Academic literature on the topic 'Fire scenarios'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fire scenarios.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fire scenarios"
Watts, John M. "Fire scenarios." Fire Technology 27, no. 4 (November 1991): 289–90. http://dx.doi.org/10.1007/bf01039881.
Full textBrannigan, V. "Fire Scenarios Or Scenario Fires? Can Fire Safety Science Provide The Critical Inputs For Performance Based Fire Safety Analyses?" Fire Safety Science 6 (2000): 207–18. http://dx.doi.org/10.3801/iafss.fss.6-207.
Full textTymstra, Cordy, Mike D. Flannigan, Owen B. Armitage, and Kimberley Logan. "Impact of climate change on area burned in Alberta's boreal forest." International Journal of Wildland Fire 16, no. 2 (2007): 153. http://dx.doi.org/10.1071/wf06084.
Full textDowling, V., and G. Ramsay. "Building Fire Scenarios - Some Fire Incident Statistics." Fire Safety Science 5 (1997): 643–54. http://dx.doi.org/10.3801/iafss.fss.5-643.
Full textChoi, Yoo-Jeong, Su-Gil Choi, and Si-Kuk Kim. "Basic Research for the Development of Fire Response Training Scenarios for Fire Safety Managers through Fire Case Analysis." Fire Science and Engineering 36, no. 1 (February 28, 2022): 43–55. http://dx.doi.org/10.7731/kifse.e7d07c53.
Full textNigro, Emidio, Anna Ferraro, and Giuseppe Cefarelli. "The Influence of Fire Scenarios on the Structural Behaviour of Composite Steel-Concrete Buildings." Applied Mechanics and Materials 82 (July 2011): 368–73. http://dx.doi.org/10.4028/www.scientific.net/amm.82.368.
Full textAmezketa, Esperanza, Raquel Ciriza, and Mikel Viñuales. "A forest fire hazard model and map for a wildland urban interface not meteorologically prone to forest fires." Territorium, no. 30(II) (October 25, 2023): 35–55. http://dx.doi.org/10.14195/1647-7723_30-2_4.
Full textGodakandage, Rajeendra, Pasindu Weerasinghe, Kumari Gamage, Hani Adnan, and Kate Nguyen. "A Systematic Review on Cavity Fires in Buildings: Flame Spread Characteristics, Fire Risks, and Safety Measures." Fire 7, no. 1 (December 28, 2023): 12. http://dx.doi.org/10.3390/fire7010012.
Full textAlasiri, Muhannad R., and Mustafa Mahamid. "A comparison between CFD and thermal-structural analysis of structural steel members subjected to fire." Journal of Structural Fire Engineering 12, no. 2 (March 5, 2021): 234–55. http://dx.doi.org/10.1108/jsfe-03-2020-0011.
Full textHostikka, Simo, and Olavi Keski-Rahkonen. "Probabilistic simulation of fire scenarios." Nuclear Engineering and Design 224, no. 3 (October 2003): 301–11. http://dx.doi.org/10.1016/s0029-5493(03)00106-7.
Full textDissertations / Theses on the topic "Fire scenarios"
Woodward, Andrew Bruce. "Fire scenarios for an improved fabric flammability test." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0427103-233516/.
Full textMurtiadi, Suryawan. "Behaviour of concrete frame structures under localised fire scenarios." Thesis, Aston University, 2007. http://publications.aston.ac.uk/14315/.
Full textPuybaraud, Marie-Cecile. "A model of the role of management in construction fire safety failure scenarios." Thesis, Heriot-Watt University, 2001. http://hdl.handle.net/10399/1139.
Full textBerchtold, Florian [Verfasser]. "Metamodel for complex scenarios in fire risk analysis of road tunnels / Florian Berchtold." Wuppertal : Universitätsbibliothek Wuppertal, 2019. http://d-nb.info/120422272X/34.
Full textKuhlmann, Salas Claudio Andrés. "Ellipsoidal forest and wildland fire scar scenarios for strategic forest management planning under uncertainty." Tesis, Universidad de Chile, 2014. http://repositorio.uchile.cl/handle/2250/131350.
Full textIngeniero Civil Industrial
La importancia que ha tomado la conservación del medioambiente ha ido en aumento, lo que ha afectado directamente en los objetivos y forma de operar de las organizaciones. Es por esto que la interacción entre la operación y el desarrollo del ecosistema debe ser considerada para balancear la sustentabilidad y conservación con los objetivos productivos, siendo las perturbaciones forestales un punto de gran interés. Incendios, plagas, erupciones volcánicas e inundaciones son algunas de las perturbaciones al ecosistema que afectan la productividad del bosque. Por lo tanto, reducir el riesgo y las consecuencias de estos episodios es clave para la industria. El objetivo es crear una metodología que permita generar escenarios de incendios elipsoidales para su utilización en la toma de decisiones en el manejo de incendios y recursos forestales. Para esto se utilizan incendios elípticos generados a través de un simulador, los cuales, siguiendo el método de Monte Carlo, son asignados a uno de los patrones representativos de incendio previamente definidos, utilizando la distancia de Pompeiu-Hasudorff. La probabilidad de ocurrencia de los patrones representativos es obtenida al dar cuenta de la cantidad de simulaciones asignada a cada uno de ellos. Para dar con un algoritmo que permitiera utilizar los recursos computacionales de forma eficiente se implementaron distintos métodos para el cálculo de la distancia de Pompeiu-Hausdorff, además de utilizar múltiples procesadores en paralelo cuando esto fuese posible. Cinco métodos fueron implementados, los cuales son definidos utilizando las propiedades geométricas de las elipses para lograr resolver el problema de optimización implícito. El método que logra dar con los resultados más exactos para la distancia hace uso de optimización cónica, mientras que el más rápido calcula la distancia entre cada uno de los vértices de una elipse discretizada. Haciendo uso de estos dos métodos, se genera una estrategia multi etapa para el cálculo de la distancia de Pompeiu-Hasdorff entre dos elipses que es eficiente y precisa. La estabilidad de los resultados obtenidos para 200 patrones es lograda luego de 100,000 sampleos, sin embargo, se observaron variaciones muy pequeñas incluso después de 20,000 simulaciones. En conclusión, los intervalos de confianza obtenidos para las probabilidades calculadas dependen de los recursos computacionales con los que se cuente y de las restricciones de tiempo que puedan ser impuestas. La metodología desarrollada entrega a los planificadores forestales una herramienta para analizar la probabilidad de incendio de zonas determinadas, las cuales pueden ser utilizadas en un modelo de optimización bajo incertidumbre que les permita manejar los recursos disponibles de la mejor forma posible.
Horvath, Istva'n. "Extreme PIV Applications: Simultaneous and Instantaneous Velocity and Concentration Measurements on Model and Real Scale Car Park Fire Scenarios." Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209641.
Full textIn this actual chapter 1 general introduction is given to each chapter. Chapter 2 is dedicated to a detailed description of the instantaneous and simultaneous velocity and concentration measurement technique and its associated error assessment methodology. The name of the new technique is derived from the names of the acquired parameters (VELocity and COncentration) and shall be hereafter referred to as VELCO. After having validated and performed an error assessment of this technique, it is applied to an investigation of full-scale car park (30 m x 30 m x 2.6 m – Gent / WFRGENT) fire cases in chapter 3. The measurements were carried out with the financial support of IWT-SBO program. In the full-scale measurements only the velocity part is applied of VELCO, yet it can be considered as its application since the special data treating was developed and implemented in the Rabon (see: §2.1.2) program, which is the software of the new technique along with Tucsok (see: §2.1.1) and they will be both discussed in the related chapter. Here it is enough to mention that the concentration and velocity information can be obtained independently as well. During the full-scale measurements, beyond of VELCO the smoke back-layering distances (SBL) are also derived from the temperature values, which were measured by thermocouples under the ceiling in the midline of the car park. The critical velocity, which is an important measure of fire safety, can be obtained from the SBL results. In chapter 4, isothermal fire modeling is surveyed in order to present how full-scale fires are modeled in small-scale. In this part of the study the theory of fire related formulae and an isothermal model are described. Here it is important to stress the fact that the fire modeling is not directly related to the VELCO technique. However it connects the full-scale to the small-scale measurements, which the technique is applied on. Chapter 5 discusses small-scale measurements (1:25 – Rhode Saint Genese / VKI) on the car park introduced in chapter 3 and their validation. After the validation, more complex car parks scenarios are also investigated due to the easy to change layout in the small-scale model with respect to the full-scale car park. In this chapter the smoke back-layering distances are obtained by VELCO. Finally, in chapter 6 important conclusions are drawn with the objective of increasing fire safety.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Wang, Yanbo. "An investigation of techniques to assist with reliable specification and successful simulation of fire field modelling scenarios." Thesis, University of Greenwich, 2007. http://gala.gre.ac.uk/8472/.
Full textGUELPA, ELISA. "Modeling strategies for multiple scenarios and fast simulations in large systems: applications to fire safety and energy engineering." Doctoral thesis, Politecnico di Torino, 2016. http://hdl.handle.net/11583/2643992.
Full textKerber, Stephen. "Evaluation of the ability of fire dynamic simulator to simulate positive pressure ventilation in the laboratory and practical scenarios." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/3243.
Full textThesis research directed by: Dept. of Fire Protection Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Dülsen, Steffen [Verfasser]. "Development of a combined experimental and simulative method for the assessment of fire scenarios in motor vehicles / Steffen Dülsen." Magdeburg : Universitätsbibliothek Otto-von-Guericke-Universität, 2018. http://d-nb.info/1220036307/34.
Full textBooks on the topic "Fire scenarios"
U.S. Nuclear Regulatory Commission. Office of Nuclear Regulatory Research. Methods for Applying Risk Analysis to Fire Scenarios (MARIAFIRES)-2010. Washington, DC: U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, 2013.
Find full textGreat Britain. Health and Safety Executive. and Steel Construction Institute, eds. Generic foundation data to be used in the assessment of blast and fire scenarios and typical structural details for primary, secondary andsupporting structures/components. London: H.M.S.O., 1992.
Find full textWalter, Forster Kurt, ed. Hodgetts + Fung :scenarios and spaces. [New York]: Rizzoli International Publications, 1997.
Find full textCourbage, Youssef. Scenari demografici mediterranei: La fine dell'esplosione. Torino: Edizioni Fondazione Giovanni Agnelli, 1998.
Find full textBrnich, M. J., and Erica E. Hall. Incorporating judgment and decisionmaking into quarterly mine escape training based on a mine fire scenario. Pittsburgh, PA: Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Office of Mine Safety and Health Research, 2013.
Find full textBerardi, Franco. Mutazione e cyberpunk: Immaginario e tecnologia negli scenari di fine millennio. Genova: Costa & Nolan, 1994.
Find full text1943-, Davis Paul K., Bigelow J. H, and National Defense Research Institute (U.S.), eds. EXHALT: An interdiction model for exploring halt capabilities in a large scenario space. Santa Monica, CA: Rand, 2000.
Find full textBernardoni, Marco. Scenari dalla fine del mondo: Teologia e scienza nell'opera di Robert John Russell. Bologna: EDB Edizioni Dehoniane Bologna, 2021.
Find full textR, Lim Marie, and Geological Survey (U.S.), eds. A clarification, correction, and updating of Parkfield, California, earthquake prediction scenarios and response plans: (USGS Open-File Report 87-192). [Reston, Va.]: Dept. of the Interior, U.S. Geological Survey, 1995.
Find full textArnold, John E. Anyone who can be fired needs a fallback position: Preparing a contingency plan for the worst case scenario. Topeka, KS: Exurba, 2003.
Find full textBook chapters on the topic "Fire scenarios"
Hadjisophocleous, George V., and Jim R. Mehaffey. "Fire Scenarios." In SFPE Handbook of Fire Protection Engineering, 1262–88. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2565-0_38.
Full textMartinka, Jozef. "Fault Scenarios of Electrical Cables." In SpringerBriefs in Fire, 23–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17050-8_2.
Full textKrause, Ulrich, Frederik Rabe, and Christian Knaust. "Modeling Fire Scenarios and Smoke Migration in Structures." In Process and Plant Safety, 159–77. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645725.ch10.
Full textCapote, Jorge, Daniel Alvear, Orlando Abreu, Mariano Lázaro, and Arturo Cuesta. "Evacuation Modelling of Fire Scenarios in Passenger Trains." In Pedestrian and Evacuation Dynamics 2008, 705–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04504-2_68.
Full textSharma, Ankit, Tianhang Zhang, and Gaurav Dwivedi. "Façade Fires in High-Rise Buildings: Challenges and Artificial Intelligence Solutions." In Sustainable Structures and Buildings, 77–94. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-46688-5_6.
Full textMoinuddin, Khalid, Carlos Tirado Cortes, Ahmad Hassan, Gilbert Accary, and Frank Wu. "Simulation of Extreme Fire Event Scenarios Using Fully Physical Models and Visualisation Systems." In Arts, Research, Innovation and Society, 49–63. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-56114-6_5.
Full textWhite, Nathan, and Michael Delichatsios. "Recommended Fire Scenarios and Testing Approach for Phase II." In Fire Hazards of Exterior Wall Assemblies Containing Combustible Components, 89–94. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2898-9_8.
Full textQin, Hua, Linghua Ran, and Shaohong Cai. "Constructing Interaction Scenarios of High-Building Interior in Fire." In Cross-Cultural Design. Cultural Differences in Everyday Life, 329–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39137-8_37.
Full textObstalecki, M., J. Chaussidon, P. Kurath, and G. P. Horn. "Prediction of Dynamic Forces in Fire Service Escape Scenarios." In Dynamic Behavior of Materials, Volume 1, 179–86. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0216-9_26.
Full textLaCroix, Jacob J., Qinglin Li, Soung-Ryoul Ryu, Daolan Zheng, and Jiquan Chen. "Simulating Fire Spread with Landscape Level Edge Fuel Scenarios." In Remote Sensing and Modeling Applications to Wildland Fires, 267–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32530-4_18.
Full textConference papers on the topic "Fire scenarios"
Hua, Nan, Anthony F. Tessari, and Negar Elhami-Khorasani. "Design Fire Scenarios for Railway Tunnel Fires." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.0082.
Full textLi, Yan, Majid Sarvi, and Kourosh Khoshelham. "Pedestrian Origin-Destination Estimation in Emergency Scenarios." In 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE). IEEE, 2019. http://dx.doi.org/10.1109/icfsfpe48751.2019.9055868.
Full textLuimula, Mika, Jarmo Majapuro, Fahmi Bellalouna, Anis Jedidi, Brita Somerkoski, and Timo Haavisto. "Hazardous Training Scenarios in Virtual Reality - A Preliminary Study of Training Scenarios for Massive Disasters in Metaverse." In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002062.
Full textLilley, David G. "Fire Modeling." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/cie-1349.
Full textElhami Khorasani, Negar, John Billittier, and Andreas Stavridis. "Structural Performance of a Railway Tunnel Under Different Fire Scenarios." In 2018 Joint Rail Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/jrc2018-6169.
Full textXu, Xiaoyuan, Pengfei Wang, Nianhao Yu, and Hongya Zhu. "Experimental Study on Kitchen Fire Accidents in Different Scenarios *." In 2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE). IEEE, 2019. http://dx.doi.org/10.1109/icfsfpe48751.2019.9055764.
Full textAranda, Jose M., Susana Briz, Antonio J. de Castro, Juan Melendez, and Fernando Lopez. "Spectral infrared characterization of forest fire scenarios." In Europto Remote Sensing, edited by Manfred Owe, Guido D'Urso, and Eugenio Zilioli. SPIE, 2001. http://dx.doi.org/10.1117/12.413931.
Full textDietrich, Daniel L., Justin Niehaus, Gary A. Ruff, David L. Urban, John Easton, and Fumiaki Takahashi. "Determination of Realistic Fire Scenarios in Spacecraft." In 43rd International Conference on Environmental Systems. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-3411.
Full textMurphy, Andrew, Ethan Zepper, Elizabeth Jones, Enrico Quintana, and Brent Houchens. "Minimally Invasive Instrumentation for Mock Fire Scenarios." In Proposed for presentation at the Western States Section of the Combustion Institute held March 21-22, 2021 in Palo Alto, CA. US DOE, 2022. http://dx.doi.org/10.2172/2002061.
Full textBrown, Alexander, Flint Pierce, and Ethan Zepper. "Entrainment from Contaminant Accident Scenarios Involving Fire." In Proposed for presentation at the Energy Facillities Contractors Group (EFCOG) Nuclear Facility Safety Workshop held February 16-25, 2021 in Online. US DOE, 2021. http://dx.doi.org/10.2172/1847627.
Full textReports on the topic "Fire scenarios"
Robbins, A. P., S. M. V. Gwynne, and E. D. Kuligowski. Proposed General Approach to fire-Safety Scenarios. National Institute of Standards and Technology, May 2012. http://dx.doi.org/10.6028/nist.tn.1743.
Full textC.E. Kessel and R.H. Bulmer. Poloidal Field Design and Plasma Scenarios for FIRE. Office of Scientific and Technical Information (OSTI), October 1999. http://dx.doi.org/10.2172/14389.
Full textC.E. Kessel, D. Ignat, and T.K. Mau. Advanced Tokamak Scenarios for the FIRE Burning Plasma Experiment. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/788449.
Full textOverholt, Kristopher J. Verification and validation of commonly used empirical correlations for fire scenarios. National Institute of Standards and Technology, March 2014. http://dx.doi.org/10.6028/nist.sp.1169.
Full textKerber, Steve. Impact of Ventilation on Fire Behavior in Legacy and Contemporary Residential Construction. UL Firefighter Safety Research Institute, December 2014. http://dx.doi.org/10.54206/102376/gieq2593.
Full textPaul, C., and J. F. Cassidy. Seismic hazard investigations at select DND facilities in Southwestern British Columbia: subduction, in-slab, and crustal scenarios. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331199.
Full textAalto, Juha, and Ari Venäläinen, eds. Climate change and forest management affect forest fire risk in Fennoscandia. Finnish Meteorological Institute, June 2021. http://dx.doi.org/10.35614/isbn.9789523361355.
Full textKerber, Stephen. Evaluation of the ability of fire dynamic simulator to simulate positive pressure ventilation in the laboratory and practical scenarios. Gaithersburg, MD: National Institute of Standards and Technology, 2006. http://dx.doi.org/10.6028/nist.ir.7315.
Full textMcKinnon, Mark, Craig Weinschenk, and Daniel Madrzykowski. Modeling Gas Burner Fires in Ranch and Colonial Style Structures. UL Firefighter Safety Research Institute, June 2020. http://dx.doi.org/10.54206/102376/mwje4818.
Full textRaj, Phani K. DTRS56-04-T-0005 Fires in an LNG Facility - Assessments, Models and Risk Evaluation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 2006. http://dx.doi.org/10.55274/r0011800.
Full text