Academic literature on the topic 'Flammability properties'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flammability properties.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Flammability properties"
Osvaldová, Linda Makovická, and Stanislava Gašpercová. "The Evaluation of Flammability Properties Regarding Testing Methods." Civil and Environmental Engineering 11, no. 2 (December 1, 2015): 142–46. http://dx.doi.org/10.1515/cee-2015-0018.
Full textDelichatsios, Michael, Bradley Paroz, and Atul Bhargava. "Flammability properties for charring materials." Fire Safety Journal 38, no. 3 (April 2003): 219–28. http://dx.doi.org/10.1016/s0379-7112(02)00080-2.
Full textDelichatsios, M., and K. Saito. "Upward Fire Spread: Key Flammability Properties, Similarity Solutions And Flammability Indices." Fire Safety Science 3 (1991): 217–26. http://dx.doi.org/10.3801/iafss.fss.3-217.
Full textAini Ghazali, Siti Nadia, and Zurina Mohamad. "Thermal and Flammability Properties of Polypropylene Filled Rice Bran/Sepiolite Composite." Applied Mechanics and Materials 695 (November 2014): 243–46. http://dx.doi.org/10.4028/www.scientific.net/amm.695.243.
Full textSiddiqui, Vasi Uddin, Mohd Sapuan Salit, and Tarique Jamal. "Mechanical, Morphological, and Fire Behaviors of Sugar Palm/Glass Fiber Reinforced Epoxy Hybrid Composites." Toward Successful Implementation of Circular Economy 31, S1 (October 27, 2023): 139–55. http://dx.doi.org/10.47836/pjst.31.s1.08.
Full textKorolchenko, O. N., S. G. Tsarichenko, and N. I. Konstantinova. "Flammability properties of fire-retardant timber." Pozharovzryvobezopasnost/Fire and Explosion Safety 30, no. 2 (May 15, 2021): 23–34. http://dx.doi.org/10.22227/pvb.2021.30.02.23-34.
Full textQuintiere, J. G. "A theoretical basis for flammability properties." Fire and Materials 30, no. 3 (2006): 175–214. http://dx.doi.org/10.1002/fam.905.
Full textBilal, Ahmad, Richard JT Lin, and Krishnan Jayaraman. "Optimisation of material compositions for flammability characteristics in rice husk/polyethylene composites." Journal of Reinforced Plastics and Composites 33, no. 22 (September 23, 2014): 2021–33. http://dx.doi.org/10.1177/0731684414552542.
Full textde Oliveira, Sara Verusca, E. A. dos Santos Filho, Edcleide Maria Araújo, C. M. Correia Pereira, and Fábio Roberto Passador. "Preparation and Flammability Properties of Polyethylene/Organoclay Nanocomposites." Diffusion Foundations 20 (December 2018): 92–105. http://dx.doi.org/10.4028/www.scientific.net/df.20.92.
Full textKrix, Daniel W., Megan L. Phillips, and Brad R. Murray. "Relationships among leaf flammability attributes and identifying low-leaf-flammability species at the wildland–urban interface." International Journal of Wildland Fire 28, no. 4 (2019): 295. http://dx.doi.org/10.1071/wf18167.
Full textDissertations / Theses on the topic "Flammability properties"
Liu, Xin. "Flammability properties of clay-nylon nanocomposites." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/1837.
Full textThesis research directed by: Dept. of Fire Protection Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Hill, Stephen Bernard. "Utilisation of phosphorus containing compounds to modify the properties of poly(methyl methacrylate) based polymers." Thesis, Lancaster University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369465.
Full textKop, Erhan. "Synthesis And Characterization Of Mechanical, Thermal And Flammability Properties Of Epoxy Based Nanocomposites." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609124/index.pdf.
Full text#8217
s modulus increased with clay content and a maximum value was obtained at 5 wt. % clay loading. At 9 % clay loading, Young&
#8217
s modulus value was 26 % higher than that of the neat epoxy resin. Impact strength property had a minimum value at 7 wt. % clay content. Flexural strength and flexural strain at break property behaved in a similar trend. They had a minimum value at 5 % clay loading. At this clay loading, flexural strength value became approximately 43 % lower compared to the flexural strength of the neat epoxy resin. On the other hand, at 9 wt.% clay loading flexural modulus value increased approximately 48 % compared to the pure epoxy resin. Up to 7 wt.% clay ratio, initial decomposition temperature of epoxy resin was slightly improved. Also, according to TGA results, amount of char formation increased with clay loading. DSC results indicate that Tg of the cured nanocomposite resins decreased from 147 oC to 129 oC with 9 wt. % clay loading. The flammability of neat epoxy resin was not significantly affected with Cloisite 30B addition.
Steinhaus, Thomas. "Determination of intrinsic material flammability properties from material tests assisted by numerical modelling." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/3273.
Full textCarrion, Domenech Luis Enrique. "Study of high flash point ethyl alcohol-based secondary fluids applied in Ground Source Heat Pumps systems." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260335.
Full textEtylalkohol (etanol) som köldbärare är mycket populärt som värmeöverföringsvätska för indirekt kylsystemmed bergvärmepumpsystem (BVP) i Sverige, Norge, Schweiz, Finland och andra europeiska länder. Fleraundersökningar har gjorts om kylsektorns framtid, köldmedier och kylsystem. Dessutom strängaförordningar som F-gas förordning och Kigali- förordning tvingar en utfasning av många nuvarande allmäntanvända köldmedier med den höga globala uppvärmningspotentialen (GWP), dvs. R134a eller R410A. Därför förväntas det att kylsystem och deras köldbärare spela en nyckelroll för att minimera köldmediumsmängd i systemen, minska de indirekta köldmedieläckage och öka säkerheten under drift. Syftet med detta examensarbete är att undersöka effekten av olika tillsatser för att öka flammanpunkten tillsammans med etanolbaserade köldbärare och validera deras termofysikaliska egenskaper genom att jämföra dem med referensvärden för rena etanolvattenlösningar. Studien syftar till att utforma en nykommersiell etylalkoholbaserad produkt för BVP-system som skulle kunna ersätta befintliga produkter på den svenska marknaden och kan arbeta med naturliga eller brandfarliga köldmedier med låg GWP. Olika tillsatser med hög flampunkt testades såsom 1-propylalkohol, n-butylalkohol, glycerol och propylenkarbonat. Termofysikaliska egenskaper undersöktes och en BVP-modell i Excel skapades för att bedöma energiprestanda för olika blandningarna. De erhållna resultaten för olika blandningar visar att glycerol i en låg koncentration som tillsats kan vara framtidens additiv för de etylalkoholbaserade köldbärare på grund av dess höga flampunkt (160 ºC) som förmodligen kan minska brandrisken för etylalkoholblandningar. Dessutom hade glycerol och etanolblandningar den lägsta viskositeten (c.a.12% lägre jämfört med ren etylalkoholblandningar) som bidrar tillen minskning av pumpeffekten med c.a. 4,5% jämfört med rena etylalkoholblandningar. Däremot visade etylalkohol och glycerol blandningen c.a. 4% lägre värmeöverövergångstal jämfört med de rena etylalkoholblandningar på grund av lägre värmeledningsförmåga jämfört med ren etylalkoholblandningar. Slutligen är glycerol en ganska billig och naturlig produkt som inte har några korrosionsproblem eftersom etylalkohol och glycerol är mindre frätande än vatten. Även om flampunkttest inte genomfördes i projektet, förväntas det att flampunkten ökas lite på grund av den höga flampunkten av glycerol jämfört med etylalkohol och andra tillsatser. Därför förväntas det att brännbarhetsrisken förknippad med etylalkoholbaserade köldbärare reduceras.
Jasinski, Euphrasie. "Matériaux ignifugés à base de polyéthylène/éthylène acétate de vinyle et de nanotubes d’halloysite : mise en oeuvre et propriétés." Electronic Thesis or Diss., Lyon 1, 2023. http://www.theses.fr/2023LYO10048.
Full textThe overall objective of the project in which this thesis is included is to reduce the amount of flame retardants present in electrical cable and wire while presenting interesting flame retardant and aging properties. The work carried out during this thesis aims to develop a flame retardant material based on linear low density polyethylene (LLDPE), ethylene-vinyl acetate copolymer (EVA) and halloysite nanotubes (HNT) for the electrical cable and wire industries. Halloysite is a mineral of the kaolinite group whose chemical composition is based on Al2Si2O5(OH)4. Due to the presence of aluminol groups on the inner surface of the nanotubes and silanol groups on their outer surface, HNT can be selectively functionalized. Thus, on the one hand HNT have been functionalized with flame retardant molecules and on the other hand with organosilanes in order to improve their dispersion and to control their localization in the polymer matrix. Indeed, the dispersion and the localization of nanoparticles in a polymer blend (either in the continuous phase, in the dispersed phase, or at the interface) can affect certain macroscopic properties of the material such as the flammability and the mechanical properties. Other methods have also been used to improve dispersion and control the localization of fillers including the use of a compatibilizer and changing the mixing sequence during the processing. Regarding the flame retardant properties of materials containing pristine HNT, increasing the amount of HNT results in a decrease in peak of heat release rate (pHRR), but also in time to ignition (TTI). The addition of other flame retardants (ammonium phosphate AP and pentaerythritol PER) in addition to HNT has a beneficial effect on the pHRR by decreasing it. In addition, PER contributed to increase the ignition time of the composites. Without any chemical modification, HNT were shown to be localized in the EVA phase. By functionalizing the HNT with 3-aminopropyltriethoxysilane (APTS) and compatibilizing the blend with polyethylene grafted maleic anhydride (PE-g-MA), in the blends implemented in a micro-extruder the HNT were localized in the LLDPE phase. However, in the extruder process, it was necessary to make a pre-mix of LLDPE/HNT-APTS/PE-g-MA before adding the EVA to localize the fillers in the LLDPE phase. The localization of the HNT-APTS in the LLDPE phase was not beneficial for the flame retardant properties, these are worse than those for the equivalent composite containing pristine HNT localized in the EVA. Mechanical properties and mainly elongation at break are also worse with HNT-APTS localized in LLDPE. This change could not be attributed only to the localization of the fillers, but it can also come from the nature of the grafted molecule. On the other hand, the HNT functionalized with PE-g-MA (localized mainly in the EVA phase and at the LLDPE/EVA interface) lowered the pHRR and THR of the LLDPE/EVA/HNT/AP composite compared to the composite containing the unmodified HNT. However, the ignition time was decreased. Finally, functionalization of HNT with some phosphorous molecules resulted in better results on both pHRR and THR compared to the unmodified LLDPE/EVA/HNT/AP composite
Chung, Chung-yi, and 鐘仲毅. "A Study on the Flammability and Physical Properties of Halogen-Free Substrate Materials." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/44373174754783226290.
Full text義守大學
材料科學與工程學系
90
The main purpose of this research is to study the flammability physical properties of halogen-free substrate materials and halogen substrate materials. The testing of ESCA and FTIR were carried out to identify the chemical composition and structure and also to identify the core material and solder mask that compose Al( OH) 3, fillers , phosphorus . By the TGA to analyze the decomposition temperature, the testing of Limit Oxygen Index and UL94 were proved the flammability and other physical property. The testing results shows the core material that compose Al(OH)3, fillers, phosphorus, it’s flammability and combustion character all meet 94VO(totally flame times is less than 50 seconds) and LOI>26 specification requirement, and core material that contains fillers of LOI=40 is the best one. In the condition of 10 wt% loss, the decomposition temperature of halogen —free substrate core material is higher than halogen substrate core material. It shows the decomposition temperature of HL832NB is 396℃, E679FG is 397℃, and HL832 is only 330℃. In addition , the result of TGA also shows, the solder mask’s decomposition temperature is higher than 256℃ and has the excellent flammability. The core materials were used in this experiment their physical properties all meet the standard requirement.
Wang, Wen-Yu, and 王文谷. "The Dynamic Flammability, Toxic Gases and Mechanical PRoperties of Magnesium Hydroxide and Ammonium Polyphosphate Filled Polypropylene." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/10480698286224607846.
Full textLin, Yan-Huei, and 林晏輝. "Flame retardant and Toughening Properties of Polylactide Composites:I.Thermal Properties and Flammability of Polylactide Nanocomposites with Aluminum Trihydrate/Carbon Fiber/OrganoclayII.Toughening Properties of Polylactide Composites with branched Polymer." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/hwse3t.
Full text國立臺北科技大學
化學工程研究所
100
In Part I. Polylactide (PLA) nanocomposites with aluminum hydroxide (ATH),carbon fiber and montmorillonite (Clay30B) were prepared via direct melting blending using a twin-screw mixer. In addition, add carbon fiber to try to enhance the mechanical properties of nanocomposites. The exfoliated and intercalated structures of clay in the matrix were observed by TEM and XRD. The thermal degradation temperature of the PLA/CF/ATH/MMT nanocomposite determined by thermogravimetric analysis are higher than that addition ATH and carbon fiber without organoclay. The V-0 rating of the PLA nanocomposites has been achieved, and there is no melt dripping and ignited cotton. And then add carbon fiber, the mechanical properties of the PLA/CF/ATH/Clay30B nanocomposites is higher than PLA/ATH/Clay30B nanocomposites. Results showed that adding carbon fiber to replace ATH of the nanocomposites, not only enhance the mechanical properties, also maintain the flame retardancy. In PartII. Polylactide (PLA) composites with Hyperbranched polymer were prepared via direct melting blending using a twin-screw mixer.Beacause the Hyperbranched polymer has abundant functional end groups. So add Hyperbranched polymer to try to enhance the Toughness properties of PLA composites. The thermal degradation temperature of the PLA/BP6 composite determined by thermogravimetric analysis are higher than that pure PLA.The Differential scanning calorimetry was observed the glass transition temperature(Tg) decreased with the HBP content increase in the PLA/BP6 composite. The elongation of break and impact strength of the PLA/BP6 composites huge increase when the HBP cotent over 10 percent.The SEM photos was observed brittle fracture to change ductile fracture with the HBP content increase in the PLA/BP6 composite.
Wu, Chun-Wei, and 吳君蔚. "The Study on Improving the Flammability and Function Properties of PU Composite Films by Compounding with Metal Hydroxide and Expanded Graphite." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/98xd8x.
Full text國立臺北科技大學
有機高分子研究所
96
In this study, Aluminum Tri-hydroxide, Magnesium Hydroxide and expanded graphite were used as halogen-free flame retardants to blend into polyurethane (DPU). Flame tests such as L.O.I. tester, Cone-calorimeter were employed to evaluate the best combination ratio between metal hydroxides and expanded graphite at a fixed additive amount of halogen-free flame retardant. The effect of addition halogen-free flame retardant and mechanical properties of PU were also investigated in this study. In addition, the synergistic effect of metal hydroxide and expanded graphite on flame retardant mechanism of PU was proposed. Experimental results indicated that flame retarded PU films which containing metal hydroxide or expanded graphite could gain a higher L.O.I. value. For specific optical density test, these films possessed the lower values of specific optical density. The lower values of pk-Heat release rate were also shown on cone calorimeter test for these films. To all of these flame retarded films, the DPU/ATH100 was found to be with better mechanical properties. Besides, DPU/ATH100 composite films presented better results in softness test, and this could be considered as an excellent candidate for a range of textile applications. Furthermore, for surface resistivity test, the lower surface resistivity index was obtained. Because of the addition of expanded graphite, it showed effective antistatic ability that might inhibit the burning from static electricity effect. Those films shown the better performance on fire retardancy and extinction coefficient were DPU/ATH100 and DPU/ATH60/EG40. The synergistic effect of metal hydroxide and expanded graphite on flame retardancy was investigated. The physical phenomena such as decreasing temperature and gas diluting were counted on contribution of the decomposition of metal hydroxides during its heating up. Moreover, the expanded graphite formed compact insulating layers after heating which would successfully restrain the transmission of heat and gas. It could be the reason that the better synergistic effect on flame retardancy was obtained.
Books on the topic "Flammability properties"
Mouritz, Adrian P. Fire properties of polymer composite materials. Dordrecht: Springer, 2006.
Find full textRosa, Maria I. De. Predicting materials' ease of combustion: Development of a simple test method. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.
Find full textMouritz, A. P., and A. G. Gibson. Fire Properties of Polymer Composite Materials. Springer, 2008.
Find full textFire Properties of Polymer Composite Materials. Springer, 2010.
Find full textMouritz, A. P., and A. G. Gibson. Fire Properties of Polymer Composite Materials (Solid Mechanics and Its Applications). Springer, 2007.
Find full textMenna, Todd J., ed. Characterization and Failure Analysis of Plastics. ASM International, 2022. http://dx.doi.org/10.31399/asm.hb.v11b.9781627083959.
Full textBook chapters on the topic "Flammability properties"
Tewarson, Archibald. "Flammability." In Physical Properties of Polymers Handbook, 889–925. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-69002-5_53.
Full textAseeva, Roza M., and Gennadiy E. Zaikov. "Flammability of polymeric materials." In Key Polymers Properties and Performance, 171–229. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-15481-7_10.
Full textArchodoulaki, Vasiliki-Maria, and Sigrid Lüftl. "Thermal Properties and Flammability of Polyoxymethylene." In Polyoxymethylene Handbook, 257–75. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118914458.ch10.
Full textLow, It-Meng, Hatem R. Alamri, and Abdullah M. S. Alhuthali. "Materials Properties: Thermal Stability and Flammability." In Advanced Ceramics and Composites, 197–212. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1173-6_6.
Full textJayamani, Elammaran, and Vannethasrriy Balakrishnan. "Thermal Properties and Flammability of Wood Plastic Composites." In Wood Polymer Composites, 161–78. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1606-8_8.
Full textNyden, Marc R., James E. Brown, and S. M. Lomakin. "Flammability Properties of Honeycomb Composites and Phenol—Formaldehyde Resins." In ACS Symposium Series, 245–55. Washington, DC: American Chemical Society, 1995. http://dx.doi.org/10.1021/bk-1995-0599.ch016.
Full textDelichatsios, Michael A. "Prediction of Large Scale Fire Behavior Using Nuterial Flammability Properties." In Prevention of Hazardous Fires and Explosions, 29–33. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4712-5_3.
Full textAmbuken, Preejith, Holly Stretz, Joseph H. Koo, Jason Lee, and Rosa Trejo. "High-Temperature Flammability and Mechanical Properties of Thermoplastic Polyurethane Nanocomposites." In ACS Symposium Series, 343–60. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1118.ch023.
Full textSatdive, Ajinkya, Saurabh Tayde, and Aniruddha Chatterjee. "Flammability Properties of the Bionanocomposites Reinforced with Fire Retardant Filler." In Composites Science and Technology, 69–86. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8578-1_4.
Full textZeng, Zhe, Bogdan Z. Dlugogorski, Ibukun Oluwoye, and Mohammednoor Altarawneh. "Importance of Intersystem Crossing on Flammability Properties of Carbon Disulphide (CS2)." In The Proceedings of 11th Asia-Oceania Symposium on Fire Science and Technology, 77–88. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9139-3_7.
Full textConference papers on the topic "Flammability properties"
Anez, Nieves Fernandez. "FLAMMABILITY PROPERTIES OF DRY SEWAGE SLUDGES." In 13th SGEM GeoConference on ENERGY AND CLEAN TECHNOLOGIES. Stef92 Technology, 2013. http://dx.doi.org/10.5593/sgem2013/bd4/s17.018.
Full textHeckenberger, Thomas E. J. "Flammability Properties of R152a versus Hydrocarbons." In Vehicle Thermal Management Systems Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-2042.
Full textIbeh, Christopher C., Monika Bubacz, and Stefano Bietto. "Flammability Resistance Properties of Epoxy Nanocomposites." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15672.
Full textLee, Jason, Joseph Koo, Christopher Lam, and Ofodike Ezekoye. "Flammability Properties of Thermoplastic Polyurethane Elastomer Nanocomposites." In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2544.
Full textSuvar, Niculina Sonia, Maria Prodan, Irina Nalboc, Andrei Szolloszi-Mota, and Iuliana Asimina Toplician. "FLAMMABILITY PROPERTIES DETERMINATION OF AVIATION RELATED FLUIDS." In 20th International Multidisciplinary Scientific GeoConference Proceedings SGEM 2020. STEF92 Technology, 2020. http://dx.doi.org/10.5593/sgem2020/1.2/s06.089.
Full textKoo, Joseph, Louis Pilato, and Gerry Wissler. "Flammability Properties and Microstructure Studies of Polymer Nanocomposites." In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
14th AIAA/ASME/AHS Adaptive Structures Conference
7th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1856.
Ibeh, Christopher C., and Stefano Bietto. "Flammability Resistance of Nanocomposite Foams." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43545.
Full textKoo, Joseph, Eric Allcorn, Blake Johnson, Min Baek, Karen Carpenter, Daniel Eils, Si Chon Lao, Carla Lake, and Patrick Lake. "Multi-component Polyamide 11 Nanocomposites: Thermal, Mechanical, and Flammability Properties." In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
20th AIAA/ASME/AHS Adaptive Structures Conference
14th AIAA. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1413.
Szollosi-Mo?a, Andrei, Maria Prodan, Irina Vasilica Nalboc, Sonia Niculina Suvar, and Iuliana Asimina Toplician. "DETERMINATION OF THE PHYSICO-CHEMICAL PROPERTIES OF LYCOPODIUM AND STARCH COMBUSTIBLE POWDER." In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/1.1/s03.47.
Full textSantangelo, Paolo E., Noah L. Ryder, Andre´ W. Marshall, and Christopher F. Schemel. "Flammability of Solid Materials: An Experimental Calorimetric Approach." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63870.
Full textReports on the topic "Flammability properties"
Investigation into the flammability properties of honeycomb composites. Gaithersburg, MD: National Institute of Standards and Technology, 1994. http://dx.doi.org/10.6028/nist.ir.5509.
Full text