Academic literature on the topic 'Fixed-Wing UAV Formations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fixed-Wing UAV Formations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fixed-Wing UAV Formations"

1

Blasi, Luciano, Egidio D’Amato, Immacolata Notaro, and Gennaro Raspaolo. "Clothoid-Based Path Planning for a Formation of Fixed-Wing UAVs." Electronics 12, no. 10 (2023): 2204. http://dx.doi.org/10.3390/electronics12102204.

Full text
Abstract:
Unmanned aerial vehicles (UAVs) are playing an increasingly crucial role in many applications such as search and rescue, delivery services, and military operations. However, one of the significant challenges in this area is to plan efficient and safe trajectories for UAV formations. This paper presents an optimization procedure for trajectory planning for fixed-wing UAV formations using graph theory and clothoid curves. The proposed planning strategy consists of two main steps. Firstly, the geometric optimization of paths is carried out using graphs for each UAV, providing piece-wise linear pa
APA, Harvard, Vancouver, ISO, and other styles
2

Zhan, Guang, Zheng Gong, Quanhui Lv, et al. "Flight Test of Autonomous Formation Management for Multiple Fixed-Wing UAVs Based on Missile Parallel Method." Drones 6, no. 5 (2022): 99. http://dx.doi.org/10.3390/drones6050099.

Full text
Abstract:
This paper reports on the formation and transformation of multiple fixed-wing unmanned aerial vehicles (UAVs) in three-dimensional space. A cooperative guidance law based on the classic missile-type parallel-approach method is designed for the multi-UAV formation control problem. Additionally, formation transformation strategies for multi-UAV autonomous assembly, disbandment, and special circumstances are formed, effective for managing and controlling the formation. When formulating the management strategy for formation establishment, its process is divided into three steps: (i) selecting and
APA, Harvard, Vancouver, ISO, and other styles
3

Suo, Wenbo, Mengyang Wang, Dong Zhang, Zhongjun Qu, and Lei Yu. "Formation Control Technology of Fixed-Wing UAV Swarm Based on Distributed Ad Hoc Network." Applied Sciences 12, no. 2 (2022): 535. http://dx.doi.org/10.3390/app12020535.

Full text
Abstract:
The formation control technology of the unmanned aerial vehicle (UAV) swarm is a current research hotspot, and formation switching and formation obstacle avoidance are vital technologies. Aiming at the problem of formation control of fixed-wing UAVs in distributed ad hoc networks, this paper proposed a route-based formation switching and obstacle avoidance method. First, the consistency theory was used to design the UAV swarm formation control protocol. According to the agreement, the self-organized UAV swarm could obtain the formation waypoint according to the current position information, an
APA, Harvard, Vancouver, ISO, and other styles
4

Muslimov, Tagir Z., and Rustem A. Munasypov. "Consensus-based cooperative control of parallel fixed-wing UAV formations via adaptive backstepping." Aerospace Science and Technology 109 (February 2021): 106416. http://dx.doi.org/10.1016/j.ast.2020.106416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Jun, Arun Geo Thomas, Satish Singh, Simone Baldi, and Ximan Wang. "A Semi-Physical Platform for Guidance and Formations of Fixed-Wing Unmanned Aerial Vehicles." Sensors 20, no. 4 (2020): 1136. http://dx.doi.org/10.3390/s20041136.

Full text
Abstract:
Unmanned Aerial Vehicles (UAVs) have multi-domain applications, fixed-wing UAVs being a widely used class. Despite the ongoing research on the topics of guidance and formation control of fixed-wing UAVs, little progress is known on implementation of semi-physical validation platforms (software-in-the-loop or hardware-in-the-loop) for such complex autonomous systems. A semi-physical simulation platform should capture not only the physical aspects of UAV dynamics, but also the cybernetics aspects such as the autopilot and the communication layers connecting the different components. Such a cyber
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Yuanzhe, Mao Shan, and Danwei Wang. "Motion Capability Analysis for Multiple Fixed-Wing UAV Formations With Speed and Heading Rate Constraints." IEEE Transactions on Control of Network Systems 7, no. 2 (2020): 977–89. http://dx.doi.org/10.1109/tcns.2019.2929658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yan, Jiarun, Yangguang Yu, Yinbo Xu, and Xiangke Wang. "A Virtual Point-Oriented Control for Distance-Based Directed Formation and Its Application to Small Fixed-Wing UAVs." Drones 6, no. 10 (2022): 298. http://dx.doi.org/10.3390/drones6100298.

Full text
Abstract:
This paper proposes a new algorithm to solve the control problem for a special class of distance-based directed formations, namely directed-triangulated Laman graphs. The central idea of the algorithm is to construct a virtual point for the agents who have more than two neighbors by employing the information of the desired formation. Compared with the existing methods, the proposed algorithm can make the distance error between the agents converge faster and the path consumption is less. Furthermore, the proposed algorithm is modified to be operable for the small fixed-wing UAV model with nonho
APA, Harvard, Vancouver, ISO, and other styles
8

Kownacki, Cezary, and Leszek Ambroziak. "Adaptation Mechanism of Asymmetrical Potential Field Improving Precision of Position Tracking in the Case of Nonholonomic UAVs." Robotica 37, no. 10 (2019): 1823–34. http://dx.doi.org/10.1017/s0263574719000286.

Full text
Abstract:
SummaryPosition-tracking problems in the structures of rigid formations of nonholonomic mobile robots, such as fixed-wing unmanned aerial vehicle (UAVs), must reconcile tracking precision and flight stability, which usually exclude each other due to nonholonomic motion constraints. Therefore, a position-tracking control that is based on distance and position displacement, defined as inputs of control loops, requires the application of dead zones around target positions, which are the points of instability. For this reason, the control becomes sensitive to any external disturbance causing oscil
APA, Harvard, Vancouver, ISO, and other styles
9

Muslimov, T. Z., and R. A. Munasypov. "Decentralized Nonlinear Group Control of Fixed-Wing UAV Formation." Mekhatronika, Avtomatizatsiya, Upravlenie 21, no. 1 (2020): 43–50. http://dx.doi.org/10.17587/mau.21.43-50.

Full text
Abstract:
The article proposes a control method for autonomous unmanned aerial vehicles (UAVs) group of a fixed-wing type intended to both implement and support flight information with predetermined relative distances between the vehicles. The suggested approach provides any selected geometric formation shape construction and further preservation when UAVs enter a straight-line trajectory described by a given course with arbitrary initial positions of UAVs in the horizontal plane. The proposed method feature is "autopilot—UAV" system’s nonlinear structure consideration, manifesting itself in both the au
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Dan, Yunxiao Guo, Zhongyi Yu, et al. "PPO-Exp: Keeping Fixed-Wing UAV Formation with Deep Reinforcement Learning." Drones 7, no. 1 (2022): 28. http://dx.doi.org/10.3390/drones7010028.

Full text
Abstract:
Flocking for fixed-Wing Unmanned Aerial Vehicles (UAVs) is an extremely complex challenge due to fixed-wing UAV’s control problem and the system’s coordinate difficulty. Recently, flocking approaches based on reinforcement learning have attracted attention. However, current methods also require that each UAV makes the decision decentralized, which increases the cost and computation of the whole UAV system. This paper researches a low-cost UAV formation system consisting of one leader (equipped with the intelligence chip) with five followers (without the intelligence chip), and proposes a centr
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!