Academic literature on the topic 'Fixed-wing unmanned aerial vehicle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fixed-wing unmanned aerial vehicle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fixed-wing unmanned aerial vehicle"
Zou, Jie-Tong, and Pan Zheng-Yan. "THE DEVELOPMENT OF TILT-ROTOR UNMANNED AERIAL VEHICLE." Transactions of the Canadian Society for Mechanical Engineering 40, no. 5 (December 2016): 909–21. http://dx.doi.org/10.1139/tcsme-2016-0075.
Full textOktay, Tugrul, Harun Celik, and Ilke Turkmen. "Maximizing autonomous performance of fixed-wing unmanned aerial vehicle to reduce motion blur in taken images." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 232, no. 7 (March 28, 2018): 857–68. http://dx.doi.org/10.1177/0959651818765027.
Full textZhang, Xiangyin, and Haibin Duan. "Altitude consensus based 3D flocking control for fixed-wing unmanned aerial vehicle swarm trajectory tracking." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 230, no. 14 (August 6, 2016): 2628–38. http://dx.doi.org/10.1177/0954410016629692.
Full textEftekhari, Shahrooz, and Abdulkareem Sh Mahdi Al-Obaidi. "Investigation of a Cruising Fixed Wing Mini Unmanned Aerial Vehicle Performance Optimization." Indonesian Journal of Science and Technology 4, no. 2 (July 9, 2019): 280–93. http://dx.doi.org/10.17509/ijost.v4i2.18185.
Full textNasab, Hamed Mortazavi, and Naser Navazani. "Adaptive Control for Trajectory Tracking of an Unmanned Aerial Vehicle." Advanced Engineering Forum 17 (June 2016): 101–10. http://dx.doi.org/10.4028/www.scientific.net/aef.17.101.
Full textSuroso, Indreswari, and Erwhin Irmawan. "Analysis Of Aerial Photography With Drone Type Fixed Wing In Kotabaru, Lampung." Journal of Applied Geospatial Information 2, no. 1 (May 4, 2018): 102–7. http://dx.doi.org/10.30871/jagi.v2i1.738.
Full textYang, Mingxiao, Sifan Wang, Kai Hu, and Tongyan Liu. "Wing Optimization Design Based on Composite Global Hawk Unmanned Aerial Vehicle." Journal of Physics: Conference Series 2557, no. 1 (July 1, 2023): 012087. http://dx.doi.org/10.1088/1742-6596/2557/1/012087.
Full textKrishnakumar, R., K. Senthil Kumar, and T. Anand. "Design and Development of Vertical Takeoff and Horizontal Transition Mini Unmanned Aerial Vehicle." Advanced Materials Research 1016 (August 2014): 436–40. http://dx.doi.org/10.4028/www.scientific.net/amr.1016.436.
Full textChalla, Vinay Reddy, and Ashwini Ratnoo. "On Maneuverability of Fixed-Wing Unmanned Aerial Vehicle Formations." Journal of Guidance, Control, and Dynamics 44, no. 7 (July 2021): 1327–44. http://dx.doi.org/10.2514/1.g005409.
Full textZhai, Rui Yong, Wen Dong Zhang, Zhao Ying Zhou, Sheng Bo Sang, and Pei Wei Li. "Trajectory Tracking Control for Micro Unmanned Aerial Vehicles." Advanced Materials Research 798-799 (September 2013): 448–51. http://dx.doi.org/10.4028/www.scientific.net/amr.798-799.448.
Full textDissertations / Theses on the topic "Fixed-wing unmanned aerial vehicle"
Fuglaas, Simen. "Precision Airdrop from a Fixed-Wing Unmanned Aerial Vehicle." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25909.
Full textHough, Willem J. "Autonomous aerobatic flight of a fixed wing unmanned aerial vehicle." Thesis, Link to online version, 2007. http://hdl.handle.net/10019/428.
Full textAlberts, Frederik Nicolaas. "Accurate autonomous landing of a fixed-wing unmanned aerial vehicle." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71672.
Full textENGLISH ABSTRACT: This thesis presents the analysis, design, simulation and practical implementation of a control system to achieve an accurate autonomous landing of a fixed-wing unmanned aerial vehicle in the presence of wind gust atmospheric disturbances. Controllers which incorporate the concept of direct-lift control were designed based on a study of the longitudinal dynamics of the UAV constructed as a testbed. Direct-lift control offers the prospect of an improvement in the precision with which aircraft height and vertical velocity can be controlled by utilising actuators which generate lift directly, instead of the conventional method whereby the moment produced by an actuator results in lift being indirectly generated. Two normal specific acceleration controllers were designed. The first being a conventional moment-based controller, and the second a direct-lift-augmented controller. The moment-based controller makes use of the aircraft’s elevator while the direct-lift augmented controller in addition makes use of the flaps of the aircraft which serve as the direct-lift actuator. Controllers were also designed to regulate the airspeed, altitude, climb rate, and roll angle of the aircraft as well as damp the Dutch roll mode. A guidance controller was implemented to allow for the following of waypoints. A landing procedure and methodology was developed which includes the circuit and landing approach paths and the concept of a glide path offset to calibrate the touchdown point of a landing. All controllers and the landing procedure were tested in a hardware-in-the-loop simulation environment as well as practically in a series of flight tests. Five fully autonomous landings were performed, three of these using the conventional NSA controller, and the final two the direct-lift-augmented NSA controller. The results obtained during the landing flight tests show that the project goal of a landing within five meters along the runway and three meters across the runway was achieved in both normal wind conditions as well as in conditions where wind gusts prevailed. The flight tests also showed that the direct-lift-augmented NSA controller appears to achieve a more accurate landing than the conventional NSA controller, especially in the presence of greater wind disturbances. The direct-lift augmented NSA controller also exhibited less pitch angle rotation during landing.
AFRIKAANSE OPSOMMING: Hierdie tesis verteenwoordig die analise, ontwerp, simulasie en praktiese implementering van ’n beheerstelsel wat ten doel het om ’n akkurate en outonome landing van ’n onbemande vastevlerk vliegtuig in rukwind atmosferiese toestande te bewerkstellig. Gegrond op ’n studie van die longitudinale dinamika van die vliegtuig wat as proeftuig gebruik is, is beheerders ontwerp wat die beginsel van direkte-lig insluit. Direkte-lig beheer hou die potensiaal in om die vliegtuig se hoogte en vertikale snelheid akkuraat te beheer deur gebruik te maak van aktueerders wat lig direk genereer in teenstelling met die konvensionele metode waar die moment van die aktueerder indirek lig genereer. Twee normaal-versnellings beheerders is ontwerp. Die eerste is ’n konvensionele moment-gebaseerde beheerder wat gebruik maak van die hys-aktueerder van die vliegtuig, en die tweede is ’n direkte-lig-bygestaande beheerder wat addisioneel gebruik maak van die flappe van die vliegtuig wat as die direkte-lig aktueerder dien. Vedere beheerders is ontwerp wat die lugspoed, hoogte, klimkoers, en rolhoek van die vliegtuig reguleer asook die “Dutch roll” gedrag afklam. ’n Leiding-beheerder wat die volg van vliegbakens hanteer, is ingestel. Die landingsprosedure en -metodologie is ontwikkel wat die landingspad sowel as die sweef-pad bepaal en wat terselfdertyd ’n metode daarstel om die posisie van die landingspunt te kalibreer. Die beheerders en landingsprosedure is in ’n hardeware-in-die-lus omgewing gesimuleer en deur middel van ’n reeks proefvlugte getoets. Vyf ten volle outonome landings is uitgevoer waarvan drie van die konvensionele normaal-versnellings beheerder gebruik gemaak het, en die laaste twee die direkte-lig-bygestaande normaal-versnellings beheerder. Die vlugtoetsuitslae bevestig dat die navorsingsdoel om ’n landing binne vyf meter in lyn met en drie meter dwarsoor die landingstrook te bewerkstellig, behaal is. Hierdie akkuraatheid is verkry in beide goeie atmosferiese toestande sowel as toestande met rukwinde. Volgens die vlugtoetse blyk dit dat die direkte-lig-bygestaande normaalversnellings beheerder ’n meer akkurate landing kan bewerkstellig as die konvensionele normaal-versnellings beheerder, veral dan in toestande met rukwinde. Die direkte-ligbygestaande normaal-versnellings beheerder het ook ’n laer hei-hoek rotasie tydens die landing vertoon.
Oland, Espen. "Nonlinear Control of Fixed-Wing Unmanned Aerial Vehicles." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-27263.
Full textGaum, Dunross Rudi. "Agressive flight control techniques for a fixed wing unmanned aerial vehicle." Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/3112.
Full textThis thesis investigates aggressive all-attitude flight control systems. These are flight controllers capable of controlling an aircraft at any attitude and will enable the autonomous execution of manoeuvres such as high bank angle turns, steep climbs and aerobatic flight manoeuvres. This class of autopilot could be applied to carry out evasive combat manoeuvres or to create more efficient and realistic target drones. A model for the aircraft’s dynamics is developed in such a way that its high bandwidth specific force and moment model is split from its lower bandwidth kinematic model. This split is done at the aircraft’s specific acceleration and roll rate, which enables the design of simple, decoupled, linear attitude independent inner loop controllers to regulate these states. Two outer loop kinematic controllers are then designed to interface with these inner loop controllers to guide the aircraft through predefined reference trajectories. The first method involves the design of a linear quadratic regulator (LQR) based on the successively linearised kinematics, to optimally control the system. The second method involves specific acceleration matching (SAM) and results in a linear guidance controller that makes use of position based trajectories. These position based trajectories allow the aircraft’s velocity magnitude to be regulated independently of the trajectory tracking. To this end, two velocity regulation algorithms were developed. These involved methods of optimal control, implemented using dynamic programming, and energy analysis to regulate the aircraft’s velocity in a predictive manner and thereby providing significantly improved velocity regulation during aggressive aerobatic type manoeuvres. Hardware in the loop simulations and practical flight test data verify the theoretical results of all controllers presented
Mullen, Jon. "FILTERED-DYNAMIC-INVERSION CONTROL FOR FIXED-WING UNMANNED AERIAL SYSTEMS." UKnowledge, 2014. http://uknowledge.uky.edu/me_etds/45.
Full textBasson, Matthys Michaelse. "Stall prevention control of fixed-wing unmanned aerial vehicles." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4310.
Full textENGLISH ABSTRACT: This thesis presents the development of a stall prevention flight control subsystem, which can easily be integrated into existing flight control architectures of fixed-wing unmanned aerial vehicles (UAV’s). This research forms an important part of faulttolerant flight control systems and will ensure that the aircraft continues to operate safely within its linear aerodynamic region. The focus of this thesis was the stall detection and prevention problem. After a thorough literature study on the topic of stall, a model based stall prevention control algorithm with feedback from an angle of attack sensor was developed. This algorithm takes into account the slew rate and saturation limits of the aircraft’s servos and is able to predict when the current flight condition will result in stall. The primary concern was stall during wings-level flight and involved the prevention of stall by utilising only the elevator control surface. A model predictive slew rate control algorithm was developed to override and dynamically limit the elevator command to ensure that the angle of attack does not exceed a predefined limit. The stall prevention control system was designed to operate as a switching control scheme, to minimise any restrictions imposed on the existing flight control system. Finally, software in the loop simulations were conducted using a nonlinear aircraft model and realistic sensor noise, to verify the theoretical results obtained during the development of this stall prevention control strategy. A worst-case performance analysis was also conducted to investigate the robustness of the control algorithms against model uncertainties.
AFRIKAANSE OPSOMMING: Hierdie tesis handel oor die ontwikkeling van ’n staak voorkomings-vlugbeheer substelsel wat maklik geïntegreer kan word in bestaande vlugbeheer argitektuur van onbemande vaste-vlerk lugvaartuie. Hierdie tesis vorm ’n belangrike deel van fouttolerante vlugbeheertegnieke en sal verseker dat die vliegtuig slegs binne sy lineêre aerodinamiese werksgebied bly. Die fokus van hierdie tesis is die staak opsporing en voorkomings probleem. Na afloop van ’n deeglike literatuurstudie oor die onderwerp van staak, is ’n model gebaseerde staak voorkomings-beheertegniek ontwikkel, wat terugvoer van ’n invalshoek sensor ontvang. Hierdie algoritme neem die sleur tempo en defleksie limiete van die vliegtuig se servos in ag en is in staat om staak te voorspel. Die primêre oorweging was staak tydens simmetriese vlugte en behels slegs die voorkoming van staak deur gebruik te maak van die hei beheer oppervlak. ’n Model voorspellings sleur tempo beheeralgoritme is ontwikkel om die hei-roer dinamies te beperk sodat die invalshoek nie ’n sekere vooraf bepaalde limiet oorskry nie. Die staak voorkomings beheerstelsel is ontwerp om te funksioneer as ’n skakel beheer skema om die beperkings op die bestaande vlugbeheerstelsel te minimaliseer. Laastens was sagteware-in-die-lus simulasies gebruik om die teoretiese resultate, wat verkry is tydens die ontwikkeling van hierdie staak voorkomings beheer-strategie, te kontroleer. Om die robuusthied van hierdie beheeralgoritmes teen model onsekerhede te ondersoek, is ’n ergste-geval prestasie analise ook uitgevoer.
Persson, Linnea. "Cooperative Control for Landing a Fixed-Wing Unmanned Aerial Vehicle on a Ground Vehicle." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-187667.
Full textSå kallade HALE - High Altitude Long Endurance -farkoster är en växande teknik inom området för autonoma flygplan. Med fördelar som exempelvis en möjlighet att röra sig oberoende av en omloppsbana samt en mer effektiv implementering– och utvecklingsprocess har de visat potential att i framtiden kunna ersätta satelliter inom vissa områden. Ett problem är i dagsläget svårigheten att bygga tillräckligt lätta farkoster för att kunna flyga under en längre tidsperiod. För att minska vikten har det bland annat föreslagits att landningsställ kan tas bort för att istället använda alternativa start- och landningsmetoder. I detta projekt har en metod undersökts där idén är att landa ett autonomt flygplan på en mobil plattform. Samarbetet mellan systemen har analyserats både analytiskt och genom tester. Slutligen verifieras att en kooperativ landning är genomförbar genom att en landning av ett obemannat flygplan på en samarbetande bil utförs.
Smit, Samuel Jacobus Adriaan. "Autonomous landing of a fixed-wing unmanned aerial vehicle using differential GPS." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80122.
Full textENGLISH ABSTRACT: This dissertation presents the design and practical demonstration of a flight control system (FCS) that is capable of autonomously landing a fixed-wing, unmanned aerial vehicle (UAV) on a stationary platform aided by a high-precision differential global positioning system. This project forms part of on-going research with the end goal of landing a fixed-wing UAV on a moving platform (for example a ship’s deck) in windy conditions. The main aim of this project is to be able to land the UAV autonomously, safely and accurately on the runway. To this end, an airframe was selected and equipped with an avionics payload. The equipped airframe’s stability derivatives were analysed via AVL and the moment of inertia was determined by the double pendulum method. The aircraft model was developed in such a way that the specific force and moment model (high bandwidth) is split from the point-mass dynamics of the aircraft (low bandwidth) [1]. The advantage of modelling the aircraft according to this unique method, results in a design that has simple decoupled linear controllers. The inner-loop controllers control the high-bandwidth specific accelerations and roll-rate, while the outer-loop controllers control the low-bandwidth point-mass dynamics. The performance of the developed auto-landing flight control system was tested in software-in-the-loop (SIL) and hardware-in-the-loop (HIL) simulations. A Monte Carlo non-linear landing simulation analysis showed that the FCS is expected to land the aircraft 95% of the time within a circle with a diameter of 1.5m. Practical flight tests verified the theoretical results of the developed controllers and the project was concluded with five autonomous landings. The aircraft landed within a circle with a 7.5m radius with the aiming point at the centre of the circle. In the practical landings the longitudinal landing error dominated the landing performance of the autonomous landing system. The large longitudinal error resulted from a climb rate bias on the estimated climb rate and a shallow landing glide slope.
AFRIKAANSE OPSOMMING: Hierdie skripsie stel die ontwikkeling en praktiese demonstrasie van ʼn self-landdende onbemande vastevlerkvliegtuigstelsel voor, wat op ʼn stilstaande platform te lande kan kom met behulp van ʼn uiters akkurate globale posisionering stelsel. Die projek maak deel uit van ʼn groter projek, waarvan die doel is om ʼn onbemande vastevlerkvliegtuig op ʼn bewegende platform te laat land (bv. op ʼn boot se dek) in onstuimige windtoestande. Die hoofdoel van die projek was om die vliegtuig so akkuraat as moontlik op die aanloopbaan te laat land. ʼn Vliegtuigraamwerk is vir dié doel gekies wat met gepaste avionica uitgerus is. Die uitgeruste vliegtuig se aerodinamsie eienskappe was geanaliseer met AVL en die traagheidsmoment is deur die dubbelependulum metode bepaal. Die vliegtuigmodel is op so ‘n manier onwikkel om [1] die spesifieke krag en momentmodel (vinnige reaksie) te skei van die puntmassadinamiek (stadige reaksie). Die voordeel van hierdie wyse van modulering is dat eenvoudige ontkoppelde beheerders ontwerp kon word. Die binnelusbeheerders beheer die vinnige reaksie-spesifieke versnellings en die rol tempo van die vliegtuig. Die buitelusbeheerders beheer die stadige reaksie puntmassa dinamiek. Die vliegbeheerstelsel is in sagteware-in-die-lus en hardeware-in-die-lus simulasies getoets. Die vliegtuig se landingseienskappe is ondersoek deur die uitvoer van Monte Carlo simulasies, die simulasie resultate wys dat die vliegtuig 95% van die tyd binne in ʼn sirkel met ʼn diameter van 1.5m geland het. Praktiese vlugtoetse het bevestig dat die teoretiese uitslae en die prakties uitslae ooreenstem. Die vliegtuig het twee suksesvolle outomatiese landings uitgevoer, waar dit binne ʼn 7.5m-radius sirkel geland het, waarvan die gewenste landingspunt die middelpunt was. In die outomatiese landings is die longitudinale landingsfout die grootse. Die groot longitudinale landingsfout is as gevolg van ʼn afset op die afgeskatte afwaartse spoed en ʼn lae landings gradiënt.
Alatorre, Sevilla Armando. "Landing of a fixed-wing unmanned aerial vehicle in a limited area." Electronic Thesis or Diss., Compiègne, 2024. http://www.theses.fr/2024COMP2801.
Full textThe development of this thesis consists of designing some control strategies that allow a fixedwing drone with classical configuration to perform a safe landing in a limited area. The main challenge is to reduce the aircraft’s airspeed avoiding stall conditions. The developed control strategies are focused on two approaches: the first approach consists of the designing airspeed reduction maneuvers for a fixed-wing vehicle to be captured by a recovery system and for a safe landing at a desired coordinate. The next approach is focused on landing a fixed-wing drone on a moving ground vehicle. A dynamic landing trajectory was designed to lead a fixedwing vehicle to the position of a ground vehicle, reaching its position in a defined distance. Moreover, this trajectory was used in a cooperative control design. The control strategy consists of the synchronization of both vehicles to reach the same position at a desired distance. The aerial vehicle tracks the dynamic landing trajectory, and the ground vehicle controls its speed. In addition, we will propose a control architecture with a different focus, where the ground vehicle performs the tracking task of the aerial vehicle’s position in order to be captured. And, the drone’s task is to track a descending flight until the top of the ground vehicle. However, considering the speed difference between both vehicles. Therefore, we propose a new control architecture defining that the aircraft performs an airspeed reduction strategy before beginning its landing stage. The aircraft will navigate to a minimum airspeed, thus, allowing the ground vehicle to reach the fixed-wing drone’s position by increasing its speed. The control laws of each strategy were determined by developing the Lyapunov stability analysis, thus, the stability is guaranteed in each flight stage. Finally, the control strategies were implemented on prototypes allowing us to validate their performance and obtain satisfactory results for safe landing of a fixed-wing drone with classical configuration
Books on the topic "Fixed-wing unmanned aerial vehicle"
Greer, Daniel S. Avionics System development for a Rotary Wing Unmanned Aerial Vehicle. Monterey, Calif: Naval Postgraduate School, 1998.
Find full textTran, Fleischer Van, and Hugh L. Dryden Flight Research Center, eds. Methods for in-flight wing shape predictions of highly flexible unmanned aerial vehicles: Formulation of Ko displacement theory. Edwards, Calif: National Aeronautics and Space Administration, Dryden Flight Research Center, 2010.
Find full textOffice, General Accounting. Unmanned aerial vehicles: No more Hunter systems should be bought until problems are fixed : report to the Secretary of Defense. Washington, D.C: The Office, 1995.
Find full textAvionics System Development for a Rotary Wing Unmanned Aerial Vehicle. Storming Media, 1998.
Find full textWich, Serge A., and Lian Pin Koh. Typology and anatomy of drones. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198787617.003.0002.
Full textBook chapters on the topic "Fixed-wing unmanned aerial vehicle"
Özbek, Emre, Selcuk Ekici, and T. Hikmet Karakoc. "An Evaluation on Landing Gear Configurations of Fixed-Wing, Rotary-Wing, and Hybrid UAVs." In Unmanned Aerial Vehicle Design and Technology, 153–65. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-45321-2_9.
Full textDobrokhodov, Vladimir. "Kinematics and Dynamics of Fixed-Wing UAVs." In Handbook of Unmanned Aerial Vehicles, 243–77. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_53.
Full textYu, Ziquan, Youmin Zhang, Bin Jiang, and Chun-Yi Su. "Fixed-Wing UAV Model." In Fault-Tolerant Cooperative Control of Unmanned Aerial Vehicles, 19–24. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7661-4_2.
Full textOwen, Mark, Randal W. Beard, and Timothy W. McLain. "Implementing Dubins Airplane Paths on Fixed-Wing UAVs*." In Handbook of Unmanned Aerial Vehicles, 1677–701. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_120.
Full textMills, Steven J., Jason J. Ford, and Luis Mejías. "Vision Based Control for Fixed Wing UAVs Inspecting Locally Linear Infrastructure Using Skid-to-Turn Maneuvers." In Unmanned Aerial Vehicles, 29–42. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-1110-5_4.
Full textRyaciotaki-Boussalis, Helen, and Darrell Guillaume. "Computational and Experimental Design of a Fixed-Wing UAV." In Handbook of Unmanned Aerial Vehicles, 109–41. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-90-481-9707-1_121.
Full textKownacki, Cezary, and Daniel Ołdziej. "Flocking Algorithm for Fixed-Wing Unmanned Aerial Vehicles." In Advances in Aerospace Guidance, Navigation and Control, 415–31. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17518-8_24.
Full textAgarwal, Varun, and Rajiv Ranjan Tewari. "Delivering Newspapers Using Fixed Wing Unmanned Aerial Vehicles." In Advances in Intelligent Systems and Computing, 615–27. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6981-8_49.
Full textZhong, Gang, Yi Mao, Liandong Zhang, Shangwen Yang, and Hao Liu. "Fast Path Planning for Fixed-Wing Unmanned Aerial Vehicle with Multiple Constraints." In Lecture Notes in Electrical Engineering, 101–13. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5615-7_6.
Full textBakirci, Murat, and Muhammed Mirac Ozer. "Adapting Swarm Intelligence to a Fixed Wing Unmanned Combat Aerial Vehicle Platform." In Studies in Big Data, 433–79. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-38325-0_18.
Full textConference papers on the topic "Fixed-wing unmanned aerial vehicle"
Tahar, Khairul Nizam, Anuar Ahmad, Wan Abdul Aziz Wan Mohd Akib, and Wan Mohd Naim Wan Mohd. "Aerial mapping using autonomous fixed-wing unmanned aerial vehicle." In 2012 IEEE 8th International Colloquium on Signal Processing & its Applications (CSPA). IEEE, 2012. http://dx.doi.org/10.1109/cspa.2012.6194711.
Full textEl Tin, Fares, Inna Sharf, and Meyer Nahon. "Fire Monitoring with a Fixed-wing Unmanned Aerial Vehicle." In 2022 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2022. http://dx.doi.org/10.1109/icuas54217.2022.9836074.
Full textPetrík, Nikolas Michael, and Pavol Pecho. "Design and construction of a UAV device with a fixed wing for the conditions of rescue services." In Práce a štúdie. University of Zilina, 2021. http://dx.doi.org/10.26552/pas.z.2021.2.32.
Full textRaghuwaiya, Krishna, and Roneel Chand. "3D Motion Planning of a Fixed-Wing Unmanned Aerial Vehicle." In 2018 5th Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE). IEEE, 2018. http://dx.doi.org/10.1109/apwconcse.2018.00046.
Full textAkbar, Mahesa, Ahmad Riyad Firdaus, Sapto Wibowo, and Nanda Wirawan. "Piezoelectric Energy Harvesting from A Fixed-wing Unmanned Aerial Vehicle." In 2019 2nd International Conference on Applied Engineering (ICAE). IEEE, 2019. http://dx.doi.org/10.1109/icae47758.2019.9221651.
Full textLiang, Chao, and Chenxiao Cai. "Modeling of a rotor/fixed-wing hybrid unmanned aerial vehicle." In 2017 36th Chinese Control Conference (CCC). IEEE, 2017. http://dx.doi.org/10.23919/chicc.2017.8029181.
Full textChakraborty, Anusna, Clark N. Taylor, Rajnikant Sharma, and Kevin M. Brink. "Cooperative localization for fixed wing unmanned aerial vehicles." In 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS). IEEE, 2016. http://dx.doi.org/10.1109/plans.2016.7479689.
Full textGryte, Kristofer, Richard Hann, Mushfiqul Alam, Jan Rohac, Tor Arne Johansen, and Thor I. Fossen. "Aerodynamic modeling of the Skywalker X8 Fixed-Wing Unmanned Aerial Vehicle." In 2018 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2018. http://dx.doi.org/10.1109/icuas.2018.8453370.
Full textPhelps, David, Kanishke Gamagedara, Jeremey Waldron, Kalpesh Patil, and Murray Snyder. "Ship Air Wake Detection Using Small Fixed Wing Unmanned Aerial Vehicle." In 2018 AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0784.
Full textLevin, Joshua, Aditya Paranjape, and Meyer Nahon. "Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle." In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. http://dx.doi.org/10.1109/iros.2018.8593670.
Full textReports on the topic "Fixed-wing unmanned aerial vehicle"
Yang, Justin A. Conceptual Aerodynamic Modeling of a Flapping Wing Unmanned Aerial Vehicle. Fort Belvoir, VA: Defense Technical Information Center, November 2013. http://dx.doi.org/10.21236/ada592189.
Full textShe, Ruifeng, and Yanfeng Ouyang. Analysis of Drone-based Last-mile Delivery Systems under Aerial Congestion: A Continuum Approximation Approach. Illinois Center for Transportation, August 2023. http://dx.doi.org/10.36501/0197-9191/23-014.
Full textChristensen, Lance. PR-459-133750-R03 Fast Accurate Automated System To Find And Quantify Natural Gas Leaks. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2019. http://dx.doi.org/10.55274/r0011633.
Full textPrice, Donald. SM-403-148100-R01 Mineral Wells 2012 RAM Gas and Oil Leak Detection Field Study Results. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2015. http://dx.doi.org/10.55274/r0010851.
Full text