Academic literature on the topic 'Fischer-Tropsch Chemistry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fischer-Tropsch Chemistry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fischer-Tropsch Chemistry"
Skřínský, Jan, Ján Vereš, and Karel Borovec. "Experimental Modelling of Autoignition Temperature for Alkyl/Alkenyl Products from Fischer-Tropsch Synthesis." MATEC Web of Conferences 168 (2018): 07014. http://dx.doi.org/10.1051/matecconf/201816807014.
Full textLuo, Mingsheng, Hussein Hamdeh, and Burtron H. Davis. "Fischer-Tropsch Synthesis." Catalysis Today 140, no. 3-4 (February 2009): 127–34. http://dx.doi.org/10.1016/j.cattod.2008.10.004.
Full textGerlach, Deidra L., and Nicolai Lehnert. "Fischer-Tropsch Chemistry at Room Temperature?" Angewandte Chemie International Edition 50, no. 35 (July 14, 2011): 7984–86. http://dx.doi.org/10.1002/anie.201102979.
Full textZhang, Shuai, Kangzhou Wang, Fugui He, Xinhua Gao, Subing Fan, Qingxiang Ma, Tiansheng Zhao, and Jianli Zhang. "H2O Derivatives Mediate CO Activation in Fischer–Tropsch Synthesis: A Review." Molecules 28, no. 14 (July 19, 2023): 5521. http://dx.doi.org/10.3390/molecules28145521.
Full textLi, Weizhen, Xuebing Zhang, Tao Wang, Xiaoyu Zhang, Linlin Wei, Quan Lin, Yijun Lv, and Zhuowu Men. "The Effect of Chlorine Modification of Precipitated Iron Catalysts on Their Fischer–Tropsch Synthesis Properties." Catalysts 12, no. 8 (July 24, 2022): 812. http://dx.doi.org/10.3390/catal12080812.
Full textFox, Joseph M. "Fischer-Tropsch reactor selection." Catalysis Letters 7, no. 1-4 (January 1990): 281–92. http://dx.doi.org/10.1007/bf00764509.
Full textFilot, I. A. W., R. A. van Santen, and E. J. M. Hensen. "Quantum chemistry of the Fischer–Tropsch reaction catalysed by a stepped ruthenium surface." Catal. Sci. Technol. 4, no. 9 (2014): 3129–40. http://dx.doi.org/10.1039/c4cy00483c.
Full textMazurova, Kristina, Albina Miyassarova, Oleg Eliseev, Valentine Stytsenko, Aleksandr Glotov, and Anna Stavitskaya. "Fischer–Tropsch Synthesis Catalysts for Selective Production of Diesel Fraction." Catalysts 13, no. 8 (August 16, 2023): 1215. http://dx.doi.org/10.3390/catal13081215.
Full textKliger, G. A., O. A. Lesik, A. I. Mikaya, �. V. Marchevskaya, V. G. Zaikin, L. S. Glebov, and S. M. Loktev. "Piperidine-modified fischer-tropsch synthesis." Bulletin of the Academy of Sciences of the USSR Division of Chemical Science 40, no. 2 (February 1991): 435–38. http://dx.doi.org/10.1007/bf00965446.
Full textParkyns, N. D. "The Fischer-Tropsch synthesis." Fuel 65, no. 4 (April 1986): 599. http://dx.doi.org/10.1016/0016-2361(86)90058-x.
Full textDissertations / Theses on the topic "Fischer-Tropsch Chemistry"
Gallagher, James R. "Accelerated discovery of Fischer-Tropsch catalysts." Thesis, University of Liverpool, 2013. http://livrepository.liverpool.ac.uk/10793/.
Full textPerdjon-Abel, Michal. "The role of additives in Fischer-Tropsch reactions." Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/209081/.
Full textJohannes, Derick Raymond. "Studies on the composition of thermally oxidised Fischer-Tropsch waxes." Master's thesis, University of Cape Town, 1998. http://hdl.handle.net/11427/9692.
Full textA composition of thermally oxidised Fischer-Tropsch hard wax was proposed based on a study ofthe oxidation products of model compounds, n-Cl6, n-C24 and n-C32. The model compound oxidation yielded isomers of alcohols and ketones with carbon numbers ranging from 2 to the same carbon number as that of the parent hydrocarbon, lactones ranging from carbon 6 to two less than the carbon number equal to that of the highest parent hydrocarbon, acids having carbon numbers ranging from two up to two less than the parent hydrocarbon and straight chain esters in low concentration having molecular mass similar to or higher than the parent hydrocarbon. Only methyl, ethyl and propyl esters of acids with carbon number similar to the parent hydrocarbon, were identified. Oxidised Fischer-Tropsch hard wax was distilled and the distillate was found to contain similar products to those of the model compounds. No 'new' products were detected which indicated that the same mechanism is occurred in the Fischer-Tropsch oxidation with the production of similar oxidation products as for the model compound oxidation. Fractionation of oxidised Fischer-Tropsch wax and the analyses of the fractions using IR, DSC and HTGC techniques verified the proposed composition of thermally oxidised Fischer-Tropsch hard wax. The most important conclusion that can be drawn from the research done for this dissertation is that none of the analytical results refuted the proposed composition of thermally oxidised Fischer-Tropsch hard wax.
Pienaar, Andrew. "Metal carboxylate complexes relevant to the Fischer-Tropsch synthesis." Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/1158.
Full textMiller, Steven. "Characterization of Potassium Promoted & Unpromoted Fischer-Tropsch Catalysts." TopSCHOLAR®, 1985. https://digitalcommons.wku.edu/theses/2628.
Full textFinch, Karol Paula. "Synthesis, characterisation and reactivity studies of μ(α, ω)-alkanediyl complexes of ruthenium, iron and cobalt." Master's thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/21938.
Full textBungane, Ntombovuyo. "Ruthenium and osmium complexes as catalyst precursors for Fischer-Tropsch synthesis." Master's thesis, University of Cape Town, 2004. http://hdl.handle.net/11427/6296.
Full textRuthenium complexes of several types have been synthesized, supported on silica and their activity in CO hydrogenation was investigated in order to determine the cluster size of surface Ru atoms required for the formation of hydrocarbons. Previous studies have shown that more than one metallic site is needed for the Fischer-Tropsch synthesis.
Van, der Westhuizen Katriena Elizabet. "Comprehensive multidimensional gas chromatography for the analysis of Fischer-Tropsch products." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/18006.
Full textENGLISH ABSTRACT: The analysis of Fischer–Tropsch–derived (FT–derived) synthetic crude and derived products is very challenging because of the highly complex nature of these products. In this study, the use of comprehensive multidimensional gas chromatography (GCxGC) with time-of-flight mass spectrometry (TOF-MS) and flame ionisation detection (FID) was investigated for the analysis of these products and the technique was found to be invaluable for the analysis of these complex mixtures. The compositions of FT synthetic crude, produced at low temperature (LT–FT) and high temperature (HT–FT) processes were compared and the effect that changes in FT reaction temperature has on product formation was investigated. Results for conventional onedimensional GC (1D-GC) and GCxGC were compared. It was found that conventional 1D–GC does not have sufficient peak capacity to separate the thousands of compounds in the HT FT products. GCxGC provides a huge peak capacity of tens-of-thousands to separate highly complex mixtures. Structured chromatograms, where groups of compounds with similar properties are grouped together, aid in peak identification. Moreover, sensitivity at low microgram per milliliter levels is obtained. These attributes enabled accurate analysis of various complex feed and product streams in the FT refinery, and also various final fuel products. The use of GCxGC alone was demonstrated, and also combined with high performance liquid chromatography (HPLC), supercritical fluid chromatography (SFC) and nuclear magnetic resonance (NMR) when even more separation power was needed. HPLC–GCxGC enabled the separation of alkene and cyclic alkane compound classes in oligomerisation products. These compound classes have similar mass spectra, elute in adjacent regions and co–elute even to some extent on the GCxGC contour plot, making differentiation difficult. SFC is a good replacement for HPLC for these applications because it does not use solvents as mobile phases. CO2 is easily evaporated after the separation and does not interfere with the GCxGC separation of the analytes. SFC is also a very good technique to separate the compound classes of alkanes, alkenes, aromatics and oxygenates, and is therefore highly complementary to GCxGC. The combination of GCxGC with NMR data was also found to be very valuable for the identification of branched alkane isomers in LT–FT diesels. GCxGC provides excellent separation of individual compounds but the identification of isomers (except for mono–methyl branching) is difficult because the mass spectra of most of these isomers are similar and not all compounds are in the mass spectral libraries. NMR, on the other hand, is able to distinguish between the individual types of branched isomers but has limited separation power for the complex mixtures. By combining the two techniques, the best of both was obtained. The study found GCxGC to be invaluable for the analysis of the highly complex FT–derived products, while its combination with other techniques such as HPLC, SFC and NMR provided even more separation power.
AFRIKAANSE OPSOMMING: Die hoogs komplekse samestelling van sintetiese ru–olie en afgeleide produkte, afkomstig van Fischer–Tropsch (FT) sintese, bied groot uitdagings aan die analis. Die studie het die gebruik van GCxGC met ’n TOF-MS en FID bestudeer vir die analise van FT produkte en het bevind dat die tegniek van onskatbare waarde is vir die analise van die hoogs komplekse mengsels. Die samestellings van produkte van lae- en hoë-temperatuur FT prossesse is vergelyk en die effek van ’n verhoging in die reaksie–temperatuur op die produk samestelling is ondersoek. Resultate vir 1D–GC and GCxGC is vergelyk en dit was duidelik dat 1D-GC nie naastenby voldoende piekkapasiteit het om al die komponente van die produkte wat tydens die hoëtemperatuur prosses gevorm word, te kan skei nie. Die GCxGC se piekkapasiteit daarteenoor is in die orde van tienduisende wat die skeiding van hoogs komplekse mensels moontlik maak terwyl die tegniek hoogs gestruktureerde kontoerplotte verskaf wat help met identfikasie van komponente. Die tegniek is verder ook baie sensitief en kan komponente op lae μg/mL vlakke waarneem. Hierdie eienskappe het akkurate analise van verskeie FT produkstrome moontlik gemaak. Die kombinasie van GCxGC met HPLC, SFC en KMR het selfs meer skeidingskrag verskaf waar nodig. HPLC–GCxGC het die skeiding van alkene en sikliese alkane moontlik gemaak. Hierdie komponent klasse se massaspektra is feitlik dieselfde en terselfdertyd elueer die twee groepe reg langs mekaar, en oorvleuel soms selfs tot ’n mate, op die GCxGC kontoerplot, sodat dit moeilik is om daartussen te onderskei. SFC is ’n goeie alternatief vir HPLC in meeste toepassings aangesien die tegniek net CO2 gebruik, wat maklik verdamp by kamertemperatuur en nie oplosmiddels gebruik wat se pieke steur met die van die laekookpunt komponente op die GCxGC kontoerplot nie. Skeidings van die komponentgroepe alkane, alkene, aromate en oksigenate is moontlik met SFC en daarom komplimenteer dit die GCxGC skeiding goed aan. Die kombinasie van GCxGC met kern–magnetiese resonansie (KMR) is van waarde gevind om die verskillende tipes vertakkings in ’n lae-temperatuur FT diesel te identifiseer. GCxGC verskaf uitstekende skeiding van individuele komponente maar die identifikasie van die verskilende isomere, behalwe vir die mono-metiel vertakkings, is moeilik aangesien die massaspektra van baie van die komponente soortgelyk is en die komponente nie in die massa spektrum–biblioteke voorkom nie. KMR, aan die ander kant, kan tussen die individuele vertakkings onderskei maar het beperkte skeidingskrag vir komplekse mensels. Deur die twee tegnieke te kombineer is die beste van albei tegnieke bekom. Die studie het bevind dat GCxGC van onskatbare waarde is vir die analise van die komplekse sintetiese FT produkte terwyl die kombinasie met ander tegnieke soos HPLC, SFC and KMR selfs meer skeidingskrag verskaf.
Webber, Glenda Vanessa. "The origin of multiple DSC melting peaks of Fischer-Tropsch hard waxes." Doctoral thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/11668.
Full textIncludes bibliographical references (leaves 157-163).
The differential scanning calorimetry (DSC) analyses of the Fischer-Tropsch (FT) hard waxes display multiple melting peaks, the origin of which is unknown. The phenomenon is sometimes referred to in the literature, but no attempt has been made to explain its cause. There are a few known causes of melting bimodality in n-alkanes and their mixtures, petroleum waxes and polymers. These are: polymorphism, chain folding and bimodal molecular weight distributions
Atubi, Phylander Omosigho. "Novel synthesis of silica-supported Fischer-Tropsch catalysts for second generation biofuels." Thesis, University of Huddersfield, 2015. http://eprints.hud.ac.uk/id/eprint/26187/.
Full textBooks on the topic "Fischer-Tropsch Chemistry"
Klerk, Arno de. Fischer-Tropsch refining. Weinheim, Germany: Wiley-VCH, 2011.
Find full textKlerk, Arno de. Fischer-Tropsch Refining. Wiley & Sons, Incorporated, John, 2012.
Find full textKlerk, Arno de. Fischer-Tropsch Refining. Wiley & Sons, Incorporated, John, 2012.
Find full textSynthetic Fuels Via Fischer-tropsch Chemistry. John Wiley & Sons Inc, 2006.
Find full textPavone, Anthony. Synthetic Fuels via Fischer-Tropsch Chemistry. Wiley & Sons, Incorporated, John, 2006.
Find full textBook chapters on the topic "Fischer-Tropsch Chemistry"
O’Brien, R. J., L. Xu, X. X. Bi, P. C. Eklund, and B. H. Davis. "Fischer-Tropsch synthesis and XRD characterization of an iron carbide catalyst synthesized by laser pyrolysis." In The Chemistry of Transition Metal Carbides and Nitrides, 362–72. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1565-7_19.
Full text"Fischer-Tropsch Chemistry." In Rules of Thumb for Petroleum Engineers, 269. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119403647.ch126.
Full text"The Fischer–Tropsch Process." In Chemistry and Technology of Alternate Fuels, 489–529. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811203657_0010.
Full textSubramanian, V., K. Cheng, and Y. Wang. "Fundamentally Understanding Fischer–Tropsch Synthesis." In Encyclopedia of Interfacial Chemistry, 107–14. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-409547-2.13530-9.
Full textWebb, Paul B., and Ivo A. W. Filot. "Promoted Fischer-Tropsch catalysts." In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-823144-9.00034-0.
Full textvan de Loosdrecht, J., F. G. Botes, I. M. Ciobica, A. Ferreira, P. Gibson, D. J. Moodley, A. M. Saib, J. L. Visagie, C. J. Weststrate, and J. W. Niemantsverdriet. "Fischer–Tropsch Synthesis: Catalysts and Chemistry." In Comprehensive Inorganic Chemistry II, 525–57. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-08-097774-4.00729-4.
Full textAlam, Mahabubul, Kuen Yehliu, Chenxi Sun, and André L. Boehman. "Fischer-Tropsch and other synthesized hydrocarbon fuels." In Combustion Chemistry and the Carbon Neutral Future, 235–89. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-99213-8.00006-0.
Full textMacgregor, Stuart A., Michael Bühl, and Emiel J. M. Hensen. "Computational Catalysis." In Contemporary Catalysis: Science, Technology, and Applications, 277–304. The Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781849739900-00277.
Full textMeng, Fanhui, and Muhammad Asif Nawaz. "Review of Slurry Bed Reactor for Carbon One Chemistry." In Slurry Technology - New Advances [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.109094.
Full text"Base Stocks from Fischer-Tropsch Wax and the Gas to Liquids Process." In Process Chemistry of Lubricant Base Stocks, 373–84. CRC Press, 2007. http://dx.doi.org/10.1201/9781420020540-15.
Full textConference papers on the topic "Fischer-Tropsch Chemistry"
Belosludov, Rodion, Tsuguo Kubota, Satoshi Sakahara, Kenji Yajima, Seiichi Takami, Momoji Kubo, and Akira Miyamoto. "Theoretical design of heterogenous catalysts by combinatorial computational chemistry approach: application to Fischer-Tropsch synthesis." In Symposium on Integrated Optics, edited by Ghassan E. Jabbour and Hideomi Koinuma. SPIE, 2001. http://dx.doi.org/10.1117/12.424750.
Full textShafagh, Ida, Kevin J. Hughes, Elena Catalanotti, Zhen Liu, Mohamed Pourkashanian, and Chris W. Wilson. "Experimental and Modelling Studies of the Oxidation of Surrogate Bio-Aviation Fuels." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45982.
Full textSmith, Arthur R., Joseph Klosek, James C. Sorensen, and Donald W. Woodward. "Air Separation Unit Integration for Alternative Fuel Projects." In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-063.
Full textMoses, Clifford A., and Petrus N. J. Roets. "Properties, Characteristics, and Combustion Performance of Sasol Fully Synthetic Jet Fuel." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50545.
Full textDoty, F. David, Laura Holte, and Siddarth Shevgoor. "Securing Our Transportation Future by Using Off-Peak Wind Energy to Recycle CO2 Into Fuels." In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90182.
Full textBhardwaj, Om Parkash, Bernhard Lüers, Andreas F. Kolbeck, Thomas Koerfer, Florian Kremer, Stefan Pischinger, Angelika von Berg, and Georg Roth. "Tailor Made Biofuels: Effect of Fuel Properties on the Soot Microstructure and Consequences on Particle Filter Regeneration." In ASME 2013 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icef2013-19165.
Full textHolte, Laura L., Glenn N. Doty, David L. McCree, Judy M. Doty, and F. David Doty. "Sustainable Transportation Fuels From Off-Peak Wind Energy, CO2, and Water." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90366.
Full textReports on the topic "Fischer-Tropsch Chemistry"
Matthew Neurock. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/909653.
Full textMatthew Neurock and Siddharth Chopra. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/909654.
Full textMatthew Neurock. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/909834.
Full textMatthew Neurock and David A. Walthall. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry. Office of Scientific and Technical Information (OSTI), May 2006. http://dx.doi.org/10.2172/882888.
Full textMatthew Neurock. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/882890.
Full textMullins, Charles Buddie. SURFACE SCIENCE STUDIES OF SELECTIVE FISCHER-TROPSCH CHEMISTRY ON COBALT CARBIDE SURFACES. Office of Scientific and Technical Information (OSTI), March 2023. http://dx.doi.org/10.2172/1959295.
Full textCronauer, D. C. Shape-selective catalysts for Fischer-Tropsch chemistry. Final report : January 1, 2001 - December 31, 2008. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1037554.
Full textManos Mavrikakis, James A. Dumesic, and Rahul P. Nabar. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts: A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/901151.
Full textManos Mavrikakis, James A. Dumesic, Amit A. Gokhale, Rahul P. Nabar, Calvin H. Bartholomew, Hu Zou, and Brian Critchfield. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts: A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/884858.
Full textManos Mavrikakis, James A. Dumesic, Amit A. Gokhale, Rahul P. Nabar, Calvin H. Bartholomew, Hu Zou, and Brian Critchfield. ATOMIC-SCALE DESIGN OF IRON FISCHER-TROPSCH CATALYSTS: A COMBINED COMPUTATIONAL CHEMISTRY, EXPERIMENTAL, AND MICROKINETIC MODELING APPROACH. Office of Scientific and Technical Information (OSTI), March 2005. http://dx.doi.org/10.2172/838346.
Full text