Academic literature on the topic 'Flapping wing, MAV, piezoelectric actuator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flapping wing, MAV, piezoelectric actuator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Flapping wing, MAV, piezoelectric actuator"

1

Ozaki, Takashi, and Norikazu Ohta. "Power-Efficient Driver Circuit for Piezo Electric Actuator with Passive Charge Recovery." Energies 13, no. 11 (2020): 2866. http://dx.doi.org/10.3390/en13112866.

Full text
Abstract:
Piezoelectric actuation is a promising principle for insect-scaled robots. A major concern while utilizing a piezoelectric actuator is energy loss due to its parasitic capacitance. In this paper, we propose a new concept to recover the charge stored in the parasitic capacitance; it requires only three additional lightweight passive components: two diodes and a resistor. The advantages of our concept are its small additional mass and simple operating procedure compared with existing charge recovery circuits. We provided a guideline for selecting a resistor using a simplified theoretical model and found that half of the charge can be recovered by employing a resistor that has a resistance sufficiently larger than the forward resistance of the additional diode. In addition, we experimentally demonstrated the concept. With a capacitive load (as a replacement for the piezoelectric actuator), it was successfully observed that the proposed concept decreased the power consumption to 58% of that in a circuit without charge recovery. Considering micro aerial vehicle (MAV) applications, we measured the lift-to-power efficiency of a flapping wing piezoelectric actuator by applying the proposed concept. The lift force was not affected by charge recovery; however, the power consumption was reduced. As a result, the efficiency was improved to 30.0%. We expect that the proposed circuit will contribute to the advancement of energy-saving microrobotics.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Yu Hua, Yu Tao Ju, and Chang Sheng Zhou. "Design of Flexible Wing with Embedded Piezoelectric Actuator." Applied Mechanics and Materials 325-326 (June 2013): 951–55. http://dx.doi.org/10.4028/www.scientific.net/amm.325-326.951.

Full text
Abstract:
This paper introduces a new kind of flexible wing with embedded piezoelectric actuator as framework for Micro Air Vehicles (MAV), which was fixed spar in the previous flexible wing. This made it a controllable flexible wing because the new flexible wing can not only works as previous model without control, but also can change its wing profiles in our purpose by using the embedded piezoelectric actuator when its necessary. The mathematical model of the deformation of piezoelectric actuator under control has developed. with which the structure of the flexible wing was designed. The simulation of dynamic characteristic of the flexible wing with embedded piezoelectric actuator has been done with ANSYS software.
APA, Harvard, Vancouver, ISO, and other styles
3

Marimuthu, Navanitha, Ermira Junita Abdullah, Dayang L. A. Majid, and Fairuz I. Romli. "Conceptual Design of Flapping Wing Using Shape Memory Alloy Actuator for Micro Unmanned Aerial Vehicle." Applied Mechanics and Materials 629 (October 2014): 152–57. http://dx.doi.org/10.4028/www.scientific.net/amm.629.152.

Full text
Abstract:
Micro Air Vehicle (MAV) has the capability to fly autonomously in complex environments which enables human to conduct surveillance in areas which are deemed too dangerous or in confined spaces that does not allow human entry. Research and development of MAVs aim to reduce their size further, thus novel techniques need to be explored in order to achieve this objective while still maintaining the MAVs’ current performance. In this paper, a conceptual design of an MAV with a main drive system using shape memory alloy (SMA) actuator to provide the flapping motion is proposed. SMA is considered superior to other smart materials due to its efficiency and large energy storage capacity. By incorporating SMA in the flapping wing MAV, it will provide users the flexibility to add more payloads by reducing bulky cables or reduce operating cost by using less fuel. However, there are some drawbacks in using SMAs such as nonlinear response of the strain to input current and hysteresis characteristic as a result of which their control is inaccurate and complicated.
APA, Harvard, Vancouver, ISO, and other styles
4

Ozaki, Takashi, Norikazu Ohta, and Kanae Hamaguchi. "Resonance-Driven Passive Folding/Unfolding Flapping Wing Actuator." Applied Sciences 10, no. 11 (2020): 3771. http://dx.doi.org/10.3390/app10113771.

Full text
Abstract:
The wings of flapping-wing micro aerial vehicles (MAVs) face the risk of breakage. To solve this issue, we propose the use of a biomimetic foldable wing. In this study, a resonant-driven piezoelectric flapping-wing actuator with a passive folding/unfolding mechanism was designed and fabricated, in which the folding/unfolding motion is passively realized by the centrifugal and lift forces due to the stroke motion of the wings. Although the passive folding/unfolding is a known concept, its feasibility and characteristics in combination with a resonant system have not yet been reported. Because the resonant actuation is necessary for extremely small, insect-scale MAVs, research is required to realize such MAVs with a foldable-wing mechanism. Therefore, we first examine and report the performance of the resonant-driven passive folding/unfolding mechanism. We also present a simplified theoretical model demonstrating an interaction between the resonant actuation system and folding/unfolding mechanism. We successfully demonstrate the folding/unfolding motion by the fabricated actuator. In addition, the theoretical model showed good agreement with the experiment.
APA, Harvard, Vancouver, ISO, and other styles
5

Kong, Guoli, and Yu Su. "A dual-stage low-power converter driving for piezoelectric actuator applied in flapping-wing micro aerial vehicles." International Journal of Advanced Robotic Systems 16, no. 3 (2019): 172988141985171. http://dx.doi.org/10.1177/1729881419851710.

Full text
Abstract:
It is essential for flapping-wing micro aerial vehicles to have a driver with compact size, low mass, and high conversion efficiency in low-power application. In this article, a dual-stage low-power converter driving for piezoelectric actuator was designed and implemented, which can be applied in flapping-wing micro aerial vehicles. Using the “simultaneous drive” method, an Residual Current Devices (RCD) passive snubber flyback DC/DC step-up converter cascaded with a bidirectional active half-bridge drive stage is designed. The flyback converter is controlled by pulse width modulation in discontinuous conduction mode to ensure the stability of the output high voltage. The half-bridge drive stage takes the approach of comparing the output voltage signal with an ideal waveform lookup table to generate arbitrary unipolar signals. The proposed converter has a weight of 345 mg, a size of 285 mm2 (19 × 15 mm2), a maximum output power of 500 mW, and a maximum conversion efficiency of 64.5%. An experiment driving for piezoelectric actuator was performed to observe the displacement generated by the converter. According to the experimental results, this converter can be applied in flapping-wing micro aerial vehicles.
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, Inrae, Seungkeun Kim, and Jinyoung Suk. "Disturbance Observer Based Control of Flapping Wing MAV Considering Actuator and Sensor Model." Journal of Institute of Control, Robotics and Systems 25, no. 11 (2019): 950–59. http://dx.doi.org/10.5302/j.icros.2019.19.0180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ozaki, Takashi, and Kanae Hamaguchi. "Electro-Aero-Mechanical Model of Piezoelectric Direct-Driven Flapping-Wing Actuator." Applied Sciences 8, no. 9 (2018): 1699. http://dx.doi.org/10.3390/app8091699.

Full text
Abstract:
We present an analytical model of a flapping-wing actuator, including its electrical, aerodynamic, and mechanical systems, for estimating the lift force from the input electrical power. The actuator is modeled as a two-degree-of-freedom kinematic system with semi-empirical quasi-steady aerodynamic forces and the electromechanical effect of piezoelectricity. We fabricated actuators of two different scales with wing lengths of 17.0 and 32.4 mm and measured their performances in terms of the stroke/pitching angle, average lift force, and average consumed power. The experimental results were in good agreement with the analytical calculation for both types of actuators; the errors in the evaluated characteristics were less than 30%. The results indicated that the analytical model well simulates the actual prototypes.
APA, Harvard, Vancouver, ISO, and other styles
8

Shakya, N. K., and S. S. Padhee. "Study on piezo-electric flapping wing mechanism for bio-inspired micro aerial vehicles." Journal of Physics: Conference Series 2070, no. 1 (2021): 012144. http://dx.doi.org/10.1088/1742-6596/2070/1/012144.

Full text
Abstract:
Abstract The Micro Aerial Vehicle (MAV) with a flapping wing configuration is much more efficient and capable of generating substantial lift at low flight speeds and has excellent maneuverability. Different motor-driven mechanisms have been developed to mimic this flapping motion, but these mechanisms introduced mechanical complexity and heavy weight to the system. Piezo-electric based mechanisms have been used to solve these problems, but provide very small flapping amplitudes within the size limitation of MAVs. So some kind of amplification mechanism is needed. In this paper, a flexible wing is created by attaching a polymer skin to a pair of carbon fiber reinforced plastic spars. This wing is connected by means of an elastic-element (EE) to a pair of piezoelectric unimorphs (piezofan). The motion from the piezofan to the wing is transferred through this EE. Simulation has been done by applying sinusoidal voltages of varying frequency to this piezofan and observations have been made for the flapping amplitude of the wing for different stiffness of the EE. It is observed that the amplitude of the peak flapping amplitude initially increases, attains a maximum value, then decreases again with an increase in the stiffness of the EE. It is also observed that as the EE stiffness increases, the corresponding peak of the flapping amplitude shifts towards higher frequency.
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Fang Sheng, Zhi Hua Feng, Yu Ting Ma, and Qiao Sheng Pan. "Investigation on high-frequency performance of spiral-shaped trapezoidal piezoelectric cantilever." Modern Physics Letters B 32, no. 17 (2018): 1850187. http://dx.doi.org/10.1142/s0217984918501877.

Full text
Abstract:
Trapezoidal structure has been proposed for construction of piezoelectric cantilever to increase inherent frequency. To further break through the limitation on frequency value, trapezoidal piezoelectric cantilever is rolled into spiral-shaped piezoelectric cantilever with identical effective length in this study, which is verified in COMSOL simulations and experiments. A prototype shows that after rolling the straight shape into a spiral shape for the trapezoidal piezoelectric cantilever, the first inherent frequency promotes 4.5 times from 98100 Hz to 441,900 Hz, which is consistent with theoretic analysis. The spiral-shaped trapezoidal piezoelectric cantilever is suitable for working as an actuator in micro flapping-wing aircraft.
APA, Harvard, Vancouver, ISO, and other styles
10

Jeong, Seung-hee, Jeong-hwan Kim, Seung-ik Choi, Jung-keun Park, and Tae-sam Kang. "Platform Design and Preliminary Test Result of an Insect-like Flapping MAV with Direct Motor-Driven Resonant Wings Utilizing Extension Springs." Biomimetics 8, no. 1 (2022): 6. http://dx.doi.org/10.3390/biomimetics8010006.

Full text
Abstract:
In this paper, we propose a platform for an insect-like flapping winged micro aerial vehicle with a resonant wing-driving system using extension springs (FMAVRES). The resonant wing-driving system is constructed using an extension spring instead of the conventional helical or torsion spring. The extension spring can be mounted more easily, compared with a torsion spring. Furthermore, the proposed resonant driving system has better endurance compared with systems with torsion springs. Using a prototype FMAVRES, it was found that torques generated for roll, pitch, and yaw control are linear to control input signals. Considering transient responses, each torque response as an actuator is modelled as a simple first-order system. Roll, pitch, and yaw control commands affect each other. They should be compensated in a closed loop controller design. Total weight of the prototype FMAVRES is 17.92 g while the lift force of it is 21.3 gf with 80% throttle input. Thus, it is expected that the new platform of FMAVRES could be used effectively to develop simple and robust flapping MAVs.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography