Dissertations / Theses on the topic 'Flagellar motility'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Flagellar motility.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ralston, Katherine Sampson. "Parasites in motion novel roles for the flagellum and flagellar motility /." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1835602901&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textDeakin, William James. "Molecular characterisation of flagellar genes from agrobacterium tumefaciens." Thesis, Durham University, 1994. http://etheses.dur.ac.uk/5858/.
Full textEdge, Matthew James. "Analysis of flagellar switch proteins in Rhodobacter sphaeroides." Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342030.
Full textMagder, Ilana. "The importance of a radial spoke protein in flagellar motility /." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=31266.
Full textAlbanna, Ayman Mohamed Jaber. "Regulation of flagellar mediated motility in the species Samonella enterica." Thesis, University of Newcastle upon Tyne, 2017. http://hdl.handle.net/10443/3964.
Full textStaudinger, Wilfried. "Investigations on Flagellar Biogenesis, Motility and Signal Transduction of Halobacterium salinarum." Diss., lmu, 2008. http://nbn-resolving.de/urn:nbn:de:bvb:19-92769.
Full textStaudinger, Wilfried. "Investigations on flagellar biogenesis, motility and signal transduction of Halobacterium salinarum." kostenfrei, 2007. http://edoc.ub.uni-muenchen.de/9276/.
Full textCicconofri, Giancarlo. "Mathematical Models of Locomotion: Legged Crawling, Snake-like Motility, and Flagellar Swimming." Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4858.
Full textMcCarren, Jay William. "Microscopic, genetic, and biochemical characterization of non-flagellar swimming motility in marine cyanobacteria." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2005. http://wwwlib.umi.com/cr/ucsd/fullcit?p3199668.
Full textTitle from PDF title page (viewed October 21, 2005) Vita. Includes bibliographical references. Available online via ProQuest Digital Dissertations.
Wand, Matthew Edmund. "The roles of HP0770 and HP1575 in Helicobacter pylori flagellar assembly and motility." Thesis, University of Nottingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433977.
Full textVernon, Geraint Grrffydd. "Mechanical activity and its propagation along the flagellar axoneme : studies using caged ATP." Thesis, University of Bristol, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319140.
Full textCicirelli, Elisha M. "Bacterial quorum-sensing in the marine sponge environment implications on motility and flagellar biosynthesis /." [Bloomington, Ind.] : Indiana University, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3297116.
Full textTitle from dissertation home page (viewed Sept. 29, 2008). Source: Dissertation Abstracts International, Volume: 69-02, Section: B, page: 0818. Adviser: Clay Fuqua.
Dantas, Sonia N. "Mutational analysis of a gene required for flagellar motility in the African sleeping sickness parasite /." Connect to online version, 2008. http://ada.mtholyoke.edu/setr/websrc/pdfs/www/2008/260.pdf.
Full textJerber, Julie. "Caractérisation fonctionnelle de deux nouveaux gènes ciliaires pendant le développement des vertébrés." Phd thesis, Université Claude Bernard - Lyon I, 2014. http://tel.archives-ouvertes.fr/tel-00995319.
Full textTheves, Matthias. "Bacterial motility and growth in open and confined environments." Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2014/7031/.
Full textBakterien sind einzellige Mikroorganismen, die sich in flüssigem Medium mit Hilfe von rotierenden Flagellen, länglichen Fasern aus Proteinen, schwimmend fortbewegen. In Gegenwart einer Grenzfläche und unter günstigen Umweltbedingungen siedeln sich Bakterien an der Oberfläche an und gehen in eine sesshafte Wachstumsphase über. Die Wachstumsphase an der Oberfläche ist gekennzeichnet durch das Absondern von klebrigen, nährstoffreichen extrazellulären Substanzen, welche die Verbindung der Bakterien untereinander und mit der Oberfläche verstärken. Die entstehenden Aggregate aus extrazellulärer Matrix und Bakterien werden als Biofilm bezeichnet. In der vorliegenden Arbeit untersuchten wir ein Bodenbakterium, Pseudomonas putida (P. putida), welches in wässriger Umgebung an festen Oberflächen Biofilme ausbildet. Wir benutzten photolithographisch hergestellte Mikrokanäle und Hochgeschwindigkeits-Videomikroskopie um die Bewegung schwimmender Zellen in verschiedenen Abständen zu einer Glasoberfläche aufzunehmen. Zusätzlich wurden Daten über das parallel stattfindende Wachstum der sesshaften Zellen an der Oberfläche aufgezeichnet. Die Analyse von Trajektorien frei schwimmender Zellen zeigte, dass sich Liniensegmente, entlang derer sich die Zellen in eine konstante Richtung bewegen, mit scharfen Kehrtwendungen mit einem Winkel von 180 Grad abwechseln. Dabei änderte sich die Schwimmgeschwindigket von einem zum nächsten Segment im Mittel um einen Faktor von 2. Unsere experimentellen Daten waren die Grundlage für ein mathematisches Modell zur Beschreibung der Zellbewegung mit alternierender Geschwindigkeit. Die analytische Lösung des Modells zeigt elegant, dass eine Population von Bakterien, welche zwischen zwei Geschwindigkeiten wechseln, signifikant schneller expandiert als eine Referenzpopulation mit Bakterien konstanter Schwimmgeschwindkeit. Im Vergleich zu frei schwimmenden Bakterien beobachteten wir in der Nähe der Oberfläche eine um 15% erhöhte Schwimmgeschwindigkeit der Zellen und eine um 90 % erhöhte Winkel-geschwindigkeit. Außerdem wurde eine signifikant höhere Zelldichte in der Nähe der Grenzfläche gemessen. Während sich der Anstieg in der Winkelgeschwindigkeit durch ein Drehmoment erklären lässt, welches in Oberflächennähe auf den rotierenden Zellkörper und die rotierenden Flagellen wirkt, kann die Beschleunigung und Akkumulation der Zellen bei dem beobachteten Abstand nicht durch existierende Theorien erklärt werden. Unsere Ergebnisse lassen vermuten, dass neben hydrodynamischen Effekten auch Kollisionen mit der Oberfläche eine wichtige Rolle spielen und sich die Rotationsgeschwindigkeit der Flagellenmotoren in der Nähe einer festen Oberfläche grundsätzlich verändert. Unsere Experimente zum Zellwachstum an Oberflächen zeigten, dass sich etwa sechs Stunden nach Beginn des Experiments größere Kolonien an der Kanaloberfläche auflösen und Zellen für ca. 30 Minuten zurück in die schwimmende Phase wechseln. Ergebnisse von mehreren Vergleichsexperimenten deuten darauf hin, dass dieser Übergang nach einer festen Anzahl von Zellteilungen an der Oberfläche erfolgt und nicht durch den Verbrauch des Wachstumsmediums bedingt wird.
Bergen, Paul Michael. "Characterisation of the structure and function of the Salmonella flagellar export gate protein, FlhB." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267915.
Full textMrusek, Devid [Verfasser], and Gert [Akademischer Betreuer] Bange. "Structural and functional studies on the transcriptional regulation of flagellar motility and biofilm formation / Devid Mrusek ; Betreuer: Gert Bange." Marburg : Philipps-Universität Marburg, 2019. http://d-nb.info/1197231862/34.
Full textSolari, Cristian Alejandro. "A HYDRODYNAMICS APPROACH TO THE EVOLUTION OF MULTICELLULARITY: FLAGELLAR MOTILITY AND THE EVOLUTION OF GERM-SOMA DIFFERENTIATION IN VOLVOCALEAN GREEN ALGAE." Diss., The University of Arizona, 2005. http://hdl.handle.net/10150/194798.
Full textRosko, Jerko. "Osmotaxis in Escherichia coli." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28947.
Full textBartling, Pascal Verfasser], Jörn [Akademischer Betreuer] [Petersen, and Dieter [Akademischer Betreuer] Jahn. "Swimming motility of Rhodobacteraceae – Phylogenomic analysis and functional characterization of the archetypal flagellar system in Phaeobacter inhibens DSM 17395 / Pascal Bartling ; Jörn Petersen, Dieter Jahn." Braunschweig : Technische Universität Braunschweig, 2019. http://d-nb.info/1191487903/34.
Full textWeatherby, Kate Michelle. "The flagellated form of Chromera velia." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14982.
Full textBrasseur, Anaïs. "Etude de composantes de la voie TOR: caractérisation de TbFKBP12, une protéine de la famille des PPIases (isomérases) impliquée dans l'homéostasie du flagelle chez Trypanosoma brucei." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210240.
Full textLes trypanosomes sont extracellulaires, ils possèdent un flagelle qui leur permet de se mouvoir dans les différents milieux qu’ils infestent. La structure de celui-ci contient des éléments conservés au cours de l’évolution. Il constitue donc un excellent modèle de base pour en étudier l’architecture. D’autre part, le flagelle du parasite contient des structures propres à certains kinétoplastides, offrant ainsi une cible thérapeutique aux traitements anti-trypanosomiaux.
Le flagelle est véritablement un organite plurifonctionnel nécessaire à la survie du parasite au sein des divers environnements qu’il rencontre lors de son cycle de développement. Outre son rôle moteur, il permet à la cellule d’échapper au système immunitaire de son hôte mammifère et de s’attacher à l’épithélium des glandes salivaires de l’insecte. Il est également requis pour le bon positionnement des organites, la morphogenèse et la division cellulaire. Enfin, il serait impliqué dans l’activité sensorielle du trypanosome. A ce jour, on ne connait quasiment rien des potentielles voies de « sensing ». Elles doivent pourtant exister, permettant l’appréhension de l’environnement, l’interaction avec les hôtes et la réception de signaux induisant la différenciation.
Cet intérêt pour les voies de signalisation du parasite a abouti à l’étude des composantes de la voie TOR. TOR-Target of Rapamycin est un contrôleur central de la croissance cellulaire qu’il régule en fonction de différents stimuli externes. Il a été démontré depuis que chez T.brucei aussi, TOR régulerait la croissance temporelle et spatiale de la cellule.
La kinase TOR est inhibée par sa liaison avec le complexe rapamycine-FKBP12. Nous avons identifié cette peptidyl-prolyl cis-trans isomérase chez le parasite :TbFKBP12. Elle y serait localisée au niveau du cytosquelette/flagelle. Contrairement à ce qui est observé chez la levure S.cerevisiae, l’isomérase est essentielle chez le trypanosome. Son invalidation par RNAi bloque la cytocinèse des parasites sanguicoles et provoque l’apparition d’axes de clivage internes à la cellule. Chez les formes procycliques par contre, la disparition de la protéine entraîne un défaut sévère de motilité du flagelle qui se traduit par une immobilisation partielle du parasite.
TbFKBP12 est donc impliquée dans l’homéostasie du flagelle chez le trypanosome africain, organite nécessaire à la motilité et à la division cellulaire.
Doctorat en sciences, Spécialisation biologie moléculaire
info:eu-repo/semantics/nonPublished
Malavaud, Sandra. "Escherichia coli et canneberge : évaluation de l'activité in vitro et chez l'animal." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30027/document.
Full textV.macrocarpon (cranberry) is traditionally associated with the prevention of urinary tract infections although the mechanisms of action remaining poorly elucidated. Preincubation of E.coli UTI89 strain with commercial extracts of V.macrocarpon inhibited adhesion to T24 human urothelial cell line in a dose-dependent and reversible manner. Transcriptomic assay (E.coli Gene expression microarray, Agilent Technologies) highlighted a strong impact on most genes related to adhesion, but P fimbriae, chemotactism and flagella. Electron microscopy study confirmed V.macrocarpon-induced alterations on UTI89 size and surface structures (fimbriae, flagella). In keeping, broad field microscopy (ImarisTrack) evidenced alterations in E.coli motility (track displacement length, duration, speed & straightness). In C57BL/6 mice, pre-incubation of UTI89 with V.macrocarpon extracts failed to impact bladder colonization after intravesical instillations and adhesion to T24 cells of bacteria recovered 3days after instillation. A simple, in vitro model based on adhesion and swarming assays and broad field microscopy is described to evaluate cranberry activity
Dombrowski, Christopher Charles. "Bacterial Motility: From Propulsion to Collective Behavior." Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/195677.
Full textFoster, Jocelyn Claire Alice. "Biosynthesis of the flagellum of Rhodobacter sphaeroides." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302887.
Full textSmith, Amy Elisabeth. "The centriole in evolution : from motility to mitosis." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:f48e77ea-fbf9-4ac6-b86e-854f6739a5aa.
Full textDuchesne, Ismael. "La motilité des bactéries flagellées en milieu anisotrope." Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/34999.
Full textBacteria play an essential role in nature. We can simply think of their impact on human health to convince ourselves. To be able to play their role in the environment, bacteria often need to reach specific locations. The most common bacterial locomotion system is the flagellar motor. To propel themselves, the flagellated bacteria possess one (or few) rotary motor anchored in their membrane. This motor transfers its rotation to a long helical filament located outside the bacterium thanks to a universal joint called the hook. This motor was the first biological rotary motor discovered. Furthermore, several studies have shown the importance of the flagellar motor during bacterial infections. Thus, it has been the subject of intensive studies for several decades. Most of these studies, however, have been conducted in simple media that represent only a small fraction of natural biological environment. Indeed, bacteria often move in anisotropic media, where the physical properties depend on the direction. For example, mucus found throughout the human body, synovial fluid that lubricates our joints, skin and biofilms are all media that can be anisotropic and where bacteria proliferate. This thesis by article presents our study of the motility of flagellar bacteria in anisotropic media. Since natural biological media are difficult to manipulate in the laboratory, a synthetic medium was first chosen to mimic the properties of natural anisotropic media. Two types of anisotropic media were tested, the liquid crystals (LCs) 5CB and DSCG. Only the LC DSCG has been used since bacteria cannot penetrate the LC 5CB. To create the DSCG LC, molecules of disodium cromoglycate (DSCG) are dissolved in a water-based solvent. At low concentration, the medium is isotropic, and at high concentration the medium becomes anisotropic (a LC). First, the speed and the orientation of the body of the bacteria were recorded while changing the concentration of the DSCG LC to bring the solution from the isotropic phase to the anisotropic phase. These measurements first confirmed that, in an anisotropic environment, the bacteria move in a straight line and reverse their movement rather than performing a random walk as in isotropic media. Observation of bacterial behavior also demonstrated the presence of a pretransition zone in isotropic solutions of DSCG. At these concentrations of DSCG, the molecules begin to organize into rods. This organization explains why bacteria become sticky (via the depletion force), and why the viscosity increases in the pretransition zone. To understand how bacteria can reverse their motion in anisotropic media, the filaments have also been studied. These observations have shown that during the change of direction of the bacteria, the hook is no longer a universal joint and momentarily locks, thus changing the orientation of the filament. This reorientation of the filament does not only reverse the movement of the bacteria in the LC, but it also triggers the reorientation of the filament in other media as in porous media. This observation, supplemented by results from literature, suggests that the blocked hook is a universal phenomenon occurring in all environments. Finally, light-guided dark field microscopy and a microrheological technique will be exposed. These techniques were used during the characterization of the pretransition zone. Throughout this work, it will also be highlighted how our multidisciplinary approach has been beneficial.
Antunes, Adeline. "Le transport intraflagellaire : construction et déplacement des trains dans le flagelle du trypanosome." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS080.
Full textCilia and flagella are essential organelles composed of 9 doublet microtubules. They contain at least 500 proteins and their construction is mainly done by adding new subunits at the distal end. They are transported byIntraflagellar transport (IFT), the movement of trains composedof two protein complexes between the flagellar membrane and the microtubule doublets by driven by molecular kinesin and dynein motors. My thesis project is based on the role and functioning of IFT using the protistTrypanosoma brucei as a model organism. The goal of my thesis project was (i) to determine how IFT trains are assembled by establishing the link between their molecular composition and their structure and (ii) to establish the route taken by IFT trains within the flagella. By combining light microscopy and electron microscopy approaches after RNAi targeting of genes coding for IFT train components, we have demonstrated their contribution to the construction of IFT trains. We propose a new model to explain train formation and their entry in the flagellum. By three-dimensional electron microscopy (FIB-SEM), we have also shown where IFT trains are located. Trains are specifically found on 4 microtubule doublets out of the 9 available. These results have been obtained bothin vitro and ex vivousing parasites developing in the tsetse fly.Comparison of the results with the literature highlights the flexibility of transport depending on the anatomy of cilia and flagella
Indiana, Arnaud. "Rôles du chimiotactisme et de la mobilité flagellaire dans la fitness des Xanthomonas." Thesis, Angers, 2014. http://www.theses.fr/2014ANGE0009/document.
Full textXanthomonads are responsible for plant diseases such as black rot of Brassicaceae caused by X. campestris pv. campestris (Xcc). During the early stages of the infection, pathogenic bacteria such as Xcc must detect favorable sites and ingress into host plant tissues to colonize and multiply in the apoplast or the xylem vessels. Chemotaxis is the mechanism used by bacteria to detect attractants and repellents and adapt in consequence its direction. The aim of this work is to understand the roles of chemotaxis and flagellar motility in the fitness of xanthomonads. We showed that flagellar motility is not a general feature of xanthomonads. About 5 % of tested strains lost this ability without major impact on their fitness in planta. A chemotaxis sensor, named Hsb1, probably acquired by horizontal transfer shows a group of alleles that are specific of X. campestris. In Xcc ATCC 33913, a mutation in hsb1 resulted in a decreased penetration of this strain in the host plant tissues combined with an increase penetration in the non-host plant tissues. Hsb1 sense a signal from wounds of cabbage leaves. In vitro, a glucosinolate, the sinigrin, and an amino acid, the L-phenylalanine are detected by Hsb1 but are not metabolized. Further work is needed to identify the signal detected by the sensor and to design control methods based on confusion
Horstmann, Julia Andrea Verfasser], and Petra [Akademischer Betreuer] [Dersch. "The Role of Flagella and Bacterial Motility in Virulence of Salmonella / Julia Andrea Horstmann ; Betreuer: Petra Dersch." Braunschweig : Technische Universität Braunschweig, 2017. http://d-nb.info/1175817368/34.
Full textButler, Jonathan Alexander. "Characterisation of the Campylobacter jejuni motility accessory factor (maf) gene family involved in flagellin glycosylation." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518480.
Full textLoconte, Valentina. "Structural characterization of proteins involved in Helicobacter pylori motility and adhesion." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3422408.
Full textHelicobacter pylori é un batterio Gram-negativo presente in piú del 50%della popolazione mondiale. Tuttavia, i ceppi piú aggressivi del batterio colpiscono solo il 10% delle persone affette, causando gastriti croniche e ulcera peptica. Tra queste, solo l’1% manifesta gravi patologie come MALT linfoma ed adenocarcinoma gastrico [1]. Il progetto descritto in questo lavoro di tesi é finalizzato alla determinazione strutturale ed alla caratterizzazione di proteine coinvolte nell’architettura del flagello di H. pylori. Difatti, la presenza del flagello é fondamentale per la colonizzazione da parte del batterio dell’intero ambiente gastrico. Il suo ruole é direttamente collegato all’abilitá del batterio di evitare la permanenza nell’ambiente gastrico, permettengli di attraversare lo strato di muco che aderire all’epitelio gastrico [2]. Grazie ad un set di adesine localizzate sia sulla membrana batterica, sia sui flagelli, H. pylori é in grado di aderire alle cellule epiteliali, cominciando il regolare processo di colonizzazione [3]. Inoltre, la presenza di un seti di 5-7 flagelli polarizzati (lunghi tra 2 e 5 μm) e la sua forma ad S garantiscono al batterio la propulsione e la velocitá necessaria per superare la barriera di muco e raggiungere l’epitelio [4]. In generale, la struttura del flagello é costituita da circa trenta diverse proteine, ma il numero puó crescere fino a cento considerando anche le proteine coinvolte nei meccanismi di chemotassia e di regolazione della crescita del flagello [5]. L’architettura generale del flagello é quella di una una complessa nanomacchina, caratterizzata dalla presenza di due principali componenti: i) la porzione dell’uncino e della parte basale, dove é collocato il motore della stuttura; ii) il filamento, che rappresento il vero propulsore della macchina [6]. Nel corso del progetto di dottorato, sono state analizzate le proteine che costituiscono la regione dell’uncino e ricoprono il filamento. La metodica utilizzata prevede l’amplificazione iniziale dei geni target utilizzando il DNA genomico dei ceppi G27 e P12 come templato. I geni amplificati sono stati inseriti in uno o due vettori di espressione, e le proteine ricombinanti sono state prodotte in colture di E. coli e purificate, tramite diversi metodi cro- matografici, dalla parte solubile della sospensione di lisi batterica. Le proteine dell’uncino di H. pylori non presentano un’elevata similaritá di sequenza con le altre proteine giá riportate in letteratura, pertanto la loro reattivitá in soluzione non é facilmente prevedibili a priori. FlgE, FlgE2, FlgK and HpaA (come proteina di rivestimento del flagello) sono le proteine del flagello analizzate durante questo lavoro di dottorato. Sebbene, tutte siano state clonate, espresse e purificate, solo FlgE2 ha fornito dei risultati sufficienti a condurre degli studi strutturali preliminari. I vari studi condotti sulle proteine del flagello sono riportati nel capitolo 3. FlgK é defina una hook-associated protein, che funge da giuntura tra il filamento e l’uncino [7], mentre FlgE é direttamente coinvolta nella polimerizzazione dell’uncino [8]. Entrambe le proteine sono state ampiamente caratterizzate in soluzione ma, sebbene siano stati preparati numerosi screen di cristallizzazione, nessuna delle due ha portato ad ottenere cristalli analizzabili tramite diffrazione a raggi-X. Il limite maggiore osservato nella produzione delle due proteine é l’eluizione di una grande quantitá di forma aggregata, durante il processo di purificazione via cromatografia ad esclusione dimensionale. Anche la proteina FlgE2 é coinvolta nel processo di polimerizzazione dell’uncino. Tuttavia questa sembra essere peculiare solo per le specie batteriche di Helicobacter e Campilobacter e, pertanto, non si hanno numerosi informazioni a riguardo. Durante il lavoro di tesi, la proteina é stata purificata sia in forma monomerica che in forma tetramerica e, in entrambi i casi, sono stati ottenuti cristalli analizzabili tramite diffrazione da raggi-X. Tuttavia, molti tentavi sono stati svolti per risolvera la struttura tramite molecular replacement, utilizzando come templato la struttura della proteina ortologa di Salmonella typhimurium, ma nessuno di questo ha avuto interamente successo. Tuttavia, é stato possibile descrivere un modello preliminario, che verrá successivamente discusso all’interno del capitolo. Poiché HpFlgE2 non presenta un’elevata similaritá con StFlgE2, é stata prodotta una variante in cui sono state sostituite le metionine con seleniometionine; in questo modo si é provato a migliorare calcolando le fasi relative agli atomi pesanti (Se) e successivamente espandendole tramite i dati raccolti per la proteina nativa. Quest’ultima parte del lavora é ancora in via di definizione. Inoltre, date le scarse conoscenze riportate in letteratura riguardanti la proteina, si é cercato di definirne la reale funzione a partire dall’interazione con lo specifico chaperone FlgD. La struttura cristallografica della proteina FlgD é stata risolta recentement [9], rivelando la presenza di un motivo lineare collocato nella parte C-terminale, rappresentativo di una zona di legame con la proteina coniugata. Il legame é stato confermato tramite termoforesi in microscala. Per potersi legare alle cellule epitaliali, H. pylori ha bisogno di un set di proteine (ade-sine) che ne permettano l’adesione. La proteina HpaA (Helicobater pylori adhesine A),analizzata nel capitolo 4, é una lipoproteina, localizzata sulla superfice del flagello ed inizialmente é stata ipotizzata affine all’acido sialico, esposto sulla superficie delle cellule gastriche [10]. Si suppone che la proteina possa operare come proteina di rivestimento delflagello e che faciliti il legame sulla superficie delle cellule attraverso l’adesione dei flagelli[11]. Inoltre, data la sua posizione esposta, HpaA é stata considerato un ipotetico target per lo svilluppo di vaccini [12]. Infine, la proteina da sola presenta un’elevata tendenza a creare degli aggreagati in soluzione, pertanto é stata espressa e purificata in fusione con una super-folder GFP [13]. La proteina é stata successivamente cristallizata ed é stata analizzata tramite diffrazioni da raggi-X. Sfortunatamente, l’analisi dei dati di diffrazione ha portato alla conclusione che i cristalli erano formati esclusivamente da sfGFP. Infine, nel capitolo 5 viene analizzata la proteina HP1457. Questa appartiene ad una classe di proteina recentemente riconusciute operare come outer-membrane proteine, coinvolte nella stimolazione della peptidoglicano-sintasi, PBP1B [14]. Inoltre, la proteina HP1457 appartiene ad un operone caratterizzato dalla presenza di geni che codificano per proteine di secrezione altamente immunogeniche. Tra queste: HP1454 [15], HP1455 (una lipoproteina di funzione ancora sconosciuta), HP1456 (identificata come la lipoproteina Lpp20) [16]. HP1457 é stata ampiamente caratterizzata in soluzione e sono stati effettuati numerosi tentativi di cristallizzazione su diversi costrutti, ma nessuno di questi ha portato ad ottenere cristalli.
Truchon, Dany. "Nouveaux marqueurs pour l'observation du moteur flagellaire bactérien." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28827/28827.pdf.
Full textChevrier, Claude. "Motilité des spermatozoïdes de mammifères et facteurs susceptibles de l'influencer." Tours, 1990. http://www.theses.fr/1990TOUR4004.
Full textNo summary available
Schoëvaërt-Brossault, Damien. "Analyse et modélisation dynamique : application à l'analyse du mouvement des cellules ciliées et flagellées." Paris 12, 1990. http://www.theses.fr/1990PA120022.
Full textBarbosa, Fernanda de Oliveira [UNESP]. "Importância dos genes fliC e motB de Salmonella enterica subsp. enterica sorovar Enteritidis na colonização intestinal e invasão sistêmica em aves (Gallus gallus domesticus)." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/137909.
Full textApproved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-04-13T12:50:17Z (GMT) No. of bitstreams: 1 barbosa_fo_me_jabo.pdf: 3283611 bytes, checksum: 0f6c2b0766490591a0e2a8457d08fef4 (MD5)
Made available in DSpace on 2016-04-13T12:50:17Z (GMT). No. of bitstreams: 1 barbosa_fo_me_jabo.pdf: 3283611 bytes, checksum: 0f6c2b0766490591a0e2a8457d08fef4 (MD5) Previous issue date: 2016-02-29
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Salmonella Enteritidis (SE) causa o paratifo aviário em aves e frequentemente está relacionada aos surtos de infecção alimentar em seres humanos. A contribuição do flagelo versus motilidade na interação patógenohospedeiro requer estudos mais aprofundados. Para melhor entendimento da contribuição individual desses fatores de virulência em aves, pintinhos de um dia de vida foram desafiados oralmente com estirpe selvagem de SE, uma mutante não-móvel mas flagelada (SE ΔmotB) e outra mutante aflagelada (SE ΔfliC). Excreção fecal e colonização de fígado, baço e conteúdo cecal pelas estirpes de SE foram avaliadas. Além disso, também foi realizada a avaliação das alterações macroscópicas e microscópicas. Nos estágios iniciais da infecção, ambos mutantes mostraram menor capacidade de colonizar o ceco, além de menor recuperação no baço por SE ΔfliC comparando a estirpe selvagem SE. Após 7 dpi não havia diferenças na contagem das três estirpes em conteúdo cecal, fígado e baço. Análises histopatológicas demonstraram que estirpes flageladas (SE ΔmotB e SE) induziram reatividade linfóide em inglúvio, ceco, íleo e fígado. No entanto, nos estágios iniciais da infecção a estirpe SE ΔfliC não estimulou a reatividade linfóide em lâmina própria de ceco e íleo mas induziu discretos focos necróticos em fígado. Portanto, neste estudo a presença de estrutura flagelar e motilidade parece exercer um papel nos estágios iniciais da colonização intestinal e infecção sistêmica por SE nas aves.
Salmonella Enteritidis (SE) causes fowl paratyphoid in poultry often related to outbreaks of food-borne diseases in humans. The contribution of flagella and motility in host pathogen interaction require further investigation. To better understand the individual contribution of these virulence factors in poultry, one day old chickens were challenged orally with wildtype strain of SE, a nonmotile but fully flagellated (SE ΔmotB) and aflagellated mutant (SE ΔfliC). Faecal excretion and colonization of liver, spleen and cecal contents by the SE strains were assessed. Additionally, the assessment of gross and microscopic alterations was also performed. At the early stages of infection both mutants showed lower capacity to colonize the ceca, besides the lower recovering in spleen of SE ΔfliC comparing to the wild type of SE. After 7 dpi there were no differences among the counts of the three strains in ceca, liver and spleen. Histopathological analyses demonstrated that flagellated strains (wild type SE and SE ΔmotB) induced lymphoid reactivity in crop, ceca, ileum and liver. On the other hand, in the early stages of infection, SE ΔfliC strain did not stimulate lymphoid reactivity in lamina propria of ceca and ileum but induced discrete necrotic foci in liver. Thus in the present study the flagellar structure and motility seemed to play a role at the early stages of the intestinal colonization and systemic infection by SE in the chicken.
FAPESP: 2014/02014-1
Soutourina, Olga. "Contrôle de l'expression des gènes dans le processus de motilité chez les bactéries à Gram-négatif." Versailles-St Quentin en Yvelines, 2001. http://www.theses.fr/2001VERS011V.
Full textGauthier, Mathieu. "Développement d'un système in vitro pour l'étude du moteur flagellaire bactérien d'Escherichia coli." Doctoral thesis, Université Laval, 2011. http://hdl.handle.net/20.500.11794/23107.
Full textQuintero, Yanes Alex Armando. "Novel pleiotropic regulators of gas vesicle biogenesis in Serratia." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288405.
Full textRowe, Warren III. "The Role of Alginate in the Inhibition of Macrophage Phagocytosis of Mucoid Pseudomonas aeruginosa." VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/3000.
Full textPéchart, Isabelle. "Expression et organisation des isoformes de tubuline dans différents modéles de cils et de flagelles." Paris 5, 2001. http://www.theses.fr/2001PA05S006.
Full textBubendorfer, Sebastian [Verfasser], and Kai M. [Akademischer Betreuer] Thormann. "Flagellen-vermittelte Motilität in Shewanella : Mechanismen zur effektiven Fortbewegung in S. putrefaciens CN-32 und S. oneidensis MR-1 / Sebastian Bubendorfer. Betreuer: Kai M. Thormann." Marburg : Philipps-Universität Marburg, 2013. http://d-nb.info/103550250X/34.
Full textWheeler, Richard John. "Generation, regulation and function of morphology in Leishmania and Trypanosoma." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:c44354bc-5a93-4fce-a716-bb0a63131901.
Full textStaudinger, Wilfried [Verfasser]. "Investigations on flagellar biogenesis, motility and signal transduction of Halobacterium salinarum / Wilfried Staudinger." 2007. http://d-nb.info/991331737/34.
Full textLee, Jaemin. "Loss of FlhE in the flagellar Type III secretion system allows proton influx into Salmonella and Escherichia coli." Thesis, 2012. http://hdl.handle.net/2152/27205.
Full texttext
Uppaluri, Sravanti. "Unicellular Parasite Motility: A Quantitative Perspective." Doctoral thesis, 2011. http://hdl.handle.net/11858/00-1735-0000-0006-B52D-7.
Full textLouise, Charles J. "The regulation of motility in Escherichia coli 1. Control of synthesis of flagella : 2. Role of calcium ions in chemotaxis /." 1995. http://catalog.hathitrust.org/api/volumes/oclc/34621529.html.
Full textConstantino, Maira Alves. "Investigating effects of morphology and flagella dynamics on swimming kinematics of different helicobacter species using single-cell imaging." Thesis, 2017. https://hdl.handle.net/2144/27383.
Full textLehnen, Daniela [Verfasser]. "LrhA als Regulator der Flagellen, Motilität, Chemotaxis und Typ-1-Fimbrien in Escherichia coli / Daniela Lehnen." 2002. http://d-nb.info/966357817/34.
Full textCullen, Thomas Wilson. "Membrane remodeling in epsilon proteobacteria and its impact on pathogenesis." Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-05-5025.
Full texttext