Journal articles on the topic 'Flame-shock interaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Flame-shock interaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Dong, G., B. Fan, M. Gui, and B. Li. "Numerical simulations of interactions between a flame bubble with an incident shock wave and its focusing wave." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, no. 10 (June 29, 2009): 2357–67. http://dx.doi.org/10.1243/09544062jmes1467.
Full textJu, Yiguang, Akishi Shimano, and Osamu Inoue. "Vorticity generation and flame distortion induced by shock flame interaction." Symposium (International) on Combustion 27, no. 1 (January 1998): 735–41. http://dx.doi.org/10.1016/s0082-0784(98)80467-0.
Full textLutoschkin, E., M. G. Rose, and S. Staudacher. "Pressure-Gain Combustion Using Shock–Flame Interaction." Journal of Propulsion and Power 29, no. 5 (September 2013): 1181–93. http://dx.doi.org/10.2514/1.b34721.
Full textYarkov, Andrey, Ivan Yakovenko, and Alexey Kiverin. "Mechanism of Spontaneous Acceleration of Slow Flame in Channel." Fire 7, no. 10 (October 10, 2024): 362. http://dx.doi.org/10.3390/fire7100362.
Full textKHOKHLOV, A., E. ORAN, A. CHTCHELKANOVA, and J. WHEELER. "Interaction of a shock with a sinusoidally perturbed flame." Combustion and Flame 117, no. 1-2 (April 1999): 99–116. http://dx.doi.org/10.1016/s0010-2180(98)00090-x.
Full textFan, E., Weizong Wang, and Tianhan Zhang. "Numerical investigation on flame dynamic and regime transitions during shock-cool flame interaction." Combustion and Flame 273 (March 2025): 113928. https://doi.org/10.1016/j.combustflame.2024.113928.
Full textThomas, Geraint, Richard Bambrey, and Caren Brown. "Experimental observations of flame acceleration and transition to detonation following shock-flame interaction." Combustion Theory and Modelling 5, no. 4 (December 2001): 573–94. http://dx.doi.org/10.1088/1364-7830/5/4/304.
Full textRoy, Christopher J., and Jack R. Edwards. "Numerical Simulation of a Three-Dimensional Flame/Shock Wave Interaction." AIAA Journal 38, no. 5 (May 2000): 745–54. http://dx.doi.org/10.2514/2.1035.
Full textIvanov, M. F., and A. D. Kiverin. "Generation of high pressures during the shock wave–flame interaction." High Temperature 53, no. 5 (September 2015): 668–76. http://dx.doi.org/10.1134/s0018151x15030086.
Full textJohnson, R. G., A. C. McIntosh, J. Brindley, M. R. Booty, and M. Short. "Shock wave interaction with a fast convection-reaction driven flame." Symposium (International) on Combustion 26, no. 1 (January 1996): 891–98. http://dx.doi.org/10.1016/s0082-0784(96)80299-2.
Full textRoy, Christopher J., and Jack R. Edwards. "Numerical simulation of a three-dimensional flame/shock wave interaction." AIAA Journal 38 (January 2000): 745–54. http://dx.doi.org/10.2514/3.14476.
Full textYu, Ke, Yong Hu, Chunyan Gao, and Yong Jiang. "Investigation into the Suppression Effect of Water Mist on the Self-ignition and Flame Propagation of High-pressure Hydrogen Release." Journal of Physics: Conference Series 2860, no. 1 (October 1, 2024): 012001. http://dx.doi.org/10.1088/1742-6596/2860/1/012001.
Full textClarke, J. F. "Comment on ‘Experimental observation of flame acceleration and transition to detonation following shock–flame interaction’." Combustion Theory and Modelling 6, no. 3 (September 2002): 523–25. http://dx.doi.org/10.1088/1364-7830/6/3/401.
Full textIwata, Kazuya, Sou Suzuki, Reo Kai, and Ryoichi Kurose. "Direct numerical simulation of detonation–turbulence interaction in hydrogen/oxygen/argon mixtures with a detailed chemistry." Physics of Fluids 35, no. 4 (April 2023): 046107. http://dx.doi.org/10.1063/5.0144624.
Full textHuang, Jin, Xiangyu Gao, and Cheng Wang. "Flame acceleration and deflagration-to-detonation transition in narrow channels with thin obstacles." Modern Physics Letters B 32, no. 29 (October 20, 2018): 1850354. http://dx.doi.org/10.1142/s0217984918503542.
Full textThomas, G. O., R. J. Bambrey, and C. J. Brown. "Reply to Comment on ‘Experimental observations of flame acceleration and transition to detonation following shock–flame interaction’." Combustion Theory and Modelling 6, no. 3 (September 2002): 527–28. http://dx.doi.org/10.1088/1364-7830/6/3/402.
Full textGiannuzzi, P. M., M. J. Hargather, and G. C. Doig. "Explosive-driven shock wave and vortex ring interaction with a propane flame." Shock Waves 26, no. 6 (February 29, 2016): 851–57. http://dx.doi.org/10.1007/s00193-016-0627-2.
Full textWei, Haiqiao, Jianfu Zhao, Xiaojun Zhang, Jiaying Pan, Jianxiong Hua, and Lei Zhou. "Turbulent flame–shock interaction inducing end-gas autoignition in a confined space." Combustion and Flame 204 (June 2019): 137–41. http://dx.doi.org/10.1016/j.combustflame.2019.03.002.
Full textDoig, Graham, Zebulan Johnson, and Rachel Mann. "Interaction of shock tube exhaust flow with a non-pre-mixed flame." Journal of Visualization 16, no. 3 (June 26, 2013): 173–76. http://dx.doi.org/10.1007/s12650-013-0166-1.
Full textGui, Mingyue, Baochun Fan, Gang Dong, and Jingfang Ye. "Interaction of a reflected shock from a concave wall with a flame distorted by an incident shock." Shock Waves 18, no. 6 (November 12, 2008): 487–94. http://dx.doi.org/10.1007/s00193-008-0177-3.
Full textWei, Haiqiao, Zailong Xu, Lei Zhou, Dongzhi Gao, and Jianfu Zhao. "Effect of initial pressure on flame–shock interaction of hydrogen–air premixed flames." International Journal of Hydrogen Energy 42, no. 17 (April 2017): 12657–68. http://dx.doi.org/10.1016/j.ijhydene.2017.03.099.
Full textMAEDA, Shinichi, Yuki KURAMOCHI, Ryo ONO, and Tetsuro OBARA. "Detonation transition process caused by interaction of convex flame with planar shock wave." Transactions of the JSME (in Japanese) 83, no. 850 (2017): 17–00049. http://dx.doi.org/10.1299/transjsme.17-00049.
Full textPicone, J. M., and J. P. Boris. "Vorticity generation by shock propagation through bubbles in a gas." Journal of Fluid Mechanics 189 (April 1988): 23–51. http://dx.doi.org/10.1017/s0022112088000904.
Full textЛобода, Е. Л., М. В. Агафонцев, and А. А. Старосельцева. "Detonation processes in the combustion front of plant combustible materials." Pozharnaia bezopasnost`, no. 1(110) (March 15, 2023): 27–34. http://dx.doi.org/10.37657/vniipo.pb.2023.110.1.002.
Full textGamba, Mirko, and M. Godfrey Mungal. "Ignition, flame structure and near-wall burning in transverse hydrogen jets in supersonic crossflow." Journal of Fluid Mechanics 780 (September 3, 2015): 226–73. http://dx.doi.org/10.1017/jfm.2015.454.
Full textGao Dongzhi, 高东志, 卫海桥 Wei Haiqiao, 周. 磊. Zhou Lei, 刘丽娜 Liu Lina, 赵健福 Zhao Jianfu, and 徐在龙 Xu Zailong. "Experimental study of flame-shock wave interaction and cylinder pressure oscillation in confined space." Infrared and Laser Engineering 46, no. 2 (2017): 239004. http://dx.doi.org/10.3788/irla201746.0239004.
Full textGao Dongzhi, 高东志, 卫海桥 Wei Haiqiao, 周. 磊. Zhou Lei, 刘丽娜 Liu Lina, 赵健福 Zhao Jianfu, and 徐在龙 Xu Zailong. "Experimental study of flame-shock wave interaction and cylinder pressure oscillation in confined space." Infrared and Laser Engineering 46, no. 2 (2017): 239004. http://dx.doi.org/10.3788/irla20174602.239004.
Full textPandey, Krishna Murari, and Sukanta Roga. "CFD Analysis of Hypersonic Combustion of H2-Fueled Scramjet Combustor with Cavity Based Fuel Injector at Flight Mach 6." Applied Mechanics and Materials 656 (October 2014): 53–63. http://dx.doi.org/10.4028/www.scientific.net/amm.656.53.
Full textRakotoarison, Willstrong, Andrzej Pekalski, and Matei I. Radulescu. "Detonation transition criteria from the interaction of supersonic shock-flame complexes with different shaped obstacles." Journal of Loss Prevention in the Process Industries 64 (March 2020): 103963. http://dx.doi.org/10.1016/j.jlp.2019.103963.
Full textGoldfeld, Marat, and Alexey Starov. "Scheme of Hydrogen Ignition in Duct with Shock Waves." Siberian Journal of Physics 9, no. 2 (June 1, 2014): 116–27. http://dx.doi.org/10.54362/1818-7919-2014-9-2-116-127.
Full textHora, H., G. H. Miley, K. Flippo, P. Lalousis, R. Castillo, X. Yang, B. Malekynia, and M. Ghoranneviss. "Review about acceleration of plasma by nonlinear forces from picoseond laser pulses and block generated fusion flame in uncompressed fuel." Laser and Particle Beams 29, no. 3 (September 2011): 353–63. http://dx.doi.org/10.1017/s0263034611000413.
Full textGao, Tianyun, Heiko Schmidt, Marten Klein, Jianhan Liang, Mingbo Sun, Chongpei Chen, and Qingdi Guan. "One-dimensional turbulence modeling of compressible flows: II. Full compressible modification and application to shock–turbulence interaction." Physics of Fluids 35, no. 3 (March 2023): 035116. http://dx.doi.org/10.1063/5.0137435.
Full textXui, Rui, Xing Zheng, Lianjie Yue, Shikong Zhang, and Chao Weng. "Study of shock train/flame interaction and skin-friction reduction by hydrogen combustion in compressible boundary layer." International Journal of Hydrogen Energy 45, no. 31 (June 2020): 15683–96. http://dx.doi.org/10.1016/j.ijhydene.2020.04.027.
Full textShao, Haibin, Tingwei Wang, and Qitu Zhang. "Ceramifying Fire-Resistant Polyethylene Composites." Advanced Composites Letters 19, no. 5 (September 2010): 096369351001900. http://dx.doi.org/10.1177/096369351001900501.
Full textLalousis, P., I. B. Földes, and H. Hora. "Ultrahigh acceleration of plasma by picosecond terawatt laser pulses for fast ignition of fusion." Laser and Particle Beams 30, no. 2 (March 9, 2012): 233–42. http://dx.doi.org/10.1017/s0263034611000875.
Full textLin, Jyh-Woei. "Space Radiation of Solar Storm: A Meeting Report in Taiwan." European Journal of Environment and Earth Sciences 2, no. 6 (November 11, 2021): 10–11. http://dx.doi.org/10.24018/ejgeo.2021.2.6.202.
Full textKasymov, D., and O. Galtseva. "On the design of some devices for localization and extinguishing wildfires of different intensities." Bulletin of the Karaganda University. "Physics" Series 97, no. 1 (March 30, 2020): 115–24. http://dx.doi.org/10.31489/2020ph1/115-124.
Full textKarimi, Abdullah, and M. Razi Nalim. "Ignition by Hot Transient Jets in Confined Mixtures of Gaseous Fuels and Air." Journal of Combustion 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/9565839.
Full textWang, Kan, Yang Liu, Hao Wang, Xiaolei Liu, Yu Jiao, and Yujian Wu. "Dynamic Process and Damage Evaluation Subject to Explosion Consequences Resulting from a LPG Tank Trailer Accident." Processes 11, no. 5 (May 16, 2023): 1514. http://dx.doi.org/10.3390/pr11051514.
Full textDOU, HUA-SHU, ZONGMIN HU, and BOO CHEONG KHOO. "COMPUTATIONAL STUDY OF DEFLAGRATION TO DETONATION TRANSITION IN A STRAIGHT DUCT: EFFECT OF ENERGY RELEASE." International Journal of Modern Physics: Conference Series 19 (January 2012): 62–72. http://dx.doi.org/10.1142/s2010194512008598.
Full textDou, Hua-Shu, Zongmin Hu, Boo Cheong Khoo, and Zonglin Jiang. "Numerical Simulation of Deflagration to Detonation Transition in a Straight Duct: Effects of Energy Release and Detonation Stability." Advances in Applied Mathematics and Mechanics 6, no. 06 (December 2014): 718–31. http://dx.doi.org/10.4208/aamm.2013.m159.
Full textGamezo, Vadim N., Alexei M. Khokhlov, and Elaine S. Oran. "The influence of shock bifurcations on shock-flame interactions and DDT." Combustion and Flame 126, no. 4 (September 2001): 1810–26. http://dx.doi.org/10.1016/s0010-2180(01)00291-7.
Full textCiccarelli, Gaby, Craig T. Johansen, and Michael Parravani. "The role of shock–flame interactions on flame acceleration in an obstacle laden channel." Combustion and Flame 157, no. 11 (November 2010): 2125–36. http://dx.doi.org/10.1016/j.combustflame.2010.05.003.
Full textJiang, Hua, Gang Dong, Xiao chen, and Jin-Tao Wu. "Numerical simulations of the process of multiple shock–flame interactions." Acta Mechanica Sinica 32, no. 4 (April 27, 2016): 659–69. http://dx.doi.org/10.1007/s10409-015-0552-0.
Full textКузнецов, А. Е., А. П. Инчиков, Е. А. Соина, and Л. А. Орлов. "Procedure for arramgement of fire extinguishing by the units of FPS GPS EMERCOM of Russia at facilities with explosive materials handling." Pozharnaia bezopasnost`, no. 3(112) (September 15, 2023): 49–53. http://dx.doi.org/10.37657/vniipo.pb.2023.112.3.005.
Full textWang, Dandan, and Gang Dong. "Scalar characterisations of three-dimensional shock-flame interactions: similarity and inhomogeneity." Journal of Turbulence 21, no. 2 (February 1, 2020): 84–105. http://dx.doi.org/10.1080/14685248.2020.1734206.
Full textMassa, L., and P. Jha. "Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions." Physics of Fluids 24, no. 5 (May 2012): 056101. http://dx.doi.org/10.1063/1.4719153.
Full textRI, Zhdanov. "Intestinal Microbiota as a Necessary Basis for Homeostasis, General Pathology, and Ageing, or Back to Elia Metchnikov." Open Access Journal of Microbiology & Biotechnology 7, no. 3 (July 4, 2022): 1–6. http://dx.doi.org/10.23880/oajmb-16000236.
Full textAl-Thehabey, Omar Yousef. "Modeling the amplitude growth of Richtmyer–Meshkov instability in shock–flame interactions." Physics of Fluids 32, no. 10 (October 1, 2020): 104103. http://dx.doi.org/10.1063/5.0021989.
Full textJohnson, R. G., A. C. McIntosh, and X. S. Yang. "Modelling of fast flame–shock wave interactions with a variable piston speed." Combustion Theory and Modelling 7, no. 1 (March 2003): 29–44. http://dx.doi.org/10.1088/1364-7830/7/1/302.
Full text