu Ly, Mami Matsuda, Ryosuke Suzuki, Futoshi Hasebe, Kouichi Morita, and Meng Ling Moi. "A Simple and High-Throughput ELISA-Based Neutralization Assay for the Determination of Anti-Flavivirus Neutralizing Antibodies." Vaccines 8, no. 2 (June 10, 2020): 297. http://dx.doi.org/10.3390/vaccines8020297.
Full textHassert, Mariah, James D. Brien, and Amelia K. Pinto. "T cell cross-reactivity during heterologous infection results in immunodomination and enhanced cytolytic capacity at the expense of virus-specific responses." Journal of Immunology 206, no. 1_Supplement (May 1, 2021): 103.27. http://dx.doi.org/10.4049/jimmunol.206.supp.103.27.
Full textHassert, Mariah, James D. Brien, and Amelia K. Pinto. "CD8+ T cell cross-reactivity during heterologous flavivirus infection results in cross-reactive immunodomination and enhanced cytolytic capacity at the expense of virus-specific responses." Journal of Immunology 204, no. 1_Supplement (May 1, 2020): 95.9. http://dx.doi.org/10.4049/jimmunol.204.supp.95.9.
Full textYou, Jaehwan, Shangmei Hou, Natasha Malik-Soni, Zaikun Xu, Anil Kumar, Richard A. Rachubinski, Lori Frappier, and Tom C. Hobman. "Flavivirus Infection Impairs Peroxisome Biogenesis and Early Antiviral Signaling." Journal of Virology 89, no. 24 (September 30, 2015): 12349–61. http://dx.doi.org/10.1128/jvi.01365-15.
Full textSeo, Min-Goo, Hak Seon Lee, Sung-Chan Yang, Byung-Eon Noh, Tae-Kyu Kim, Wook-Gyo Lee, and Hee Il Lee. "National Monitoring of Mosquito Populations and Molecular Analysis of Flavivirus in the Republic of Korea in 2020." Microorganisms 9, no. 10 (October 2, 2021): 2085. http://dx.doi.org/10.3390/microorganisms9102085.
Full textVicenzi, Elisa, Isabel Pagani, Silvia Ghezzi, Sarah L. Taylor, Timothy R. Rudd, Marcelo A. Lima, Mark A. Skidmore, and Edwin A. Yates. "Subverting the mechanisms of cell death: flavivirus manipulation of host cell responses to infection." Biochemical Society Transactions 46, no. 3 (April 20, 2018): 609–17. http://dx.doi.org/10.1042/bst20170399.
Full textMerino-Ramos, Teresa, Ángela Vázquez-Calvo, Josefina Casas, Francisco Sobrino, Juan-Carlos Saiz, and Miguel A. Martín-Acebes. "Modification of the Host Cell Lipid Metabolism Induced by Hypolipidemic Drugs Targeting the Acetyl Coenzyme A Carboxylase Impairs West Nile Virus Replication." Antimicrobial Agents and Chemotherapy 60, no. 1 (October 26, 2015): 307–15. http://dx.doi.org/10.1128/aac.01578-15.
Full textMomburg, Frank, Arno Müllbacher, and Mario Lobigs. "Modulation of Transporter Associated with Antigen Processing (TAP)-Mediated Peptide Import into the Endoplasmic Reticulum by Flavivirus Infection." Journal of Virology 75, no. 12 (June 15, 2001): 5663–71. http://dx.doi.org/10.1128/jvi.75.12.5663-5671.2001.
Full textArias-Arias, Jorge L., Derek J. MacPherson, Maureen E. Hill, Jeanne A. Hardy, and Rodrigo Mora-Rodríguez. "A fluorescence-activatable reporter of flavivirus NS2B–NS3 protease activity enables live imaging of infection in single cells and viral plaques." Journal of Biological Chemistry 295, no. 8 (January 9, 2020): 2212–26. http://dx.doi.org/10.1074/jbc.ra119.011319.
Full textPetruccelli, Angela, Tiziana Zottola, Gianmarco Ferrara, Valentina Iovane, Cristina Di Russo, Ugo Pagnini, and Serena Montagnaro. "West Nile Virus and Related Flavivirus in European Wild Boar (Sus scrofa), Latium Region, Italy: A Retrospective Study." Animals 10, no. 3 (March 16, 2020): 494. http://dx.doi.org/10.3390/ani10030494.
Full textEvangelista, Julio, Cristhopher Cruz, Carolina Guevara, Helvio Astete, Cristiam Carey, Tadeusz J. Kochel, Amy C. Morrison, Maya Williams, Eric S. Halsey, and Brett M. Forshey. "Characterization of a novel flavivirus isolated from Culex (Melanoconion) ocossa mosquitoes from Iquitos, Peru." Journal of General Virology 94, no. 6 (June 1, 2013): 1266–72. http://dx.doi.org/10.1099/vir.0.050575-0.
Full textKhristunova, Ekaterina, Elena Dorozhko, Elena Korotkova, Bohumil Kratochvil, Vlastimil Vyskocil, and Jiri Barek. "Label-Free Electrochemical Biosensors for the Determination of Flaviviruses: Dengue, Zika, and Japanese Encephalitis." Sensors 20, no. 16 (August 16, 2020): 4600. http://dx.doi.org/10.3390/s20164600.
Full textThibodeaux, Brett A., Amanda N. Panella, and John T. Roehrig. "Development of Human-Murine Chimeric Immunoglobulin G for Use in the Serological Detection of Human Flavivirus and Alphavirus Antibodies." Clinical and Vaccine Immunology 17, no. 10 (August 25, 2010): 1617–23. http://dx.doi.org/10.1128/cvi.00097-10.
Full textCharlier, Nathalie, Pieter Leyssen, Jan Paeshuyse, Christian Drosten, Herbert Schmitz, Alfons Van Lommel, Erik De Clercq, and Johan Neyts. "Infection of SCID mice with Montana Myotis leukoencephalitis virus as a model for flavivirus encephalitis." Journal of General Virology 83, no. 8 (August 1, 2002): 1887–96. http://dx.doi.org/10.1099/0022-1317-83-8-1887.
Full textWan, Shengfeng, Shengbo Cao, Xugang Wang, Yanfei Zhou, Weidong Yan, Xinbin Gu, Tzyy-Choou Wu, and Xiaowu Pang. "Evaluation of Vertebrate-Specific Replication-Defective Zika Virus, a Novel Single-Cycle Arbovirus Vaccine, in a Mouse Model." Vaccines 9, no. 4 (April 1, 2021): 338. http://dx.doi.org/10.3390/vaccines9040338.
Full textHoward-Jones, Annaleise R., David Pham, Rebecca Sparks, Susan Maddocks, Dominic E. Dwyer, Jen Kok, and Kerri Basile. "Arthropod-Borne Flaviviruses in Pregnancy." Microorganisms 11, no. 2 (February 8, 2023): 433. http://dx.doi.org/10.3390/microorganisms11020433.
Full textGwon, Yong-Dae, Mårten Strand, Richard Lindqvist, Emma Nilsson, Michael Saleeb, Mikael Elofsson, Anna K. Överby, and Magnus Evander. "Antiviral Activity of Benzavir-2 against Emerging Flaviviruses." Viruses 12, no. 3 (March 22, 2020): 351. http://dx.doi.org/10.3390/v12030351.
Full text