Academic literature on the topic 'Fired clay bricks'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fired clay bricks.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fired clay bricks"

1

Promkotra, Sarunya. "Applicable Fine Stream Sediments from Upper Chi River Produced Fired Clay Bricks." Applied Mechanics and Materials 423-426 (September 2013): 1041–45. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.1041.

Full text
Abstract:
Stream sediments from the upper Chi River basin, including Chi and Nam Phong sub-watershed, are applicable to be a source of raw materials to produce fired clay bricks. The sampling locations of clay materials are generally found along the river terrace where are covering three different regions (upper-, mid-and lower sub-watershed) nearby brickyards. Quartz is the main mineral of all samples. Moreover, mainly clay mineral groups consist of mica, kaolinite, and chlorite group composing totally around 5%. Other mineral compositions, such as carbonate, evaporite, corundum, hematite and pyrolusite are normally found both in fine stream sediments and fired clay bricks. Additional minerals in fired bricks are forsterite, zircon and mullite group which are less than 0.2%. Their strength in submersion test expressed in the air-dried to pure water both 1 day and 5 days is revealed that their strength and strain intend to increase with the submersed brick. Besides, prism compressive strength decreases in half related to a fired brick unit. Their impact resistances are significantly distinctive by mineral composition of clay mineral group and silica. The compressive strength of air-dried fired brick at the ultimate stress and strain corresponding by time in water absorption test show that water filled in void or pore can enhance their strength and strain. Thus, fired clay bricks are capable to resist compressive force than the normal condition.
APA, Harvard, Vancouver, ISO, and other styles
2

Phonphuak, Nonthaphong. "Application of Dry Grass for Clay Brick Manufacturing." Key Engineering Materials 757 (October 2017): 35–39. http://dx.doi.org/10.4028/www.scientific.net/kem.757.35.

Full text
Abstract:
In this paper, effects of incorporation of dry grass on the properties of clay bricks were investigated. Clay bricks fabricated with 0, 2.5, 5 and 7.5 % (w/w) of dry grass were tested. The clay brick specimens were fired at 900, 1000 and 1100 °C to study for bulk density, apparent porosity water absorption and compressive strength of brick samples were investigated. Results revealed that the bulk density of clay bricks were reduced when dry grass dosages increased. Results also shown that the increasing in bulk density were obtained when the firing temperature increased. The compressive strength of clay bricks was decreased when dry grass dosages increased. The addition of 2.5 % (w/w) dry grass fired at 1100 °C showed the optimal condition which indicated 11.6 MPa of compressive strength and 1.78 g/cm3 of bulk density. However, results indicated that a decrease in water absorption and apparent porosity were found when the firing temperature increased. Test results also revealed that the addition of dry grass for clay brick production lead to utilize a potential material as the additive to raw clay-bricks in the manufacturing of lightweight clay bricks.
APA, Harvard, Vancouver, ISO, and other styles
3

Suciu, Ovidiu, Radu Cruciat, and Cristian Lucian Ghindea. "Experimental Case Studies on Clay Fired Bricks Compressive Strength." Key Engineering Materials 601 (March 2014): 215–18. http://dx.doi.org/10.4028/www.scientific.net/kem.601.215.

Full text
Abstract:
Modern age manufacture technology requires controlled conditions for the burning and pressing of the clay bricks, while in the past these aspects weren't strictly controlled. It is expected to have different behaviours of the brick units for existing masonry buildings, as a result of the diverse fabrication technologies at different moments in time. The present paper presents a case study about the experimental testing on two batches of clay fired bricks. First batch is obtained from an existing structures and the second batch is represented by new bricks. Compression tests were conducted on specimens extracted from every batch of bricks. The experimental tests were carried out according to the current national standard for masonry units. For every tested batch of bricks, the standardized compression strength was computed as an arithmetic mean of the corrected ultimate stress. Following the large dispersion of the results for the specimens obtained from old bricks, the authors consider the standard method to determine the compressive strength of the bricks isn’t suitable for the determination of the brick batch class. Therefore, a series of probabilistic calculation were conducted by the assimilation of the experimental tests results to the processing methods characteristic for masonry. Using these procedures, the characteristic and the 5% fractile value of the compressive strength were determined for every batch of masonry units.
APA, Harvard, Vancouver, ISO, and other styles
4

Youssef, Nicolas, Zoubeir Lafhaj, and Christophe Chapiseau. "Economic Analysis of Geopolymer Brick Manufacturing: A French Case Study." Sustainability 12, no. 18 (September 9, 2020): 7403. http://dx.doi.org/10.3390/su12187403.

Full text
Abstract:
This paper presents an economic analysis of manufacturing geopolymer bricks for use in the construction sector. The manufacturing processes of both geopolymer bricks and traditional fired bricks were investigated. For this study, we collected and analyzed all phases of geopolymer brick production from the extraction of raw materials to storage. Seven formulations of geopolymer bricks based on clay and waste bricks were analyzed. We considered the cost of raw materials and logistics operations in the production line of brick manufacturing. The results of this study prove that the manufacturing cost of geopolymer bricks based on clay provides an economic gain of 5% compared to fired bricks for the same compressive strength of 20 MPa. In the case of waste bricks, for the same production cost, the compressive strength of the geopolymer bricks is double that of fired bricks. Hence, this study shows the economic interest in the industrial production of geopolymer bricks. It also confirms that future research is needed that focuses on necessary changes to the current industrial production chain required for the manufacture of geopolymer bricks.
APA, Harvard, Vancouver, ISO, and other styles
5

Johari, I., S. Said, B. Hisham, A. Bakar, and Z. A. Ahmad. "Effect of the change of firing temperature on microstructure and physical properties of clay bricks from Beruas (Malaysia)." Science of Sintering 42, no. 2 (2010): 245–54. http://dx.doi.org/10.2298/sos1002245j.

Full text
Abstract:
This study is focused on the behaviour of fired-clay brick from the area around Beruas (Malaysia) that is known for it brick industries. The firing temperatures were set from 800?C to 1250?C and soaking time was fixed for an hour. The effects of firing temperature on the phase changes, microstructure, compressive strength, water absorption and porosity of the bricks were investigated. Test results indicate that the optimum firing temperature was found to be 1200?C. The percentage of porosity significantly reduces from 39.33% to 5.87% when sintered from 1000?C to 1250?C. Bricks sintered at 1200?C exhibited the highest strength of 89.5 N/mm2. The effect of firing temperature significantly improved the microstructure in terms of porosity and the quality of physical properties of fired-clay bricks.
APA, Harvard, Vancouver, ISO, and other styles
6

Abdul Rahim, A. S., and Aeslina binti Abdul Kadir. "Physical and Mechanical Properties of Fired Clay Brick Incorporating with Mosaic Sludge Waste." Materials Science Forum 803 (August 2014): 203–8. http://dx.doi.org/10.4028/www.scientific.net/msf.803.203.

Full text
Abstract:
Brick is one of the most common masonry units used as building material. Due to the demand, different types of waste have been investigated to be incorporated into the bricks. Many types of sludge have been incorporated in fired clay brick for example marble sludge, stone sludge, water sludge, sewage sludge, and ceramic sludge. The utilisation of these waste materials in fired clay bricks usually has positive effects on the properties such as lightweight bricks with improved shrinkage, porosity, and strength. Therefore, this study focus on the incorporation of mosaic sludge into fired clay brick. Physical and mechanical properties were conducted such as compressive strength, shrinkage, density and initial rate of suction test. From the results, it shows that brick with 5% of mosaic sludge obtained the best result with highest compressive strength and low initial rate of suction (18.76N/mm2 and 10.08 g/mm2) respectively. Nevertheless, all the other properties for all bricks incorporated with different percentages of mosaic sludge were complied with the standard. In conclusion, mosaic sludge could be an alternative low cost material for brick and at the same time provide a disposal method for mosaic sludge waste.
APA, Harvard, Vancouver, ISO, and other styles
7

binti Abdul Kadir, Aeslina, Ahmad Shayuti Bin Abdul Rahim, and Hidra Hasbee Bin Jamil. "Utilization of Mosaic Sludge Waste into Fired Clay Brick: Properties and Leachability." Advanced Materials Research 1025-1026 (September 2014): 117–21. http://dx.doi.org/10.4028/www.scientific.net/amr.1025-1026.117.

Full text
Abstract:
Brick is one of the most common masonry units used as building material. Due to the demand, different types of waste have been investigated to be incorporated into the bricks. Many types of sludge have been incorporated in fired clay brick for an example marble sludge, stone sludge, water sludge, sewage sludge and ceramic sludge. The utilization of these waste materials in fired clay bricks usually has positive effects on the properties such as lightweight bricks with improved shrinkage, porosity, and strength. Therefore, the objective of this study is to incorporate different percentages of mosaic sludge and investigate heavy metals leachability from the mosaic sludge brick. Heavy metals leachability was conducted by using toxicity characteristic leaching procedure (TCLP). Physical and mechanical properties were also determined which are compressive strength, shrinkage, density and initial rate of suction. From the results obtained, it shows that fired clay brick with 5% of mosaic sludge obtained the best result with highest compressive strength and low initial rate of suction (18.76N/mm2 and 10.08 g/mm2) respectively. Nevertheless, all the other properties for all bricks incorporated with different percentages of mosaic sludge were also complied with the BS 3921:1985 standard. The results also demonstrated that the leachability of potential heavy metals in mosaic brick were complied with USEPA (1996) and EPAV (2005a) regulatory limit. In conclusion, mosaic sludge could be an alternative low cost material for fired clay brick as well as providing a disposal method for mosaic sludge waste.
APA, Harvard, Vancouver, ISO, and other styles
8

de Souza, Rodolfo Cretton, Afonso Rangel Garcez de Azevedo, Gustavo de Castro Xavier, Jonas Alexandre, Leonardo Gonçalves Pedroti, Flavio de Andrade Silva, and Sergio Neves Monteiro. "Characterization of Clayey Soils from Visconde Do Rio Branco for Fired Ceramic Bricks." Materials Science Forum 820 (June 2015): 443–48. http://dx.doi.org/10.4028/www.scientific.net/msf.820.443.

Full text
Abstract:
The production of conventional bricks for housing construction is worldwide carried out with either concrete or clay ceramics. In most municipalities in Brazil, bricks are produced from less expensive local clays and fired at temperatures as low as 600°C, normally using wood as fuel. Indeed, in many regions the direct use of natural clayey soils may be sufficient to fabricate bricks with properties complying with the norms. In the present work, three clayey soils from the municipal area of Visconde de Rio Branco, state of Minas Gerais, Brazil, were characterized for their physical and chemical aspects as well as the main technological properties of ceramics fired at 700, 850 and 950°C using the different soils as precursor bodies. The results indicated that these soils are acceptable for clay ceramic fabrication but only one has the strength complying with the Brazilian norm for masonry brick fired at the investigated temperatures.
APA, Harvard, Vancouver, ISO, and other styles
9

Tangboriboon, Nuchnapa, Sopita Moonsri, Atima Netthip, Watchara Sangwan, and Anuvat Sirivat. "Enhancing physical-thermal-mechanical properties of fired clay bricks by eggshell as a bio-filler and flux." Science of Sintering 51, no. 1 (2019): 1–13. http://dx.doi.org/10.2298/sos1901001t.

Full text
Abstract:
Fired clay bio-bricks were prepared by adding eggshell as a bio-filler and flux into earthenware clay compounds via an extrusion process. In this study, the suiTab. conditions for clay bricks preparation were firing at 1000?C for a period of 5 h. Adding 20 wt% eggshell powder into the clay brick yielded good physical-mechanical-thermal properties: high compressive strength and hardness, low thermal expansion coefficient, and low water absorption. The measured compressive strength, hardness, and refractory water absorption were 7.0 MPa, 6.0 HV, and less than 15 wt%, respectively. The obtained clay brick with the eggshell powder added as shown here is potential for uses as bricks for construction and thermal insulation.
APA, Harvard, Vancouver, ISO, and other styles
10

Čáchová, Monika, Dana Koňáková, Eva Vejmelková, Martin Keppert, Kirill Polozhiy, and Robert Černý. "Pore Structure and Thermal Characteristics of Clay Bricks." Advanced Materials Research 982 (July 2014): 104–7. http://dx.doi.org/10.4028/www.scientific.net/amr.982.104.

Full text
Abstract:
Clay brick was perhaps to be the first artificial structural material. First bricks were dried by sun; later people had started to burn bricks by fire and in that time further enhancements appeared. This article deals with two kinds of fired clay bricks; basic physical properties, pore system characteristics and thermal properties are studied. The values of basic physical properties by water vacuum saturation vary slightly; bulk density shows values around 1880 kg/m3 and in the case of open porosity it is around 27%. Regarding thermal properties the difference is higher, obtained results of thermal conductivities in dried state vary by about 33%.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Fired clay bricks"

1

Burgess-Dean, Leon Sylvester, and leon burgessdean@deakin edu au. "Predicting the resistance of fired clay bricks to salt attack." Deakin University. School of Engineering and Technology, 2001. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20061207.132458.

Full text
Abstract:
The salt attack of Fired Clay Bricks (FCBs) causes surface damage that is aesthetically displeasing and eventually leads to structural damage. Methods for determining the resistances of FCBs to salt weathering have mainly tried to simulate the process by using accelerating aging tests. Most research in this area has concentrated on the types of salt that can cause damage and the damage that occurs during accelerated aging tests. This approach has lead to the use of accelerated aging tests as standard methods for determining resistance. Recently, it has been acknowledged that are not the most reliable way to determine salt attack resistance for all FCBs in all environments. Few researchers have examined FCBs with the aim of determining which material and mechanical properties make a FCB resistant to salt attack. The aim of this study was to identify the properties that were significant to the resistance of FCBs to salt attack. In doing so, this study aids in the development of a better test method to assess the resistance of FCBs to salt attack. The current Australian Standard accelerated aging test was used to measure the resistance of eight FCBs to salt attack using sodium sulfate and sodium chloride. The results of these tests were compared to the water absorption properties and the total porosity of FCBs. An empirical relationship was developed between the twenty-four-hour water absorption value and the number of cycles to failure from sodium sulfate tests. The volume of sodium chloride solution was found to be proportional to the total porosity of FCBs in this study. A phenomenological discussion of results led to a new mechanism being presented to explain the derivation of stress during salt crystallisation of anhydrous and hydratable salts. The mechanical properties of FCBs were measured using compression tests. FCBs were analysed as cellular materials to find that the elastic modules of FCBs was equivalent for extruded FCBs that had been fired a similar temperatures and time. Two samples were found to have significantly different elastic moduli of the solid microstructure. One of these samples was a pressed brick that was stiffer due to the extra bond that is obtained during sintering a closely packed structure. The other sample was an extruded brick that had more firing temperature and time compared with the other samples in this study. A non-destructive method was used to measure the indentation hardness and indentation stress-strain properties of FCBs. The indentation hardness of FCBs was found to be proportional to the uniaxial compression strength. In addition, the indentation hardness had a better linear correlation to the total porosity of FCBs except for those samples that had different elastic moduli of the solid microstructure. Fractography of exfoliated particles during salt cycle tests and compression tests showed there was a similar pattern of fracture during each failure. The results indicate there were inherent properties of a FCB that determines the size and shape of fractured particles during salt attack. The microstructural variables that determined the fracture properties of FCBs were shown to be important variables to include in future models that attempt to estimate the resistance of FCBs to salt attack.
APA, Harvard, Vancouver, ISO, and other styles
2

Tian, Zeye. "Homogenization of mechanical and thermal properties of fired clay bricks : effects of porosity." Thesis, Toulouse, INSA, 2018. http://www.theses.fr/2018ISAT0010/document.

Full text
Abstract:
En raison de l'exigence de protection de l'environnement, les briques d'argile cuites sont face à une nouvelle tendance de développement. Briques d'argile cuites ne sont pas seulement satisfaits de la mécanique force mais aussi augmentation de l'utilisation de l'énergie. La conductivité thermique est un paramètre très important mesurer l'utilisation de l'énergie. Sur le principe de garantir essentiellement propriétés mécaniques, la réduction de la conductivité thermique a été l'un des développements importants objectifs dans l'industrie du bâtiment.Basé sur l'analyse de la microstructure, les pores microscopiques ont un effet sur la macroscopie constantes élastiques et conductivité thermique. Micropores parallèles résultant de la production les méthodes provoquent l'isotropie transversale des briques d'argile cuites. Cependant, ce n'est pas clair que l'influence des micropores sur les propriétés macroscopiques. Bien que certains modèles étudié l'effet de la porosité sur les propriétés mécaniques des briques d'argile cuite, ces modèles sont empiriques et ont ignoré de nombreuses informations microscopiques. Un des buts de la thèse est d'analyser l'influence de la forme, l'orientation et la distribution spatiale de microscopique facteurs sur les propriétés mécaniques et la conductivité thermique afin de fournir une référence optimiser la micro-structure des briques d'argile cuites
Due to the environmental protection requirement, fired clay bricks are facing new development tendency. Fired clay bricks are not only satisfied with mechanical strength but also rising energy utilization. Thermal conductivity is a very important parameter to measure the energy utilization. On the premise of guaranteeing the basically mechanical properties, reducing thermal conductivity has been one of important development goals in building industry.Based on the analysis of micro-structure, microscopic pores have an effect on macroscopic elastic constants and thermal conductivity. Parallel micropores resulting from producing methods cause the transverse isotropy of fired clay bricks. However, it is not clear that the influence of micropores on the macroscopic properties. Though some models studied the effect of porosity on mechanical properties of fired clay bricks, these models are empirical and ignored many microscopic information. One of the goals of the thesis is to analyze the influence of shape, orientation and spatial distribution of microscopic factors on mechanical properties and thermal conductivity in order to provide a reference to optimize the micro-structure of fired clay bricks
APA, Harvard, Vancouver, ISO, and other styles
3

Bogahawatta, Vedananda Tilakasiri Loku. "The influence of fabrication effects on the strength of fired clay products." Thesis, Queen Mary, University of London, 1990. http://qmro.qmul.ac.uk/xmlui/handle/123456789/25783.

Full text
Abstract:
A study has been made of the enhancement of the mechanical strength of bricks fabricated from five Sri Lankan Quaternary and post-Quaternary brick clays with the objective of identifying and optimising those factors which control the quality and performance characteristics of fired clay products of this type. Mineralogical investigations have shown that the clays are predominantly kaolinitic. Of the accessory minerals, feldspars and gibbsite are the chief constituents. The experimental programme involved the development of feasible processing techniques for clay bodies, the establishment of optimum heat treatments for their firing, and the testing and evaluation of material properties of the fired products. The microstructures of fired materials have been characterized using optical and electron microscopical techniques, as well as X-ray diffraction, electron probe microanalysis and chemical analysis. A limited study was also made of the durability of laboratory fired specimens. Methods of strength enhancement included use of the reactions of phosphates with natural clays, use of mineralizers to induce mullitization and surface coating by an efflorescence process. A kinetic analysis based on the first order kinetics is proposed for the estimation of optimum firing conditions for kaolinitic clays. The study has shown that surface coating of bricks increases the load at the elastic limit by up to 30% and the ultimate failing load by 19% in the clays examined. The measured increases in modulus of rupture and modulus of elasticity are over 33% and 40% respectively. A fabrication technique which requires the incorporation of phosphates has been developed. This provides the possibility of lowering the peak temperature of firing to 500°C. Flexural strength increase of up to 60% over the normally fired unbonded specimens can be achieved using this technique. Relevant compatibility relations in the ternary system Si02- P205-AI203 at 500'C are proposed. The presence of an optimum amount of mineralizer in a clay body may alter its sintering characteristics resulting in an increase in modulus of rupture up to 55%. However, uncontrolled additions exceeding 4 wt% cause deleterious effects. Microstructural analysis provides evidence that liquid phase sintering, development of mullite, development of pores and bloating are the dominant strength determining features in these clays. An empirical equation correlating the functional relation between modulus of rupture, mullite content and porosity is proposed. Mechanisms of strength development are discussed in the light of these findings.
APA, Harvard, Vancouver, ISO, and other styles
4

Cilli-Dogru, Elmas. "Recyclage des déchets de terre cuite." Thesis, Limoges, 2016. http://www.theses.fr/2016LIMO0128.

Full text
Abstract:
Le recyclage ou la réutilisation des déchets de démolition de maisons individuelles, de petits collectifs et de sites industriels édifiés en terre cuite, est actuellement limité par la présence de déchets composites, formés par l’assemblage de terre cuite, de mortier et / ou de plâtre principalement. Dans l’optique de valoriser la terre cuite dans la même filière ou dans d’autres secteurs industriels, la présence de plâtre, pouvant générer des ions sulfates au contact de l’eau, est un obstacle. La principal option de fin de vie des déchets de terre cuite en mélange est ainsi l’enfouissement en installation de stockage de classe 3. Le but de cette thèse a été de développer une méthode de séparation des déchets de démolition de terre cuite, plus intéressante d’un point de vue environnemental que l’enfouissement, et permettant de récupérer des matières premières secondaires de terre cuite valorisables dans des filières pertinentes. Une étude du gisement a été réalisée afin d’établir la nature des assemblages en présence dans les déchets de déconstruction et de fournir des échantillons représentatifs. Ces échantillons ont permis la détermination des mécanismes d’adhésion des interfaces. Une méthode de séparation a ainsi été développée et la compatibilité des matières premières secondaires de terre cuite a été comparée vis-à-vis de trois filières de valorisation
Recycling or reuse of demolition waste from individual houses, small collectives and industrial sites built with fired clay bricks, is currently limited by the presence of mixed waste, which is mainly an assembly of fired clay bricks, mortar and gypsum. In the perspective to valorize fired clay waste from demolition, the presence of gypsum, which may contain sulfates, is a restriction. Currently, the main end-of-life option for non-dissociated fired clay waste is the landfilling in waste storage facilities of class 3. The aim of this PhD thesis is to develop a separation process of mixed fired clay waste, environmentally more friendly than landfilling, in order to recover and valorize secondary raw materials in relevant industrial sectors. A study of the deposit has been done to identify the nature of the mixed demolition waste and to supply representative waste samples. Those samples enable to define the adhesion mechanisms at the interfaces. Then, a separation method has been developed. Finally, three routes have been investigated in order to valorize the recovered clay bricks
APA, Harvard, Vancouver, ISO, and other styles
5

Eufrasio, Espinosa Rafael Mauricio. "A visio-spatial life cycle energy model of building materials within a bioregional context : mapping the embodied energy of fired clay bricks in Cuitzeo, Mexico." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/13164/.

Full text
Abstract:
Despite the general acceptance of Life Cycle Assessments (LCA) to tackle environmental problems associated with the built environment, the literature shows that this complex assessment system presents limitations as a communication tool for decision-making process given that results are difficult to interpret. By trying to reduce the complexity of following multiple variables in LCA, a simplified and more straightforward process emerged to account for only energy using, Life cycle Energy Analysis (LCEA). However, LCEA has also inherited problems associated with LCA. Thus, discrepancies in calculation procedures, the lack of geographical considerations and ecological attitude and assumptions are criticized in both approaches. In this thesis, a Visio-Spatial Life Cycle Energy Model based on Geographical Information Systems (GIS) was developed in order to bridge the gap of LCEA as a communication tool by displaying embodied energy intensities in thematic maps taking into consideration bioregional principles in its analysis. A new dynamic Input-Output model, which efficiently simplifies the extraction process of energy paths from IO tables enabled the integration of hybrid energy coefficients to account for economic establishments dedicated to produce goods and services in the construction sector as illustrated in a bioregional case study area in Mexico. The full capability of the Visio-spatial energy model was then applied to a specific study of fired clay brick production within the bioregion. The results obtained by process analysis methods (PA) had a variation of 33.6% with respect to IO procedures, which can be considered acceptable in hybrid methods. Embodied energy figures expressed in thematic maps helped to reduce geographical assumptions and expand the sense of place in LCEA by visualizing patterns in manufacturing processes within the case study area.
APA, Harvard, Vancouver, ISO, and other styles
6

Abjaghou, Halima. "Valorisation des déchets de bois pour l'amélioration des performances ThERmiques des BRIques de terre cuite." Thesis, Limoges, 2020. http://aurore.unilim.fr/theses/nxfile/default/2a1b1d80-0a98-43b0-81bf-245a31f69b84/blobholder:0/2020LIMO0080.pdf.

Full text
Abstract:
Devant le besoin de renforcer les actions de réduction des consommations énergétiques pour respecter la réglementation thermique RT2012 qui implique d’avoir des bâtiments économes en énergie, l’amélioration de l’isolation thermique des matériaux de construction s’impose. Le projet BRITER financé par la région Nouvelle-Aquitaine et le Tremplin Carnot MECD, s’inscrit dans ce contexte et vise à développer des briques de terre cuite incorporant des déchets de bois d’ameublement pour en faire des produits de terre cuite poreux utilisables dans la maçonnerie porteuse et dont les propriétés d’isolation thermique sont optimisées. Pour réaliser ces matériaux, les déchets d’éléments d’ameublements (DEA) ont été sélectionnés et préparés pour être incorporés en tant qu’agent porogène dans un mélange argileux (MA). L’effet de la granulométrie et du taux d’incorporation des DEA sur les propriétés thermiques et mécaniques des produits MA/DEA cuits a été évalué. L’ajout des DEA dans le MA a permis d’augmenter le taux de porosité et par conséquent d’améliorer l’isolation thermique du produit. Les résultats ont démontré que l’ajout de 10 %m de DEA a conduit à une diminution de la conductivité thermique de 45 % par rapport au produit brut. L’incorporation des DEA dans le MA a conduit à une diminution des propriétés mécaniques. Cette diminution est directement proportionnelle au taux d’incorporation et à la granulométrie des DEA. Plus le taux d’incorporation et/ou la granulométrie sont élevés, plus la résistance mécanique est réduite. Toutefois, les valeurs des résistances mécaniques restent dans les normes des matériaux de construction en brique de terre cuite. Ce travail s’est également intéressé au bilan énergétique et l’impact environnemental liés au processus de cuisson des produits MA/DEA. Une dernière étude a porté sur le développement de matériaux poreux en terre cuite, incorporant des agents porogènes lamellaires, mis en forme par pressage, ce qui a permis d’orienter 80 % des pores créés perpendiculairement à la direction de pressage et de réduire ainsi la conductivité thermique jusqu’à 54 % par rapport au produit brut
New regulations for the thermal requirements of buildings implies greater energy efficiency in order to decrease primary energy consumption. In this context, improving thermal insulation of building materials is necessary. The BRITER project, financed by the Nouvelle-Aquitaine region and the Carnot MECD institute, aims at developing innovative fired clay bricks, through addition of wooden furniture wastes, with low thermal conductivity and mechanical properties compatible with current norms on building materials. Wood wastes were selected and mixed as pore formers with raw clay materials MA. The effect of the size and the amount of wooden furniture wastes on the thermal and mechanical properties of the fired products was investigated. The addition of wooden furniture wastes into the clay mixture enabled a significant improvement of the thermal insulation. Results showed that addition of 10 wt.% wood wastes led to decrease by 45 % in the thermal conductivity of the material based on the clay matrix MA. The addition of wooden furniture waste also yielded decrease of the mechanical properties which can be directly related to the amount and the size. However, mechanical properties remain within the standard values of clay building materials. This project also examined for energy saving and environmental impact linked to the firing process of clay/wood wastes mixtures. The final study examined the use of lamellar pore-forming agent to develop fired clay porous materials shaped by pressing. Results showed that 80 % of pores were perpendiculary oriented to the pressing direction and thus the thermal conductivity was reduced by 54 %
APA, Harvard, Vancouver, ISO, and other styles
7

Menegon, Julia. "Avaliação da suscetibilidade da alvenaria estrutural a danos por exposição a altas temperaturas com medidas de controle da dilatação." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/172027.

Full text
Abstract:
A alvenaria estrutural é um dos mais antigos sistemas construtivos existentes. Atualmente estruturas em alvenaria encontram uma vasta aplicação em construções residenciais, sobretudo em obras de interesse social. No entanto, ao contrário das estruturas de concreto, cujo comportamento durante exposição ao fogo e sua resistência residual tem estudos e resultados amplamente disseminados, pouco se sabe a respeito do comportamento de estruturas de alvenaria submetidas à ocorrência de sinistros dessa natureza. Com a intensificação das preocupações acerca da segurança das edificações e de seus usuários em situações de incêndio, faz-se cada vez mais imprescindível o conhecimento do comportamento dos sistemas empregados atualmente na construção civil perante a ação de altas temperaturas. Tendo isso em vista, o presente trabalho teve por objetivo a realização de uma análise dos danos e do comportamento apresentados por amostras de alvenaria com função estrutural ao serem expostas ao aquecimento excessivo. Foram avaliadas nesse estudo paredes de pequenas dimensões executadas com blocos estruturais cerâmicos. Visando simular condições mais próximas da realidade, foram restringidas, com o auxílio de macacos hidráulicos, as laterais das amostras, para que houvesse contenção da dilatação das mesmas. Com o intuito de verificar diferentes tipologias de alvenarias, foram utilizados três blocos distintos: de 14 cm de largura, com resistências de 7 e 10 MPa, e de 19 cm de largura, com 7 MPa de resistência à compressão. Também foram variadas as espessuras das juntas entre as unidades e a argamassa de assentamento das mesmas, a fim de compreender a importância desses fatores para o comportamento das amostras, e, por fim, foram ensaiadas amostras com revestimento na face exposta As miniparedes foram acopladas a um forno de resistências elétricas e submetidas a um aquecimento próximo à curva padrão determinada por norma, até a temperatura máxima de 950ºC, a qual foi mantida pelo período de 4 horas. Foram mensurados, além da temperatura dentro do forno, no interior da parede e na superfície das amostras, os deslocamentos transversais ocorridos durante o ensaio. Também se utilizaram transdutores de deslocamento para verificar a dilatação dos blocos e o esmagamento ou abertura das juntas. Imagens termográficas da face oposta ao aquecimento foram capturadas no decorrer da exposição. Ao final das análises, pôde-se inferir que as miniparedes ensaiadas apresentaram bom desempenho frente à ação das altas temperaturas, mantendo sua estanqueidade, isolamento térmico e resistência mecânica. A restrição lateral não ocasionou desplacamentos dos blocos, no entanto, pôde-se observar transferência de tensão para os mesmos quando utilizadas nas juntas argamassas pouco flexíveis. O deslocamento transversal apresentado pelas amostras indicou deflexão em direção ao forno durante o aquecimento, com posterior reversão do sentido. Tal deflexão foi atenuada pela redução da espessura das juntas, pelo uso de argamassas menos flexíveis e pelo aumento da resistência e largura dos blocos. As alvenarias de 19 cm de largura e, especialmente, as dotadas de revestimento apresentaram melhor desempenho térmico que as demais.
Structural masonry is one of the oldest existing building systems. Nowadays, masonry structures find a wide application in residential constructions, mainly in those with social interest. However, unlike concrete structures, whose behavior during fire exposure and its residual resistance have widely disseminated studies and results, there is a lack of knowledge about the behavior of masonry structures submitted to fire. Because of the spread of concerns about the safety of buildings and their users in fire situations, it becomes essential to know the behavior of the systems currently used in civil construction when exposed to high temperatures. With this in view, the present study intended to analyze the damage and the behavior of structural masonry samples exposed to heating. This study evaluated clay hollow-bricks small walls, and, in order to simulate real conditions, the boundaries of the samples were restrained, with the aid of hydraulic jacks, aiming to restrain the deformation. In order to verify different types of masonry, three different blocks were used: 14 cm wide, with nominal strength of 7 and 10 MPa, and 19 cm wide, with 7 MPa of compressive strength. The thicknesses of the joints and the mortar were also varied, in order to understand the importance of these factors in the behavior of the samples, and, finally, samples were tested with a mono-layer coating at the exposed face. The small walls were coupled to an electrical furnace and subjected to a heating approximately equal to the standard curve, up to the maximum temperature of 950ºC, which was maintained for 4 hours The deflections of the samples during the test were measured, beyond the temperature inside the furnace, in the center of wall and at the non-exposed surface. Clip gages were also used to verify the expansion of the blocks and the crushing or opening of the mortar joints. Thermographic images of the opposite face were captured during the testing. At the end of this research, it was possible to affirm that the walls had good behavior against the high temperatures, maintaining their integrity, thermal insulation and load-bearing capacity. The restriction of the boundaries did not cause the spalling of the blocks, however, it was possible to observe the stress transfer to them in samples with rigid joint mortar. The deflection of the samples increases towards the furnace during the heating, and, then, they show the phenomenon of “reverse bowing”, changing the direction of the displacements. Reducing the thickness and increasing the stiffness of the joint mortars, as well as the increase in block strength and width attenuated such deflection. The masonry 19 cm width and, specially, the ones with coating shows better thermal performance, comparing to the others.
APA, Harvard, Vancouver, ISO, and other styles
8

El, Fgaier Faycal. "Conception, production et qualification des briques en terre cuite et en terre crue." Thesis, Ecole centrale de Lille, 2013. http://www.theses.fr/2013ECLI0023/document.

Full text
Abstract:
La réduction de la consommation énergétique dans le secteur de bâtiments présente aujourd’hui une priorité primordiale dans les politiques des pays industrialisés. En France, le secteur du bâtiment consomme environ 43 % de l’énergie finale et contribue pour près d’un quart aux émissions nationales de gaz à effet de serre [ADEME]. Il se positionne comme un acteur clé pour parvenir à résoudre les inquiétants défis environnementaux auxquels nous devons faire face. Face à ces véritables défis, l’augmentation des niveaux d’exigence des réglementations thermiques s’est poursuivie et intensifiée pendant les 40 dernières années, jusqu’à la naissance de la réglementation thermique 2012, qui a permis de construire des bâtiments basse consommation (BBC) qui équivaut à 50 kWh/m².an. Cette nouvelle réglementation plus exigeante constitue une incitation forte à l'innovation des matériaux, produits et systèmes d'enveloppe. Dans ces conditions, l’amélioration des performances hygrothermiques des matériaux de construction aura des retombées économiques et environnementales conséquentes. C’est dans ce contexte que ce travail a été mené. Il vise à étudier et à améliorer les performances des produits de l’entreprise Briqueteries du Nord (BdN). Il est réparti sur deux axes principaux : le premier consiste à l’étude de l’inertie thermique et du pouvoir hygroscopique des briques en terre crue. Le second axe vise à élaborer des solutions possibles concernant l’amélioration de la résistance thermique des briques en terre cuite. Ce travail de recherche a été réalisé au laboratoire de l’Ecole Centrale de Lille avec une étroite collaboration avec l’université d’Artois et l’entreprise (BdN)
Nowadays, the reduction of energy consumption in buildings industry represents a major issue in industrialized countries’ policies. In France, the building sector consumes about 43% of final energy and accounts for nearly a quarter of the national emissions of greenhouse gas emissions [ADEME]. It is considered as a key factor to overcome the environmental challenges we have to face.In front of these significant challenges, the thermal regulations requirements were seriously intensified during the last 40 years until the notification of the thermal regulation 2012. This latter enable the construction of low energy buildings (BBC) whose consumption is equivalent to 50 kWh/m² per year on average. This new regulation provides a strong incentive for innovation of materials, products and envelope systems. Under these conditions, improving hygrothermal performance of building materials will allow a substantial economic and environmental benefits. This work was conducted in this context. It aims to study and improve the performance of the company Briqueteries du Nord (BdN) products. It is divided in two main axis: the first consists on studying the thermal inertia and hygroscopic capacity of unfired clay bricks. However, the second axis aims to develop possible solutions for improving the thermal resistance of fired clay bricks. This research was conducted in the laboratory of the Ecole Centrale de Lille with close collaboration with the University of Artois and the BdN company
APA, Harvard, Vancouver, ISO, and other styles
9

Silva, Mondragón Guido Leonardo. "Development of an eco-friendly composite based on geopolymer matrix produced with fired clay brick powder and reinforced with natural fibers." Master's thesis, Pontificia Universidad Católica del Perú, 2018. http://tesis.pucp.edu.pe/repositorio/handle/123456789/13564.

Full text
Abstract:
Current construction industry is responsible for a large amount of greenhouse gas emissions due to the widespread use of building materials with high-embodied energy such as ordinary Portland cement-based materials and steel. Therefore, this thesis presents the development of a new eco-friendly building material based on a geopolymer matrix produced with Fired Clay Brick Powder (FCBP) and reinforced with natural fibers as a low CO2 alternative for the traditional building materials. With this purpose, a review of recent advances in the application of geopolymer composites and geopolymers reinforced with natural fibers in the construction industry were first presented. This review covers two major eco-friendly materials for construction: first, geopolymers obtained from industrial by-products and waste materials, such as fly ash, ground granulated blast furnace slag, construction and demolition wastes and main tailings; and second, natural fibers used as reinforcement for geopolymer composite materials. Literature review allowed the definition of morphology, size, and the molar ratio of SiO2/Al2O3 in the raw material, together with the alkaline solution/solid ratio, NaOH concentration, SiO2/M2O molar ratio in the total alkaline solution and the curing conditions as key parameters in the formulation of geopolymers. It has been also found that the type, pre-treatment, amount and length of the natural fibers play an important role in the reinforcement of geopolymer matrices. Once key parameters of geopolymer composites production were identified, an attempt for the formalization of a methodology to improve the compressive strength of FCBP-based geopolymers is presented. The tests allowed the definition of optimum conditions of the FCBP-based geopolymers formulation and curing conditions, which resulted in a cementitious matrix with high compression strengths of up to 37 MPa. Nevertheless, high-strength geopolymers evidenced a fragile behavior and low ductility similar to Portland cement-based materials. Therefore, the last part of the work was focused on the evaluation of natural cellulose fibers (jute and sisal) as reinforcement of FCBP-based geopolymers. The results indicated that jute and sisal fiber addition at the optimum content significantly improved the compressive, splitting tensile and flexural strength with respect to the unreinforced geopolymer matrix and lead to a shifting of the failure mode from a brittle to a more ductile failure in all mechanical tests.
Tesis
APA, Harvard, Vancouver, ISO, and other styles
10

Schackow, Adilson. "Propriedades de concretos contendo rejeitos particulados de tijolos de cerâmica vermelha." Universidade do Estado de Santa Catarina, 2011. http://tede.udesc.br/handle/handle/1792.

Full text
Abstract:
Made available in DSpace on 2016-12-08T17:19:39Z (GMT). No. of bitstreams: 1 Dissertacao Adilson - capa - p 20.pdf: 346950 bytes, checksum: a3100709576cd968b71593cb9c01e214 (MD5) Previous issue date: 2011-07-28
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
This study aims to evaluate the effect of incorporation of particles of fired clay brick waste (CBW) in the physical and mechanical properties and their relation to the microstructure of concrete with Portland cement. The mixtures were obtained using the technique of fractional factorial design 33-1 for the design and analysis of experiments. For each factor, three levels were selected: CBW content (10, 20 and 30 wt. % of cement), water-to-cement ratio of 0.37, 0.45 and 0.55, and aggregate-to-cement ratio of 2.36, 3.64 and 4.70. The waste was characterized to evaluate their potential as a pozzolana. Fresh properties (consistency) and hardened (compressive strength at various ages, voids index, water absorption and density) were measured. Characterizations of microstructure and thermal using SEM / EDS and DTA / TG were performed to correlate the effect of waste content on the microstructure and properties of the hardened concrete. The waste presents properties adequate to be used as a pozzolan material. Consistency index decreases with the incorporation of the CBW, but is still possible to obtain concrete with adequate workability. For properties in the hardened concrete, the results show that the compressive strength increases with the increase of CBW content as an addition for concretes of Portland cement. Microstructural characterization reveals that the waste contributes to develop a more homogeneous microstructure with fewer pores and cracks when compared to concretes without waste. There is evidences that metakaolin contained in the waste contributes with the hydration reactions, consuming calcium hydroxide and producing more calcium silicate gel and hydrated phases, which keeps the aggregates more cohesive in the concrete microstructure. These microstructural characteristics improve the mechanical properties and durability of concrete.
Este trabalho tem como objetivo avaliar o efeito da incorporação de rejeitos particulados de tijolos (RPT) nas propriedades físicas e mecânicas e sua relação com a microestrutura de concretos de cimento Portland. Os traços foram formulados utilizando a técnica de planejamento fatorial fracionado 33-1 para o projeto e análise de experimentos. Para cada fator, três níveis foram selecionados: teor de RTP incorporado (10, 20 e 30 % em relação ao cimento), relações água-cimento de 0,37, 0,45 e 0,55, e relações agregado-cimento de 2,36, 3,64 e 4,70. O rejeito foi caracterizado para avaliar seu potencial quanto à pozolanicidade. Propriedades no estado fresco (consistência) e endurecido (resistênca à compressão em várias idades, índice de vazios, absorção de água e densidade) foram medidas. Caracterizações de microestrutura e térmica usando MEV/EDS e ADT/TG foram realizadas para correlacionar o efeito do teor de rejeito na microestrutura e propriedades no concreto endurecido. O rejeito apresenta características que possibilitam seu uso como material pozolânico. Para o índice de consistência observa-se que o mesmo diminue com a incorporação do RPT, porém ainda é possíviel obter concretos com adequada trabalhabilidade. Para as propriedades no concreto endurecido, os resultados mostram que a resistência à compressão aumenta com o aumento da porcentagem de RPT em adição ao concreto de cimento Portland. A caracterização microestrutural revela que o rejeito contribui para desenvolver uma microestrutura mais homogênea, com menos trincas e poros, quando comparadas às misturas sem o rejeito. Há indícios de que a metacaulinita contida no rejeito participa das reações de hidratação, consumindo hidróxido de cálcio e produzindo mais silicato de cálcio gel e fases hidratadas, as quais contribuem para manter os agregados mais coesos no corpo cerâmico. Estas características microestruturais melhoram as propriedades mecânicas e durabilidade dos concretos.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Fired clay bricks"

1

Bagley, Robin James Vernon. The influence of salt weathering on clay fired bricks. [London]: Queen Mary and Westfield College, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beirne-Lewis, Sean Michael. The introduction of calcium carbonate into the clay brick mixture with a view to lowering the firing temperature, whilst maintaining the mechanical properties of the fires clay product. [London]: Queen Mary and Westfield College, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leslie, Thomas. “Built Mostly of Itself”: Chicago and Clay, 1874–1891. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037542.003.0002.

Full text
Abstract:
This chapter describes major structures built from 1874–1891, which were dominated by taller masonry buildings that employed improved masonry, foundations, and fireproofing. Early fire-protected iron-framed buildings achieved modest increases in height over all-masonry structures. Wrapping iron columns and girders with terra-cotta jackets saved owners floor space that would otherwise have gone toward larger brick piers, though masonry was still the primary material for exterior walls. The result—jacketed iron structures inside surrounded by bearing masonry walls outside—was called “cage” construction in New York. The skyscrapers built in Chicago's building boom of 1884—1886 all deployed this hybrid strategy of metal frame and masonry wall. Skyscrapers supported, braced, and clad with masonry were also made stronger and more economical by the rise of a pressed-brick industry in Chicago.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fired clay bricks"

1

Trakoolngam, Kritika, Sarunya Promkotra, and Tawiwan Kangsadan. "Compressive Strength of Fired-Clay Brick with Variations in Composition of Rice Husk Ash Compared with Ancient Bricks in Dvāravatī Peroid, Northeast Thailand." In RILEM Bookseries, 2359–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99441-3_253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wie-Addo, G., A. H. Jones, S. Palmer, V. Starinieri, J. Renshaw, and P. A. Bingham. "Reformulating Ceramic Body Composition to Improve Energy Efficiency in Brick Manufacture." In Springer Proceedings in Energy, 257–68. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_32.

Full text
Abstract:
AbstractThe influence of inorganic minerals (colemanite and nepheline syenite) as additives for sustainable clay brick manufacture has been examined. Each additive was added at 4 wt% to 96 wt% brick clay and samples were fired to 950 °C and 1040 °C and then compared with samples of 100% brick clay. Multiple analytical techniques (X-ray fluorescence, dilatometry, boiling water absorption, volumetric shrinkage, and mercury porosimetry) were used for analysis. Dilatometry shows that the additives influenced the temperature at which shrinkage began and the extent of that shrinkage. The use of colemanite reduced the temperature at which the shrinkage began by 120 °C and nepheline syenite reduced it by 20 °C. A linear shrinkage in dilatometry of 1% (from the maximum expanded length) was achieved at 1000 °C for 100% clay, 875 °C for colemanite additions and 970 °C for nepheline syenite additions. However, for samples fired at 1040 °C for 2 h colemanite containing samples had significantly lower volumetric shrinkage and higher water absorption than 100% clay and nepheline syenite samples, suggesting the presence of higher amounts of open porosity caused by the decomposition of the colemanite on heating. Samples containing nepheline syenite had a lower volumetric shrinkage but also a marginally lower water absorption than the 100% clay. The further optimisation of these or similar additives could potentially provide energy saving opportunities and reductions in CO2 emissions for brick manufacturers.
APA, Harvard, Vancouver, ISO, and other styles
3

Alhaji, Mustapha Mohammed, Musa Alhassan, Taiye Waheed Adejumo, Perpetus Chukwuma Ibe, and Mohammed Shehu. "Potential of Fired Clay Brick for Use as Short Beams and Columns." In Infrastructure Sustainability Through New Developments in Material, Design, Construction, Maintenance, and Testing of Pavements, 117–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79644-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Groot, Caspar J. W. P., and Jos Gunneweg. "Two Views on Dealing with Rain Penetration Problems in Historic Fired Clay Brick Masonry." In Historic Mortars, 257–66. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4635-0_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mirajkar, Naman, and Avlokita Agrawal. "Effect of Form Design on the Thermal Behavior of a Modular Fired Clay Brick." In Smart Innovation, Systems and Technologies, 265–75. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5974-3_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sarani, Noor Amira, Aeslina Abdul Kadir, Nur Fatin Nabila Hissham, Mohd Ikhmal Haqeem Hassan, and Nurul Nabila Huda Hashar. "Performance on Physical and Mechanical Properties of Fired Clay Brick Incorporated with Palm Kernel Shell for Lightweight Building Materials." In Lecture Notes in Civil Engineering, 119–44. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4918-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Černý, R., and V. Kočí. "Traditional fired-clay bricks versus large and highly perforated fired-clay bricks masonry." In Eco-Efficient Masonry Bricks and Blocks, 63–81. Elsevier, 2015. http://dx.doi.org/10.1016/b978-1-78242-305-8.00004-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Simonsen, C. P., and I. Rörig-Dalgaard. "Quantifying surface deterioration: Exemplified on fired clay bricks." In Brick and Block Masonry - From Historical to Sustainable Masonry, 296–303. CRC Press, 2020. http://dx.doi.org/10.1201/9781003098508-39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hotza, D., and B. G. O. Maia. "Environmental performance and energy assessment of fired-clay brick masonry." In Eco-Efficient Masonry Bricks and Blocks, 447–59. Elsevier, 2015. http://dx.doi.org/10.1016/b978-1-78242-305-8.00020-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Holanda, J. N. F. "The properties and durability of clay fly ash-based fired masonry bricks." In Eco-Efficient Masonry Bricks and Blocks, 85–101. Elsevier, 2015. http://dx.doi.org/10.1016/b978-1-78242-305-8.00005-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fired clay bricks"

1

Rguibi, Yosra El Boulli, Ayoub El Baraka, and Asmae Khaldoun. "Eco-Friendly Fired Clay Bricks." In 2018 6th International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2018. http://dx.doi.org/10.1109/irsec.2018.8702923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rörig-Dalgaard, I., and A. E. Charola. "Evaluation of fired clay bricks – extent of decay." In 1st International Conference on Moisture in Buildings 2021. ScienceOpen, 2021. http://dx.doi.org/10.14293/icmb210057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Achik, Maryam, Hayat Benmoussa, Abdellah Oulmekki, M. Ijjaali, N. EL Moudden, Olga Kizinievic, and Viktor Kizinievic. "Evaluation of physical and mechanical properties of fired-clay bricks incorporating both mineral and organic wastes." In The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.004.

Full text
Abstract:
The clay brick is one of the oldest building materials, and as the use of waste in the bricks can reduce clay consummation and the environmental burden due to the accumulation of waste, the present study was chosen, the addition of mineral and organic waste to the clay brick. The added value of this work, which was carried out within the Institute of Building Materials at VGTU, is that the mixture studied is very special, because the raw materials used are: − Yellow Clay (C) from Fez which is used only in the field of pottery; − Pyrrhotite Ash (PA) which is a mineral waste produced during the manufacture of sulphuric acid from the roasting of pyrrhotite ore. This waste is stored in the open air since 1982 and until now it doesn't have any specific use; − Cedar Sawdust (S) is an organic waste regenerate by the artisanal sector from Fez. The bricks’ technological properties depended on the amount of ashes used. So, adding 5% S to the mixture (20% PA – 80% C) gives rise to a new material that is light, porous with a natural brick red colour. Most importantly, this material exhibits mechanical strength according to the standards of a terracotta brick.
APA, Harvard, Vancouver, ISO, and other styles
4

Aeslina, A. K., and A. Mohajerani. "Leachability of heavy metals from fired clay bricks incorporated with cigarette butts." In 2012 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA). IEEE, 2012. http://dx.doi.org/10.1109/isbeia.2012.6423017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wahab, Rabiatul Adawiyah Abdul, Faris Ammar Ahmad Zakri, Nur Khairun Nisa Md Sokri, Nur Adryna Farhana Norizam, Abdul Qayyum Karya, Mohd Hafiz Mohd Zaid, Maryam Mohamad, and Mazlini Mazlan. "Physical and mechanical properties of fired clay bricks substituted with agricultural waste." In 4TH INTERNATIONAL SCIENCES, TECHNOLOGY AND ENGINEERING CONFERENCE (ISTEC) 2020: Exploring Materials for the Future. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0042901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wahab, Rabiatul Adawiyah Abdul, Maryam Mohammad, Mazlini Mazlan, Mohammad Aminudin Mohd Razali, Nur Arina Mat Rusni, W. Aisya Nabila W. Sharisun Asma, Faradihah Ashari, and Mohd Hafiz Mohd Zaid. "Physical properties of low energy consumption fired industrial waste-clay bricks from cockle shells and soda lime silica glass." In 4TH INTERNATIONAL SCIENCES, TECHNOLOGY AND ENGINEERING CONFERENCE (ISTEC) 2020: Exploring Materials for the Future. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0042888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Voišnienė, Violeta, Olga Kizinievič, Viktor Kizinievič, and Jurgita Malaiškienė. "Production of fired clay brick from municipal solid waste incinerator fly ash." In The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.149.

Full text
Abstract:
This paper is a report on the results of a feasibility study on the immobilization of municipal solid waste incinerator fly ash by producing a fired clay brick. The main purpose of this work was to test the clay used in the manufacture of a fired clay brick that could incorporate municipal solid waste incinerator fly ash. The raw materials, municipal solid waste incinerator fly ash and clay, were mixed together in different proportions (100:0, 97.5:2.5, 95:5 and 92.5:7.5). Clay brick samples were heated to 1000 °C temperatures for 1 h. The fired clay brick specimens were characterised with respect to compressive strength, porosity, linear shrinkage (after drying, after firing) and density. Leaching tests, in accord with the European Union regulation, was done on fired clay brick made with different additions of municipal solid waste incinerator fly ash.
APA, Harvard, Vancouver, ISO, and other styles
8

Kadir, Aeslina Abdul, Nurul Salhana Abdul Salim, Noor Amira Sarani, Nur Aqma Izurin Rahmat, and Mohd Mustafa Al Bakri Abdullah. "Leachability of fired clay brick incorporating with sewage sludge waste." In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kadir, Aeslina Abdul, Nurul Salhana Abdul Salim, Noor Amira Sarani, Nur Aqma Izurin Rahmat, and Mohd Mustafa Al Bakri Abdullah. "Properties of fired clay brick incorporating with sewage sludge waste." In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kadir, A. A., N. A. Sarani, N. N. Zaman, and Mohd Mustafa Al Bakri Abdullah. "Feasibility study on utilization of palm fibre waste into fired clay brick." In ADVANCED MATERIALS ENGINEERING AND TECHNOLOGY V: International Conference on Advanced Material Engineering and Technology 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4981861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography