Academic literature on the topic 'Fission pathways'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fission pathways.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fission pathways"
Cansado, José, Teresa Soto, Alejandro Franco, Jero Vicente-Soler, and Marisa Madrid. "The Fission Yeast Cell Integrity Pathway: A Functional Hub for Cell Survival upon Stress and Beyond." Journal of Fungi 8, no. 1 (December 30, 2021): 32. http://dx.doi.org/10.3390/jof8010032.
Full textHernáez, M. J., E. Andújar, J. L. Ríos, S. R. Kaschabek, W. Reineke, and E. Santero. "Identification of a Serine Hydrolase Which Cleaves the Alicyclic Ring of Tetralin." Journal of Bacteriology 182, no. 19 (October 1, 2000): 5448–53. http://dx.doi.org/10.1128/jb.182.19.5448-5453.2000.
Full textBaldacchino, Alexander J., Miles I. Collins, Michael P. Nielsen, Timothy W. Schmidt, Dane R. McCamey, and Murad J. Y. Tayebjee. "Singlet fission photovoltaics: Progress and promising pathways." Chemical Physics Reviews 3, no. 2 (June 2022): 021304. http://dx.doi.org/10.1063/5.0080250.
Full textStiefel, Jeffrey, Lili Wang, David A. Kelly, Rozmin T. K. Janoo, Jeffrey Seitz, Simon K. Whitehall, and Charles S. Hoffman. "Suppressors of an Adenylate Cyclase Deletion in the Fission Yeast Schizosaccharomyces pombe." Eukaryotic Cell 3, no. 3 (June 2004): 610–19. http://dx.doi.org/10.1128/ec.3.3.610-619.2004.
Full textMorandini, André C., Sérgio N. Stampar, Alvaro E. Migotto, and Antonio C. Marques. "Hydrocoryne iemanja (Cnidaria), a new species of Hydrozoa with unusual mode of asexual reproduction." Journal of the Marine Biological Association of the United Kingdom 89, no. 1 (February 2009): 67–76. http://dx.doi.org/10.1017/s0025315408002968.
Full textLi, Haijun, Fucheng He, Xin Zhao, Yuan Zhang, Xi Chu, Chunlan Hua, Yunhui Qu, Yu Duan, and Liang Ming. "YAP Inhibits the Apoptosis and Migration of Human Rectal Cancer Cells via Suppression of JNK-Drp1-Mitochondrial Fission-HtrA2/Omi Pathways." Cellular Physiology and Biochemistry 44, no. 5 (2017): 2073–89. http://dx.doi.org/10.1159/000485946.
Full textZhang, Hanwen, Yanshuo Ye, and Wei Li. "Perspectives of Molecular Therapy-Targeted Mitochondrial Fission in Hepatocellular Carcinoma." BioMed Research International 2020 (December 29, 2020): 1–7. http://dx.doi.org/10.1155/2020/1039312.
Full textHayashi, Yukimasa, Chiaki W. Nakagawa, Norihiro Mutoh, Minoru Isobe, and Toshio Goto. "Two pathways in the biosynthesis of cadystins (γEC)nG in the cell-free system of the fission yeast." Biochemistry and Cell Biology 69, no. 2-3 (February 1, 1991): 115–21. http://dx.doi.org/10.1139/o91-018.
Full textPapadakis, Manos A., and Christopher T. Workman. "Oxidative stress response pathways: Fission yeast as archetype." Critical Reviews in Microbiology 41, no. 4 (October 2, 2015): 520–35. http://dx.doi.org/10.3109/1040841x.2013.870968.
Full textXu, Dan-Dan, and Li-Lin Du. "Fission Yeast Autophagy Machinery." Cells 11, no. 7 (March 24, 2022): 1086. http://dx.doi.org/10.3390/cells11071086.
Full textDissertations / Theses on the topic "Fission pathways"
Pazo, Pelegrí Esther 1993. "New pathways regulating MBF-dependent transcription in fission yeast." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2021. http://hdl.handle.net/10803/672476.
Full textAl final de la fase G1, les cèl·lules han de decidir entre continuar proliferant o romandre en un estat de quiescència (G0). Aquest punt de decisió, conegut com “Start” en llevats o “Restriction Point” en metazous, compromet irreversiblement a les cèl·lules a completar el següent cicle cel·lular, i està principalment regulat per l’activitat CDK de G1 i per la inducció del programa transcripcional de G1/S. El complex MBF (homòleg funcional de pRB-E2F en metazous) es el factor de transcripció encarregat de la inducció de l’onada transcripcional de G1/S en el llevat de fissió Schizosaccharomyces pombe. Anteriorment, vam descriure com els repressors Nrm1 i Yox1 s’uneixen al complex MBF al final de la fase S per inhibir la seva activitat. Fins ara, els mecanismes implicats en l’activació de MBF a l’inici d’un cicle cel·lular no pertorbat s’han mantingut desconeguts. En aquest treball, hem vist que Nrm1 es el responsable de l’activació transcripcional depenent de MBF mitjançant un mecanisme de dos passos. La seva fosforilació per CDK1 i la seva posterior degradació per APCSte9 donen lloc a l’activació irreversible de MBF fins al final de la fase S. També hem estudiant el paper dels remodeladors de cromatina en el control del programa transcripcional de G1/S. En aquest sentit, hem trobat que els complexes remodeladors de la cromatina SWI/SNF i RSC són reclutats als gens regulats per MBF i tenen un clar impacte en l’activació transcripcional de G1/S. A més, hem creat un reporter fluorescent de vida curta per mesurar canvis petits i transitoris de l’activitat MBF in vivo mitjançant citometria de flux, per a poder identificar nous reguladors de MBF.
Mutavchiev, Delyan Rumenov. "Regulation of fission yeast cell polarity by stress-response pathways." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/29006.
Full textRoberts, Theresa Helen. "The role of Ypt3p in the membrane traffic pathways of Schizosaccharomyces pombe." Thesis, University of Sussex, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321487.
Full textMakarenko, Rostyslav. ""Adaptive mutations" in the S/MAPK pathways provide selective advantage in quiescent fission yeast." Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS253.pdf.
Full textQuiescence and proliferation reflect two fundamentally different cellular stages, yet very limited information exists on how cells maintain their genome stability in quiescence. Using nitrogen-starved fission yeast as a model for quiescence, our laboratory has demonstrated that cells are not only subject to DNA damage in G0 but also accumulate replication-independent mutations linearly with time. In our current work, we have demonstrated that mutations accumulating in growth-arrested phase undergo a selection process in quiescence similar to that observed in E. coli. Selection favors mutations that affect functions of the genes of the MAP-kinase (mkh1, pek1, pmk1) and SAP-kinase pathways (win1, wis1, sty1), and their downstream targets (pmc1, sgf73, tif452). These genes represent core cellular signaling that regulates cell proliferation, cell differentiation, and cell death conserved among all eukaryotic species from yeast to human. Mutations in components of the S/MAPK pathways and their regulators are associated with multiple diseases in humans, primary cancer and degenerative neuronal death accumulated with ageing. In this work, we have demonstrated that wild-type cells dying in quiescence release traces of nitrogen that triggers the viable population to exit from quiescence. The wild-type cells are dying during their entry into S-phase releasing more nitrogen. Thus, mutants in the S/MAPK pathways are better scavengers and selection in quiescence is characterized by the ability of the mutant to resume cycling in quiescence coupled with a resistance to programed cell death
Sacks, Jessica Erin. "Targeting Mitochondrial Pathways in Obesity and Type 2 Diabetes." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1522935947635474.
Full textGabrielli, Natalia 1978. "Cross-talk between iron starvation and H202 signaling pathways in Schizosaccharomyces pombe." Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/108037.
Full textEl peróxido de hidrógeno (H2O2) es un agente oxidante que además de participar en cascadas de señalización produce toxicidad por daño oxidativo. Parte de su toxicidad se explica por su reactividad con hierro. Así, las concentraciones de hierro en el interior celular han de estar estrictamente reguladas. Usando la levadura de fisión, Schizosaccharomyces pombe, como un sistema modelo, estudiamos las relaciones entre H2O2 y el sistema de respuesta a déficit de hierro. Genes como fep1, pcl1 y sib2, importantes para mantener su homeostasis, fueron encontrados en un análisis de 2700 mutantes de S. pombe, tras tratamiento con diferentes agentes oxidantes. Inesperadamente encontramos que H2O2 desencadena una respuesta transcripcional de déficit de hierro, incluyendo aumento de su entrada y disminución de su consumo. Ésta es una respuesta accidental debido a la sobreexpresión de proteínas como catalasa, una hemoproteína, consumidoras masivas de hierro. Encontramos además que la glutaredoxina Grx4 contiene un clúster de hierro-azufre implicado en sensar hierro. Finalmente, identificamos, caracterizamos y delecionamos el homólogo de frataxina en S. pombe, pfh1. Deficiencias en frataxina provocan ataxia de Friedreich. Los mecanismos por los cuales se desencadena esta enfermedad están todavía por elucidar, pero S. pombe es un buen sistema modelo para su estudio.
Gupta, Sneha. "Understanding Regulation of the Cytoskeleton during Cell Cycle Transitions through Examination of Crosstalk between Homologous Fission Yeast Pathways, Septation Initiation Network and Morphogenesis ORB6 Network: A Dissertation." eScholarship@UMMS, 2013. http://escholarship.umassmed.edu/gsbs_diss/693.
Full textRavenel, Kévin. "Étude des mécanismes d’adaptation des espèces du genre Scedosporium aux environnements pollués et pathogénie." Electronic Thesis or Diss., Angers, 2024. https://dune.univ-angers.fr/documents/dune18768.
Full textFungi of the Scedosporium genus are saprophytes, opportunistic pathogens in humans. Several studies have revealed their ability to degrade polyaromatic molecules derived from environmental pollutants. Our previous work demonstrates that species of the genus Scedosporium are able to grow in the presence of lignin. In the environment, the catabolic steps of polyaromatic molecules converge on a limited number of simple aromatic molecules (catechol, protocatechuate, hydroxyquinol and gentisate), which are handled by central intermediate pathways, also known as fission pathways. Bioinformatics analysis enabled us to characterize the gene clusters degrading these central molecules in S. apiospermum and S. aurantiacum. Experimental results demonstrate the functionality of the gentisate pathway cluster in the presence of this molecule. The dioxygenases that catalyze benzene ring opening, a key step in the catabolic mechanism, are prime targets for the design of deletion strains.To this end, CRISPR-Cas9 technology has been successfully adapted and optimized in two S. apiospermum strains: a wild-type strain and a Δku70strain. To achieve this, different protocols were defined depending on the functionality of the NHEJ repair system. Thus, deletion strains for the gene encoding dioxygenase were generated for each pathway. These deletions have a different impact on the growth of these strains on media in the presence of the corresponding core molecules. Under certain conditions, these results suggest the implementation of compensatory mechanisms that remain to be defined. Finally, this work established for the first time a link between the degradation of aromatic molecules and the pathogenesis of an opportunistic fungal pathogen of man in in vitro experiments
Didmon, Mark Paul. "Characterisation of adaption mechanisms in the intracellular signalling pathway of the Schizosaccharomyces pombe pheromone communication system." Thesis, University of Warwick, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367965.
Full textWilkinson, Marc George. "Functional analysis of the STY1 stress-activated map kinase pathway of fission yeast." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286786.
Full textBooks on the topic "Fission pathways"
Bassil, Nicholas. Molecular characterisation of the endocytic pathway using the fission yeast Schizosaccaromyces pombe. Birmingham: University of Birmingham, 1991.
Find full textUnited States. Congress. House. Committee on Homeland Security. Subcommittee on the Prevention of Nuclear and Biological Attack. Pathways to the bomb: Security of fissile materials abroad : hearing before the Subcommittee on [the] Prevention of Nuclear and Biological Attack of the Committee on Homeland Security, House of Representatives, One Hundred Ninth Congress, first session, June 28, 2005. Washington: U.S. G.P.O., 2006.
Find full textCongress, United St, United States House of Representatives, and Committee on Homeland Security and Export Controls. Pathways to the Bomb: Security of Fissile Materials Abroad. Independently Published, 2019.
Find full textBook chapters on the topic "Fission pathways"
Hughes, David A., Yoshiyuki Imai, and Masayuki Yamamoto. "Regulation of the ras Pathway in the Fission Yeast Schizosaccharomyces Pombe." In The Superfamily of ras-Related Genes, 41–47. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-6018-6_5.
Full textde Medeiros, Ana Santos, Grace Kwak, Jordan Vanderhooft, Sam Rivera, Rachel Gottlieb, and Charles S. Hoffman. "Fission Yeast-Based High-Throughput Screens for PKA Pathway Inhibitors and Activators." In Methods in Molecular Biology, 77–91. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2269-7_6.
Full textIon, Sue. "Nuclear fission." In Energy... beyond oil. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780199209965.003.0008.
Full textBÄHler, JÜrg, and Matthias Peter. "Cell polarity in yeast." In Cell Polarity, 21–77. Oxford University PressOxford, 2000. http://dx.doi.org/10.1093/oso/9780199638031.003.0002.
Full text"4. Stress-activated MAP kinase (mitogen-activated protein kinase) pathways of budding and fission yeasts." In Cellular Responses to Stress, 49–62. Princeton University Press, 1999. http://dx.doi.org/10.1515/9781400865048.49.
Full textOxford, John, Paul Kellam, and Leslie Collier. "Viral replication and genetics." In Human Virology. Oxford University Press, 2016. http://dx.doi.org/10.1093/hesc/9780198714682.003.0003.
Full textLata, Dr Suman, Mr Gagandeep, and Hardeep Kaur. "RADIOCHEMISTRY." In Futuristic Trends in Pharmacy & Nursing Volume 3 Book 19, 23–28. Iterative International Publisher, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bgpn19p1ch3.
Full textScharbaai-Vázquez, Ramón, Francisco J. López Font, and Félix A. Zayas Rodríguez. "Persistence in Chlamydia." In Infectious Diseases. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.109299.
Full textHagan, Iain M., and Kathryn R. Ayscough. "Fluorescence microscopy in yeast." In Protein localization by fluorescence microscopy, 179–206. Oxford University PressOxford, 1999. http://dx.doi.org/10.1093/oso/9780199637416.003.0008.
Full textArmstrong, John, Erica Fawell, and Alison Pidoux. "Intracellular trafficking in fission yeast." In Protein Targeting, 87–111. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780199632060.003.0004.
Full textConference papers on the topic "Fission pathways"
McDonnell, J. D., W. Nazarewicz, J. A. Sheikh, Audrey Chatillon, Herbert Faust, Gabriele Fioni, Dominique Goutte, and Héloise Goutte. "Thermal fission pathways in [sup 232]Th." In 4TH INTERNATIONAL WORKSHOP ON NUCLEAR FISSION AND FISSION-PRODUCT SPECTROSCOPY. AIP, 2009. http://dx.doi.org/10.1063/1.3258254.
Full textCizek, J., J. Klecka, L. Babka, H. Hadraba, J. Kondas, R. Singh, and M. Pazderova. "Protective Mo and Fe Coatings by CS and RF-ICP for PbLi Coolant Environments in Generation IV Fission Reactors." In ITSC2022. DVS Media GmbH, 2022. http://dx.doi.org/10.31399/asm.cp.itsc2022p0780.
Full textMayonado, Gina, Fangyi Zhu, Winston Goldthwaite, Liangdong Zhu, John E. Anthony, Oksana Ostroverkhova, and Matt W. Graham. "Optomagneto control of singlet fission charge multiplication dynamics in single organic semiconductor crystals." In CLEO: Fundamental Science. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.ff2g.4.
Full textReports on the topic "Fission pathways"
Hughes, Joseph B. Novel Pathways of Nitroaromatic Metabolism: Hydroxylamine Formation, Reactivity and Potential for Ring Fission for Destruction of TNT-CU1214. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada462163.
Full textFaye, S. A., and D. A. Shaughnessy. Production Pathways and Separation Procedures for High-Diagnostic-Value Activation Species, Fission Products, and Actinides Required for Preparation of Realistic Synthetic Post-Detonation Nuclear Debris: Status Report and FY16 Project Plan. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1233304.
Full textMatsumoto, Tomohiro. Fission Yeast Model Study for Dissection of TSC Pathway. Fort Belvoir, VA: Defense Technical Information Center, April 2010. http://dx.doi.org/10.21236/ada560751.
Full textKadura, Sheila, and Shelley Sazar. Identification and Characterization of Components of the Mitotic Spindle Checkpoint Pathway Using Fission Yeast. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada408789.
Full textKadura, Sheila, and Shelly Sazer. Identification and Characterization of Components of the Mitotic Spindle Checkpoint Pathway in Fission Yeast. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada421768.
Full text