Academic literature on the topic 'Flamelettes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Flamelettes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Flamelettes"

1

FURUKAWA, JUNICHI, YOSHIKI NOGUCHI, TOSHISUKE HIRANO, and FORMAN A. WILLIAMS. "Anisotropic enhancement of turbulence in large-scale, low-intensity turbulent premixed propane–air flames." Journal of Fluid Mechanics 462 (July 10, 2002): 209–43. http://dx.doi.org/10.1017/s0022112002008650.

Full text
Abstract:
The density change across premixed flames propagating in turbulent flows modifies the turbulence. The nature of that modification depends on the regime of turbulent combustion, the burner design, the orientation of the turbulent flame and the position within the flame. The present study addresses statistically stationary turbulent combustion in the flame-sheet regime, in which the laminar-flame thickness is less than the Kolmogorov scale, for flames stabilized on a vertically oriented cylindrical burner having fully developed upward turbulent pipe flow upstream from the exit. Under these condi
APA, Harvard, Vancouver, ISO, and other styles
2

Ashurst, W. T., and F. A. Williams. "Vortex modification of diffusion flamelets." Symposium (International) on Combustion 23, no. 1 (1991): 543–50. http://dx.doi.org/10.1016/s0082-0784(06)80301-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hiestermann, Marian, Matthias Haeringer, Marcel Dèsor, and Wolfgang Polifke. "Comparison of non-premixed and premixed flamelets for ultra WET aero engine combustion conditions." Journal of the Global Power and Propulsion Society 8 (October 8, 2024): 370–89. http://dx.doi.org/10.33737/jgpps/188264.

Full text
Abstract:
The Water-Enhanced Turbofan (WET) is a future concept for aero engine applications being developed by MTU Aero Engines AG. Steam is injected into the combustion chamber to reduce temperature peaks and emission of pollutants. Depending on the steam content, the combustion process is modified. To analyze the effect of steam on the reaction kinetics and the temperature, detailed chemistry has to be employed. By comparing laminar flame speed and mole fraction distribution across the flame front, an appropriate chemical mechanism for the considered operating conditions including high steam loads wa
APA, Harvard, Vancouver, ISO, and other styles
4

Josephson, Alexander J., Troy M. Holland, Sara Brambilla, Michael J. Brown, and Rodman R. Linn. "Predicting Emission Source Terms in a Reduced-Order Fire Spread Model—Part 1: Particulate Emissions." Fire 3, no. 1 (2020): 4. http://dx.doi.org/10.3390/fire3010004.

Full text
Abstract:
A simple, easy-to-evaluate, surrogate model was developed for predicting the particle emission source term in wildfire simulations. In creating this model, we conceptualized wildfire as a series of flamelets, and using this concept of flamelets, we developed a one-dimensional model to represent the structure of these flamelets which then could be used to simulate the evolution of a single flamelet. A previously developed soot model was executed within this flamelet simulation which could produce a particle size distribution. Executing this flamelet simulation 1200 times with varying conditions
APA, Harvard, Vancouver, ISO, and other styles
5

Bray, Ken. "Laminar Flamelets in Turbulent Combustion Modeling." Combustion Science and Technology 188, no. 9 (2016): 1372–75. http://dx.doi.org/10.1080/00102202.2016.1195819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gouldin, F. C., K. N. C. Bray, and J. Y. Chen. "Chemical closure model for fractal flamelets." Combustion and Flame 77, no. 3-4 (1989): 241–59. http://dx.doi.org/10.1016/0010-2180(89)90132-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krass, B. J., B. W. Zellmer, I. K. Puri, and S. Singh. "Application of Flamelet Profiles to Flame Structure in Practical Burners." Journal of Energy Resources Technology 121, no. 1 (1999): 66–72. http://dx.doi.org/10.1115/1.2795062.

Full text
Abstract:
Partial premixing can be induced by design in combustors, occurs inadvertently during turbulent nonpremixed combustion, or arises through inadequate fuel-air mixing. Therefore, it is of interest to investigate the effect of partial premixing in a burner that mimics conditions that might occur under practice. In this investigation, we report on similitude of partially premixed flames encountered in practical complex and multi-dimensional burners with simpler, less complex flames, such as counterflow flamelets. A burner is designed to simulate the more complex multi-dimensional flows that might
APA, Harvard, Vancouver, ISO, and other styles
8

Olson, S. L., F. J. Miller, and I. S. Wichman. "Characterizing fingering flamelets using the logistic model." Combustion Theory and Modelling 10, no. 2 (2006): 323–47. http://dx.doi.org/10.1080/13647830600565446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Law, C. K., and C. J. Sung. "Structure, aerodynamics, and geometry of premixed flamelets." Progress in Energy and Combustion Science 26, no. 4-6 (2000): 459–505. http://dx.doi.org/10.1016/s0360-1285(00)00018-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

BYCHKOV, VITALIY, MICHAEL A. LIBERMAN, and RAYMOND REINMANN. "VELOCITY OF TURBULENT FLAMELETS OF FINITE THICKNESS." Combustion Science and Technology 168, no. 1 (2001): 113–29. http://dx.doi.org/10.1080/00102200108907833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Flamelettes"

1

Chikkabikkodu, Krishna Murthy Uday. "Modelling of Turbulence-Combustion Interactions for the Simulation of Fires in Confined and Ventilated Enclosures." Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2024. http://www.theses.fr/2024ESMA0014.

Full text
Abstract:
La simulation numérique des incendies dans les installations nucléaires présente deux difficultés. D’une part, plusieurs combustibles différents (foyers solides ou liquides) peuvent être impliqués en même temps. D’autre part, les effets du confinement et de la ventilation mécanique peuvent induire des effets de pression dans le compartiment, et conduire transitoirement à des puissances de feu plus élevées qu’en milieu ouvert. Dans ce contexte, l’approche EDM(Eddy Dissipation Model), souvent utilisée pour la simulation des flammes non-prémélangées rencontrées en incendie, décrit les taux de réa
APA, Harvard, Vancouver, ISO, and other styles
2

Langella, Ivan. "Large eddy simulation of premixed combustion using flamelets." Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/254303.

Full text
Abstract:
Large Eddy Simulation (LES) has potential to address unsteady phenomena in turbulent premixed flames and to capture turbulence scales and their influence on combustion. Thus, this approach is gaining interest in industry to analyse turbulent reacting flows. In LES, the dynamics of large-scale turbulent eddies down to a cut-off scale are solved, with models to mimic the influences of sub-grid scales. Since the flame front is thinner than the smallest scale resolved in a typical LES, the premixed combustion is a sub-grid scale (SGS) phenomenon and involves strong interplay among small-scale turb
APA, Harvard, Vancouver, ISO, and other styles
3

Hyde, S. M. "Field modeling of carbon monoxide production in vitiated compartment fires." Thesis, Cranfield University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zheng, Li Li. "Studies of hydrogen-air turbulent diffusion flames for subsonic and supersonic flows." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Deon, Diego Luis. "Estudo numérico de chamas turbulentas não pré-misturadas através de modelos baseados no conceito de flamelets." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/141148.

Full text
Abstract:
A simulação numérica de chamas turbulentas é ainda hoje um desafio para as práticas de mecânica dos fluidos computacional. Compreendendo que as abordagens numéricas mais completas e realísticas atualmente disponíveis podem ser computacionalmente proibitivas, diversos modelos vêm sendo desenvolvidos com o objetivo de reproduzir os fenômenos envolvidos na combustão de uma forma simplificada, mas ainda fisicamente consistente. Este trabalho é, portanto, dedicado à comparação de diferentes modelos de fechamento para a turbulência baseados nas equações de Navier-Stokes em médias de Reynolds e de mo
APA, Harvard, Vancouver, ISO, and other styles
6

Vallinayagam, pillai Subramanian. "Modélisation de la combustion turbulente : application des méthodes de tabulation de la chimie détaillée l'allumage forcé." Thesis, Rouen, INSA, 2010. http://www.theses.fr/2010ISAM0001/document.

Full text
Abstract:
L'optimisation des systèmes d'allumage est un paramètre critique pour la définition des foyers de combustion industriels. Des simulations aux grandes échelles (ou LES pour Large-Eddy Simulation) d'un brûleur de type bluff-body non pré-mélangé ont été menées afin de comprendre l'influence de la position de la bougie sur la probabilité d'allumage. La prise en compte de la combustion est basée sur une méthode de tabulation de la chimie détaillée (PCM-FPI pour Presumed Conditional Moments - Flame Prolongation of ILDM). Les résultats de ces simulations ont été confrontés des résultats expérimentaux
APA, Harvard, Vancouver, ISO, and other styles
7

Claramunt, Altimira Kilian. "Numerical Simulation of Non-premixed Laminar and Turbulent Flames by means of Flamelet Modelling Approaches." Doctoral thesis, Universitat Politècnica de Catalunya, 2005. http://hdl.handle.net/10803/6680.

Full text
Abstract:
Deep knowledge of combustion phenomena is of great scientific and technological interest. In fact, better design of combustion equipments (furnaces, boilers, engines, etc) can contribute both in the energy efficiency and in the reduction of pollutant formation. <br/><br/>One of the limitations to design combustion equipments, or even predict simple flames, is the resolution of the mathematical formulation. Analytical solutions are not feasible, and recently numerical techniques have received enormous interest. Even though the ever-increasing computational capacity, the numerical resolution re
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Flamelettes"

1

Pitz, R. W. Comparison of reaction zones in turbulent lifted diffusion flames to stretched laminar flamelets. American Institute of Aeronautics and Astronautics, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Flamelettes"

1

Gouldin, F. C. "A Fractal Description of Flamelets." In Lecture Notes in Engineering. Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-9631-4_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dold, J. W. "Ends of Laminar Flamelets: Their Structure, Behaviour and Implications." In Nonlinear PDE’s in Condensed Matter and Reactive Flows. Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0307-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yoshida, A. "Time Scale Distribution of Laminar Flamelets in Turbulent Premixed Flames." In Laser Diagnostics and Modeling of Combustion. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-45635-0_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davidovic, Marco, Mathis Bode, and Heinz Pitsch. "On Parallelization Strategies for Multiple Representative Interactive Flamelets Combustion Models." In High Performance Computing in Science and Engineering '19. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66792-4_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Williams, F. A. "Structure of Flamelets in Turbulent Reacting Flows and Influences of Combustion on Turbulence Fields." In Lecture Notes in Engineering. Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-9631-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Numerical Simulations of Interactions of Flamelets with Shock Waves in the Premixed Gas." In Dynamics of Gaseous Combustion. American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/5.9781600866241.0274.0283.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Flamelettes"

1

Neumeier, Yedidia, and Ben Zinn. "Heuristic Modeling of Diffusion Flamelets." In 43rd AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ketelheun, Anja, Clemens Olbricht, Frederik Hahn, and Johannes Janicka. "Premixed Generated Manifolds for the Computation of Technical Combustion Systems." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59940.

Full text
Abstract:
Large eddy simulations (LES) show a good prediction accuracy at a decent computational cost for the simulation of combustion processes in complex geometries. However, the large grids required make the direct solution of detailed reaction kinetics impracticable. Therefore, the chemical reactions can be tabulated in a pre-processing step using detailed chemistry with one-dimensional laminar steady flamelets. These flamelets can be either non-premixed or premixed and are stored based on controlling variables like mixture fraction and reaction progress parameter, for example. In this work, a progr
APA, Harvard, Vancouver, ISO, and other styles
3

Both, Ambrus, Daniel Mira, and Oriol Lehmkuhl. "ASSESSMENT OF TABULATED CHEMISTRY MODELS FOR THE LES OF A MODEL AERO-ENGINE COMBUSTOR." In GPPS Chania22. GPPS, 2022. http://dx.doi.org/10.33737/gpps22-tc-70.

Full text
Abstract:
Tabulated chemistry methods present a compromise between computational cost and the ability to capture complex combustion physics in high-fidelity numerical simulations. The application of such models entails a number of modeling decisions, that may affect the simulation results significantly, especially in partially premixed combustion, where the assumption of the existence of underlying premixed or non-premixed flamelet structures is arguable. In this work, different classical tabulation strategies are assessed in terms of their ability to predict the lift-off induced by localized extinction
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, M., M. Raju, E. Pomraning, P. Kundu, Y. Pei, and S. Som. "Comparison of Representative Interactive Flamelet and Detailed Chemistry Based Combustion Models for Internal Combustion Engines." In ASME 2014 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icef2014-5522.

Full text
Abstract:
Representative Interactive Flamelet (RIF) and Detailed Chemistry based combustion models are two commonly used combustion models for non-premixed diesel engine simulations. RIF performs transient chemistry calculations on a one-dimensional grid based on the mixture fraction coordinate. Hence, the chemistry calculations are essentially decoupled from the computational fluid dynamics (CFD) grid. The detailed chemistry model, on the other hand, solves transient chemistry in the 3D CFD domain. An efficient parallelization strategy is used for the computation of the multiple flamelets RIF model. Th
APA, Harvard, Vancouver, ISO, and other styles
5

Goldin, Graham, Zhuyin Ren, Hendrik Forkel, Liuyan Lu, Venkat Tangirala, and Hasan Karim. "Modeling CO With Flamelet-Generated Manifolds: Part 1—Flamelet Configuration." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69528.

Full text
Abstract:
In laminar flamelet modeling, a laminar flame in a simple 0D or 1D configuration is calculated a-priori and parameterized by a few scalars such as mixture fraction and reaction-progress or strain-rate. Transport equations, or algebraic expressions, for these parameters are then solved in 3D CFD simulations, avoiding computationally expensive in-situ chemical kinetic calculations. Typical configurations for laminar flamelets include, in 1D, opposed flow configurations with either non-premixed or premixed streams, freely propagating premixed flames, premixed flames impinging on a (heated) wall,
APA, Harvard, Vancouver, ISO, and other styles
6

Hiestermann, Marian, Matthias Haeringer, Marcel Désor, and Wolfgang Polifke. "Comparison of non-premixed and premixed flamelets for ultra wet aero engine combustion conditions." In GPPS Hong Kong24. GPPS, 2023. http://dx.doi.org/10.33737/gpps23-tc-277.

Full text
Abstract:
The Water-Enhanced Turbofan (WET) is a future concept for aero engine applications being developed by MTU Aero Engines AG. Steam is injected into the combustion chamber to reduce temperature peaks and emission of pollutants. Depending on the steam content, the combustion process is modified. To analyze the effect of steam on the reaction kinetics and the temperature, detailed chemistry has to be employed. By comparing laminar flame speed and mole fraction distribution across the flame front, an appropriate chemical mechanism for the considered operating conditions including high steam loads wa
APA, Harvard, Vancouver, ISO, and other styles
7

Croce, Giulio, Giulio Mori, Viatcheslav V. Anisimov, and Joa˜o Parente. "Assessment of Traditional and Flamelets Models for Micro Turbine Combustion Chamber Optimisation." In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38385.

Full text
Abstract:
Different approaches for numerical simulation of premixed combustion are considered, in order to assess their usefulness as design tools for micro gas turbine systems. In particular, a flamelet concept routine by N. Peters has been developed taking into account both mixture fraction Z and G function as scalar flame locators, thus allowing computation of complex fully or partial premixed flame structure. The model can be used also in the thin reaction regime. Scalar transport equations for G, Z and their variance are added to the standard Navier Stokes and turbulence set of equation, in order t
APA, Harvard, Vancouver, ISO, and other styles
8

PITZ, R., S. NANDULA, and T. BROWN. "Comparison of reaction zones in turbulent lifted diffusion flames tostretched laminar flamelets." In 28th Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-3349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

MILLER, RICHARD. "The manifestation of eddy shocklets and laminar diffusion flamelets in a shear layer." In 31st Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hasse, C., H. Barths, and N. Peters. "Modelling the Effect of Split Injections in Diesel Engines Using Representative Interactive Flamelets." In International Fuels & Lubricants Meeting & Exposition. SAE International, 1999. http://dx.doi.org/10.4271/1999-01-3547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!