Academic literature on the topic 'Finites elements method'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Finites elements method.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Finites elements method"

1

Lugo Jiménez, Abdul Abner, Guelvis Enrique Mata Díaz, and Bladismir Ruiz. "A comparative analysis of methods: mimetics, finite differences and finite elements for 1-dimensional stationary problems." Selecciones Matemáticas 8, no. 1 (June 30, 2021): 1–11. http://dx.doi.org/10.17268/sel.mat.2021.01.01.

Full text
Abstract:
Numerical methods are useful for solving differential equations that model physical problems, for example, heat transfer, fluid dynamics, wave propagation, among others; especially when these cannot be solved by means of exact analysis techniques, since such problems present complex geometries, boundary or initial conditions, or involve non-linear differential equations. Currently, the number of problems that are modeled with partial differential equations are diverse and these must be addressed numerically, so that the results obtained are more in line with reality. In this work, a comparison of the classical numerical methods such as: the finite difference method (FDM) and the finite element method (FEM), with a modern technique of discretization called the mimetic method (MIM), or mimetic finite difference method or compatible method, is approached. With this comparison we try to conclude about the efficiency, order of convergence of these methods. Our analysis is based on a model problem with a one-dimensional boundary value, that is, we will study convection-diffusion equations in a stationary regime, with different variations in the gradient, diffusive coefficient and convective velocity.
APA, Harvard, Vancouver, ISO, and other styles
2

Barros, M. L. C., A. G. Batista, M. J. S. Sena, A. L. Amarante Mesquita, and C. J. C. Blanco. "Application of a shallow water model to analyze environmental effects in the Amazon Estuary Region: a case study of the Guajará Bay (Pará – Brazil)." Water Practice and Technology 10, no. 4 (December 1, 2015): 846–59. http://dx.doi.org/10.2166/wpt.2015.104.

Full text
Abstract:
This study used hydrodynamic modeling to investigate the hydrodynamic circulation and pollutant transport of the Guajará Bay-PA. The hydrodynamic modeling was performed using the classical Saint-Venant model for shallow waters. The pollutant dispersion was described using a Lagrangian deterministic model that simulates advective–diffusive transport with kinetic reactions for two-dimensional flow. The finites elements method was used to solve the Saint-Venant and transport equations. The bathymetry data were obtained by combining the data from nautical charts provided by the Directorate of Hydrography and Navigation of the Brazilian Navy. The substrate grain size data for the determination of rugosity were obtained from literature. Data on the tides, the wind and the flowrate of the rivers that form the Guajará bay were used as the boundary conditions in the simulation of the hydrodynamic circulation and the pollutant dispersion scenarios. Flood and ebb tide patterns were simulated, which enabled the contaminant plumes of the Guajará Bay to be simulated. An analysis of the simulated fecal coliform plumes indicated that these pollutants that are produced in the metropolitan region of Belém flow towards the beaches in the North, especially those in the Icoaraci and Outeiro districts, affecting the bathing water quality.
APA, Harvard, Vancouver, ISO, and other styles
3

Bradji, Abdallah, and Jürgen Fuhrmann. "Some new error estimates for finite element methods for second order hyperbolic equations using the Newmark method." Mathematica Bohemica 139, no. 2 (2014): 125–36. http://dx.doi.org/10.21136/mb.2014.143843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kulkarni, Sachin M., and Dr K. G. Vishwananth. "Analysis for FRP Composite Beams Using Finite Element Method." Bonfring International Journal of Man Machine Interface 4, Special Issue (July 30, 2016): 192–95. http://dx.doi.org/10.9756/bijmmi.8181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ito, Yasuhisa, Hajime Igarashi, Kota Watanabe, Yosuke Iijima, and Kenji Kawano. "Non-conforming finite element method with tetrahedral elements." International Journal of Applied Electromagnetics and Mechanics 39, no. 1-4 (September 5, 2012): 739–45. http://dx.doi.org/10.3233/jae-2012-1537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yamada, T., and K. Tani. "Finite element time domain method using hexahedral elements." IEEE Transactions on Magnetics 33, no. 2 (March 1997): 1476–79. http://dx.doi.org/10.1109/20.582539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Romero, J. L., and Miguel A. Ortega. "Splines generalizados y solución nodal exacta en el método de elementos finites." Informes de la Construcción 51, no. 464 (December 30, 1999): 41–85. http://dx.doi.org/10.3989/ic.1999.v51.i464.872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Burman, Erik, and Peter Hansbo. "Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method." Applied Numerical Mathematics 62, no. 4 (April 2012): 328–41. http://dx.doi.org/10.1016/j.apnum.2011.01.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mikhaylovskiy, Denis, and Dmytro Matyuschenko. "Numerical researches of DGRP-type experimental frames using the finite elements method." Odes’kyi Politechnichnyi Universytet. Pratsi, no. 2 (August 20, 2016): 11–15. http://dx.doi.org/10.15276/opu.2.49.2016.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Matveev, Aleksandr. "Generating finite element method in constructing complex-shaped multigrid finite elements." EPJ Web of Conferences 221 (2019): 01029. http://dx.doi.org/10.1051/epjconf/201922101029.

Full text
Abstract:
The calculations of three-dimensional composite bodies based on the finite element method with allowance for their structure and complex shape come down to constructing high-dimension discrete models. The dimension of discrete models can be effectively reduced by means of multigrid finite elements (MgFE). This paper proposes a generating finite element method for constructing two types of three-dimensional complex-shaped composite MgFE, which can be briefly described as follows. An MgFE domain of the first type is obtained by rotating a specified complex-shaped plane generating single-grid finite element (FE) around a specified axis at a given angle, and an MgFE domain of the second type is obtained by the parallel displacement of a generating FE in a specified direction at a given distance. This method allows designing MgFE with one characteristic dimension significantly larger (smaller) than the other two. The MgFE of the first type are applied to calculate composite shells of revolution and complex-shaped rings, and the MgFE of the second type are used to calculate composite cylindrical shells, complex-shaped plates and beams. The proposed MgFE are advantageous because they account for the inhomogeneous structure and complex shape of bodies and generate low-dimension discrete models and solutions with a small error.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Finites elements method"

1

Starkloff, Hans-Jörg. "Stochastic finite element method with simple random elements." Universitätsbibliothek Chemnitz, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200800596.

Full text
Abstract:
We propose a variant of the stochastic finite element method, where the random elements occuring in the problem formulation are approximated by simple random elements, i.e. random elements with only a finite number of possible values.
APA, Harvard, Vancouver, ISO, and other styles
2

Kleditzsch, Stefan, and Birgit Awiszus. "Modeling of Cylindrical Flow Forming Processes with Numerical and Elementary Methods." Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-97124.

Full text
Abstract:
With flow forming – an incremental forming process – the final geometry of a component is achieved by a multitude of minor sequential forming steps. Due to this incremental characteristic associated with the variable application of the tools and kinematic shape forming, it is mainly suitable for small and medium quantities. For the extensive use of the process it is necessary to have appropriate simulation tools. While the Finite-Element-Analysis (FEA) is an acknowledged simulation tool for the modeling and optimization of forming technology, the use of FEA for the incremental forming processes is associated with very long computation times. For this reason a simulation method called FloSim, based on the upper bound method, was developed for cylindrical flow forming processes at the Chair of Virtual Production Engineering, which allows the simulation of the process within a few minutes. This method was improved by the work presented with the possibility of geometry computation during the process.
APA, Harvard, Vancouver, ISO, and other styles
3

Rabadi, Kairas. "PERFORMANCE OF INTERFACE ELEMENTS IN THE FINITE ELEMENT METHOD." Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2188.

Full text
Abstract:
The objective of this research is to assess the performance of interface elements in the finite element method. Interface elements are implemented in the finite element codes such as MSC.NASTRAN, which is used in this study. Interface elements in MSC.NASTRAN provide a tool to transition between a shell-meshed region to another shell-meshed region as well as from a shell-meshed region to a solid-meshed region. Often, in practice shell elements are layered on shell elements or on solid elements without the use of interface elements. This is potentially inaccurate arising in mismatched degrees of freedom. In the case of a shell-to-shell interface, we consider the case in which the two regions have mismatched nodes along the boundary. Interface elements are used to connect these mismatched nodes. The interface elements are especially useful in global/local analysis, where a region with a dense mesh interfaces to a region with a less dense mesh. Interface elements are used to help avoid using special transition elements between two meshed regions. This is desirable since the transition elements can be severely distorted and cause poor results. Accurate results are obtained in shell-shell and shell-solid combinations. The most interesting result is that not using interface elements can lead to severe inaccuracies. This difficulty is illustrated by computing the stress concentration of a sharp elliptical hole.
M.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
APA, Harvard, Vancouver, ISO, and other styles
4

Adams, Leila. "Finite element method using vector finite elements applied to eddy current problems." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/9992.

Full text
Abstract:
Vector fields found in electromagnetics are fundamentally different to vector fields found in other research areas such as structural mechanics. Electromagnetic vector fields possess different physical behaviour patterns and different properties in comparison to the other vector fields and therein lies the necessity of the development of a finite element which would be able to cater for these differences . The vector finite element was then developed and used within the finite element method specifically for the approximation of electromagnetic problems. This dissertation investigates the partial differential equation that governs eddy current behaviour. A finite element algorithm is coded and used to solve this partial differential equation and produce vector field simulations for fundamental eddy current problems.
APA, Harvard, Vancouver, ISO, and other styles
5

Dietzsch, Julian. "Implementierung gemischter Finite-Element-Formulierungen für polykonvexe Verzerrungsenergiefunktionen elastischer Kontinua." Master's thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-217381.

Full text
Abstract:
In der vorliegenden Arbeit wird ein gemischtes Element gegen Locking-Effekte untersucht. Dazu wird ein Fünf-Feld-Hu-Washizu-Funktional (CoFEM-Element) für lineare und quadratische Hexaeder-Elemente unter einer hyperelastischen, isotropen, polykonvexen sowie einer transversal-isotropen Materialformulierung implementiert. Die resultierenden nichtlinearen Gleichungen werden mithilfe eines Mehrebenen-NEWTON-RAPHSON-Verfahren unter Beachtung einer konsistenten Linearisierung gelöst. Als repräsentatives Beispiel der numerischen Untersuchungen dient der einseitig eingespannte Cook-Balken mit einer quadratischen Druckverteilung am Rand. Zur Beurteilung des CoFEM-Elements wird das räumliche Konvergenzverhalten für unterschiedliche Polynomgrade und für verschiedene Netze unter Beachtung der algorithmischen Effizienz untersucht
This paper presents a mixed finite element formulation of Hu-Washizu type (CoFEM) designed to reduce locking effects with respect to a linear and quadratic approximation in space. We consider a hyperelastic, isotropic, polyconvex material formulation as well as transverse isotropy. The resulting nonlinear algebraic equations are solved with a multilevel NEWTON-RAPHSON method. As a numerical example serves a cook-like cantilever beam with a quadratic distribution of in-plane load on the Neumann boundary. We analyze the spatial convergence with respect to the polynomial degree of the underlying Lagrange polynomials and with respect to the level of mesh refinement in terms of algorithmic efficiency
APA, Harvard, Vancouver, ISO, and other styles
6

Góis, Wesley. "Método dos elementos finitos generalizados em formulação variacional mista." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-14072006-112127/.

Full text
Abstract:
Este trabalho trata da combinação entre a formulação híbrida-mista de tensão (FHMT) (Freitas et al. (1996)), para a elasticidade plana, com o método dos elementos finitos generalizados (MEFG), Duarte et al. (2000). O MEFG se caracteriza como uma forma não-convencional do método dos elementos finitos (MEF) que resulta da incorporação a este de conceitos e técnicas dos métodos sem malha, como o enriquecimento nodal proposto do método das nuvens “hp”. Como na FHMT são aproximados dois campos no domínio (tensão e deslocamento) e um no contorno (deslocamento), diferentes possibilidades de enriquecimento nodal são exploradas. Para a discretização do modelo híbrido-misto empregam-se elementos finitos quadrilaterais com funções de forma bilineares para o domínio e elementos lineares para o contorno. Essas funções são enriquecidas por funções polinomiais, trigonométricas, polinômios que proporcionam distribuição de tensões auto-equilibradas ou mesmo funções especiais relacionadas às soluções dos problemas de fratura. Uma extensão do teste numérico abordado em Zienkiewicz et al. (1986) é proposta como investigação inicial das condições necessárias para garantia de estabilidade da resposta numérica. O estudo da estabilidade é completado com a análise da condição de Babuška-Brezzi (inf-sup). Esta condição é aplicada nos elementos finitos quadrilaterais híbridos-mistos enriquecidos por meio de um teste numérico, denominado de inf-sup teste, desenvolvido com base no trabalho de Chapelle e Bathe (1993). Exemplos numéricos revelam que a FHMT é uma interessante alternativa para obtenção de boas estimativas para os campos de tensões e deslocamentos, usando-se enriquecimento sobre alguns nós de malhas pouco refinadas
This work presents a combination of hybrid-mixed stress model formulation (HMSMF) (Freitas et al. (1996)), to treat plane elasticity problems, with generalized finite element method (GFEM), (Duarte et al. (2000)). GFEM is characterized as a nonconventional formulation of the finite element method (FEM). GFEM is the result of the incorporation of concepts and techniques from meshless methods. One example of these techniques is the nodal enrichment that was formulated in the “hp” clouds method. Since two fields in domain (stress and displacement) and one in boundary (displacement) are approximated in the HMSMF, different possibilities of nodal enrichment are tested. For the discretization of the hybrid-mixed model quadrilateral finite elements with bilinear shape functions for the domain and linear elements for the boundary were employed. These functions are enriched with polynomial functions, trigonometric functions, polynomials that generate self-equilibrated stress distribution, or, even special functions connected with solutions of fracture problems. An extension of the numerical test cited in Zienkiewicz et al. (1986) is proposed as initial investigation of necessary conditions to assure the stability of the numerical answer. The stability study is completed with the analysis of the Babuška-Brezzi (inf-sup) condition. This last condition is applied to hybrid-mixed enrichment quadrilaterals finite elements by means of a numerical test, denominated inf-sup test, which was developed based on paper of Chapelle and Bathe (1993). Numerical examples reveal that HMSMF is an interesting alternative to obtain good estimates of the stress and displacement fields, using enrichment over some nodes of poor meshes
APA, Harvard, Vancouver, ISO, and other styles
7

Tseng, Gordon Bae-Ji. "Investigation of tetrahedron elements using automatic meshing in finite element analysis /." Online version of thesis, 1992. http://hdl.handle.net/1850/10699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Neto, Dorival Piedade. "Sobre estratégias de resolução numérica de problemas de contato." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-14072009-165646/.

Full text
Abstract:
Os problemas de contato representam uma classe de problemas da mecânica dos sólidos para a qual a não-linearidade é introduzida pela alteração das condições de contorno, as quais só podem ser determinadas no decorrer do processo de resolução. O presente trabalho trata dos problemas de contato abordando aspectos de sua formulação e implementação numérica. Apresentam-se, em particular, as formulações de dois diferentes tipos de elemento de contato revendo-se, mais detalhadamente, o tratamento numérico das restrições decorrentes de contato. Algumas estratégias para resolução computacional desta classe de problemas, consistindo em técnicas de otimização, foram implementadas num programa computacional de elementos finitos e avaliadas comparativamente por meio de exemplos numéricos com diferentes graus de complexidade.
Contact problems represent a class of solid mechanics problems for which the nonlinear behavior is caused by the change of the boundary conditions during the solution process. The present work treats contact problems observing aspects of its formulation and numerical implementation. Specifically, the formulation for two different contact elements is presented, analyzing, in details, the numerical formulation that results from the contact. Some strategies for the computational solution of this class of problems, given by optimization techniques, were implemented in a finite element computational program and were compared and evaluated by numerical examples with different levels of complexity.
APA, Harvard, Vancouver, ISO, and other styles
9

Fernandes, Daniel Thomas. "Métodos de Elementos Finitos e Diferenças Finitas para o Problema de Helmholtz." Laboratório Nacional de Computação Científica, 2009. http://www.lncc.br/tdmc/tde_busca/arquivo.php?codArquivo=167.

Full text
Abstract:
É bem sabido que métodos clássicos de elementos finitos e diferenças finitas para o problema de Helmholtz apresentam efeito de poluição, que pode deteriorar seriamente a qualidade da solução aproximada. Controlar o efeito de poluição é especialmente difícil quando são utilizadas malhas não uniformes. Para malhas uniformes com elementos quadrados são conhecidos métodos (p. e. o QSFEM, proposto por Babuska et al) que minimizam a poluição. Neste trabalho apresentamos inicialmente dois métodos de elementos finitos de Petrov-Galerkin com formulação relativamente simples, o RPPG e o QSPG, ambos com razoável robustez para certos tipos de distorções dos elementos. O QSPG apresenta ainda poluição mínima para elementos quadrados. Em seguida é formulado o QOFD, um método de diferenças finitas aplicável a malhas não estruturadas. O QOFD apresenta grande robustez em relação a distorções, mas requer trabalho extra para tratar problemas não homogêneos ou condições de contorno não essenciais. Finalmente é apresentado um novo método de elementos finitos de Petrov-Galerkin, o QOPG, que é formulado aplicando a mesma técnica usada para obter a estabilização do QOFD, obtendo assim a mesma robustez em relação a distorções da malha, com a vantagem de ser um método variacionalmente consistente. Resultados numéricos são apresentados ilustrando o comportamento de todos os métodos desenvolvidos em comparação com os métodos de Galerkin, GLS e QSFEM.
It is well known that classical finite elements or finite difference methods for Helmholtz problem present pollution effects that can severely deteriorate the quality of the approximate solution. To control pollution effects is especially difficult on non uniform meshes. For uniform meshes of square elements pollution effects can be minimized with the Quasi Stabilized Finite Element Method (QSFEM) proposed by Babusv ska el al, for example. In the present work we initially present two relatively simple Petrov-Galerkin finite element methods, referred here as RPPG (Reduced Pollution Petrov-Galerkin) and QSPG (Quasi Stabilized Petrov-Galerkin), with reasonable robustness to some type of mesh distortion. The QSPG also shows minimal pollution, identical to QSFEM, for uniform meshes with square elements. Next we formulate the QOFD (Quasi Stabilized Finite Difference) method, a finite difference method for unstructured meshes. The QOFD shows great robustness relative to element distortion, but requires extra work to consider non-essential boundary conditions and source terms. Finally we present a Quasi Optimal Petrov-Galerkin (QOPG) finite element method. To formulate the QOPG we use the same approach introduced for the QOFD, leading to the same accuracy and robustness on distorted meshes, but constructed based on consistent variational formulation. Numerical results are presented illustrating the behavior of all methods developed compared to Galerkin, GLS and QSFEM.
APA, Harvard, Vancouver, ISO, and other styles
10

Cardoso, Jose Roberto. "Problemas de campos eletromagnéticos estáticos e dinâmicos; Uma abordagem pelo método dos elementos finitos." Universidade de São Paulo, 1986. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-11072017-082059/.

Full text
Abstract:
A ideia de realizar este trabalho surgiu durante do curso de pós-graduação, ministrado pelo Prof. M. Drigas, \"Tópicos especiais sobre máquinas elétricas\", realizado no 2º semestre de 1980 na EPUSP, onde foi observada a necessidade do conhecimento das distribuições de campos magnéticos em dispositivos eletromecânicos com o objetivo de se prever seu desempenho na fase de projeto. Nesta época, já havia sido apresentada a tese do Prof. Janiszewski, o primeiro trabalho, de nosso conhecimento realizado no Brasil nesta área, onde foi desenvolvida a técnica de resolução de problemas de Campos Magnéticos em Regime Estacionário, que, evidentemente, não pode ser aplicada na resolução de problemas onde a variável tempo está envolvida; baseado neste tese, em 1982 o Prof. Luiz Lebensztajn, reproduziu o trabalho do Dr. Janiszewski o qual foi aplicado para verificar a consistência dos resultados práticos na tese de Livre Docência do Prof.. Dr. Aurio Gilberto Falcone. As formulações mais frequentes do Método dos Elementos Finitos (MEF), publicada nos periódicos internacionais, são baseadas no Cálculo Variacional, onde o sistema de equações algébricas não linear resultante, é derivado a partir da obtenção do extremo de uma funcional que em algumas situações não pode ser obtida, limitando assim sua aplicação. Em decorrência deste fato, o primeiro objetivo deste trabalho foi organizar os procedimentos para obtenção do sistema de equações de MEF aplicado à resolução de problemas de campo descritos por equações diferenciais não lineares, sem a necessidade. Algumas contribuições interessantes são encontradas no Capítulo II, referente à formulação do MEF para problemas de campo descrito por operadores diferenciais não auto-adjuntos.No Capítulo III são apresentadas as técnicas de montagem das matrizes, bem como aquelas de introdução das condições de contorno, originárias deste método, que muito embora sejam técnicas de aplicação corriqueiras, ajudarão em muito o pesquisador iniciante nesta área, sem a necessidade de recorrer a outro texto. No Capítulo VI são apresentadas as formulações necessárias para a solução de problemas de campos eletromagnéticos estáticos, para elementos de quatro lados retos (e curvos) assim como a técnica utilizada na obtenção da relutividade em meios não lineares. No Capítulo V são tratados os problemas de campo, onde a variável tempo está envolvida, permitindo assim a resolução de uma série enorme de problemas referentes aos campos de natureza eletromagnética, tais como os fenômenos transitórios e o Regime Permanente Senoidal. Os aspectos computacionais ligados ao trabalho estão expostos no Capítulo VI, onde são apresentadas as rotinas de resolução do sistema de equações resultante adaptadas às particularidades do problema, e as rotinas de integração numérica de problemas descrito por equações diferenciais dependentes do tempo de primeira e segunda ordem. Algumas técnicas apresentadas nestes Capítulos, são aplicadas espe3cificamente para a obtenção da distribuição de campo magnético no Capitulo VII deste trabalho, com o objetivo de analisar o desempenho de um transformador em regime transitório, onde é confirmada a consistência do método.
The idea of making this work came during a graduation course, \" Special topics on electric machines\", lectured by Prof. Dr. M. Drigas during the 2nd semester of 1980 at EPUSP, when the need of knowing the distribution of magnetic fields in electromechanics devices was notices, in order to foresse its performance during design. At that time, the first work about this subject realized made in Brazil was presented in prof. Janiszewski\'s thesis, where a technique was developed to solve Steady-State Magnetic Fields. However, it is clear that when the time variable is considered, this technique cannot be applied. The usual formulations of the Finite Element Method, published in international journals, was based on Variational Calculations, where the resulting non-linear algebraic equations system is derived from the extreme of a functional, which sometimes cannot be obtained, limiting in this way its application. Consequently, the first aim of this work is to organize procedures to obtain the Finite Method equations system, in order solve non-linear differential equations of fields, without the need of a previous functional for the problem. In Chapter II, one will find some interesting contributions referred to the Finite Element Method formulation, in the description of field problems by the use of non self-adjacent differentials operations.Matrix building techniques are presented in Chapter III, as well as the introduction of boundary conditions in this method. In spite of being an ordinary technique, it will help the beginners a lot, eliminating the need of other sources. Chapter IV presents the necessary formulations, which solve static electromagnetic fields for elements of four square (and curved) sides, and the technique used in the determination of non-linear media reluctivity. In Chapter V, the time variable of electromagnetic fields is treated, making possible the solution of problems of this nature, such as transient phenomena and sinusoidal steady-state. Computer aspects of the work are shown in Chapter VI, presenting resolution routines of the equation system fitted to the problem, and numeric integration routines described by first and second order differential equations, which depend on the time. Some techniques showed in those previous Chapters are specifically used in Chapter VII to obtain the magnetic field distribution, which analyses transformer performance during transients. The coherence of the method is also confirmed.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Finites elements method"

1

1943-, Brauer John R., ed. What every engineer should know about finite element analysis. New York: M. Dekker, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

L, Logan Daryl, ed. A first course in the finite element method. 3rd ed. Pacific Grove, CA: Brooks/Cole, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Logan, Daryl L. A first course in the finite element method. 2nd ed. Boston: PWS-Kent Pub. Co, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

A first course in the finite element method. Boston: PWS Engineering, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie. 5th ed. Berlin: Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

N, Rossettos John, ed. Finite-element method: Basic technique and implementation. Mineola, N.Y: Dover Publications, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

R, Whiteman J., and Conference on the Mathematics of Finite Elements and Applications (8th : 1993 : Brunel University), eds. The Mathematics of finite elements and applications: Highlights 1993. Chichester: Wiley, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wriggers, P. Nonlinear finite element methods. Berlin: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lyu, Yongtao. Finite Element Method. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dhatt, Gouri, Gilbert Touzot, and Emmanuel Lefrançois. Finite Element Method. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118569764.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Finites elements method"

1

Lyu, Yongtao. "Finite Element Analysis Using 3D Elements." In Finite Element Method, 159–69. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Henwood, David, and Javier Bonet. "Towards a systematic method." In Finite Elements, 37–50. London: Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-13898-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bathe, Klaus-Jürgen. "The finite element method with “overlapping finite elements”." In Insights and Innovations in Structural Engineering, Mechanics and Computation, 2–7. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ern, Alexandre, and Jean-Luc Guermond. "Projection methods." In Finite Elements III, 255–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57348-5_74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Otsuru, Toru, Takeshi Okuzono, Noriko Okamoto, and Yusuke Naka. "Finite Element Method." In Computational Simulation in Architectural and Environmental Acoustics, 53–78. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54454-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuna, Meinhard. "Finite Element Method." In Solid Mechanics and Its Applications, 153–92. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6680-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tekkaya, A. Erman, and Celal Soyarslan. "Finite Element Method." In CIRP Encyclopedia of Production Engineering, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35950-7_16699-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Öchsner, Andreas. "Finite Element Method." In A Project-Based Introduction to Computational Statics, 95–238. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58771-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Koshiba, Masanori. "Finite Element Method." In Optical Waveguide Theory by the Finite Element Method, 1–51. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1634-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chaskalovic, Joël. "Finite-Element Method." In Mathematical and Numerical Methods for Partial Differential Equations, 63–109. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03563-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Finites elements method"

1

Addessi, D., P. Di Re, C. Gatta, and E. Sacco. "Multiscale finite element modeling linking shell elements to 3D continuum." In 8th European Congress on Computational Methods in Applied Sciences and Engineering. CIMNE, 2022. http://dx.doi.org/10.23967/eccomas.2022.190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mirotznik, Mark S., Dennis W. Prather, and Joseph N. Mait. "Hybrid finite element-boundary element method for vector modeling diffractive optical elements." In Photonics West '96, edited by Ivan Cindrich and Sing H. Lee. SPIE, 1996. http://dx.doi.org/10.1117/12.239620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Favier, J. F., and M. Kremmer. "Modeling a Particle Metering Device Using the Finite Wall Method." In Third International Conference on Discrete Element Methods. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shen, J. "A study of characteristic element length for higher-order finite elements." In Aerospace Science and Engineering. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902677-33.

Full text
Abstract:
Abstract. The utilization of a fracture energy regularization technique, based on the crack band model, can effectively resolve the issue of mesh-size dependency in the finite element modelling of quasi-brittle structures. However, achieving accurate results requires proper estimation of the characteristic element length in the finite element method. This study presents practical calculation methods for the characteristic element length, particularly for higher-order finite elements based on the Carrera Unified Formulation (CUF). Additionally, a modified Mazars damage model that incorporates fracture energy regularization is employed for damage analysis in quasi-brittle materials. An experimental benchmark is adopted then for validation, and the result shows that the proposed methods ensure accurate regularization of fracture energy and provide mesh-independent structural behaviors.
APA, Harvard, Vancouver, ISO, and other styles
5

Komodromos, Petros I., and John R. Williams. "On the Simulation of Deformable Bodies Using Combined Discrete and Finite Element Methods." In Third International Conference on Discrete Element Methods. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Salami, M. Reza, and Farshad Amini. "Numerical Model for the Implementation of Discontinuous Deformation Analysis in Finite Element Mesh." In Third International Conference on Discrete Element Methods. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Owen, D. R. J., Y. T. Feng, M. G. Cottrel, and J. Yu. "Discrete / Finite Element Modelling of Industrial Applications with Multi-Fracturing and Particulate Phenomena." In Third International Conference on Discrete Element Methods. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prather, Dennis W., Mark S. Mirotznik, and Joseph N. Mait. "Design of subwavelength diffractive optical elements using a hybrid finite element-boundary element method." In Photonics West '96, edited by Ivan Cindrich and Sing H. Lee. SPIE, 1996. http://dx.doi.org/10.1117/12.239612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, X. S., R. W. Lewis, D. T. Gethin, R. S. Ransing, and R. C. Rowe. "Discrete-Finite Element Modelling of Pharmaceutical Powder Compaction: A Two-Stage Contact Detection Algorithm for Non-Spherical Particles." In Third International Conference on Discrete Element Methods. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manic, Ana B., Branislav M. Notaros, and Milan M. Ilic. "Symmetric coupling of finite element method and method of moments using higher order elements." In 2012 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2012. http://dx.doi.org/10.1109/aps.2012.6348569.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Finites elements method"

1

Jiang, W., and Benjamin W. Spencer. Modeling 3D PCMI using the Extended Finite Element Method with higher order elements. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1409274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Babuska, I., and H. C. Elman. Performance of the h-p Version of the Finite Element Method with Various Elements. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada250689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Costa, Timothy, Stephen D. Bond, David John Littlewood, and Stan Gerald Moore. Peridynamic Multiscale Finite Element Methods. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1227915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dohrmann, C. R., M. W. Heinstein, J. Jung, and S. W. Key. A Family of Uniform Strain Tetrahedral Elements and a Method for Connecting Dissimilar Finite Element Meshes. Office of Scientific and Technical Information (OSTI), January 1999. http://dx.doi.org/10.2172/2637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Babuska, Ivo, Uday Banerjee, and John E. Osborn. Superconvergence in the Generalized Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada440610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Coyle, J. M., and J. E. Flaherty. Adaptive Finite Element Method II: Error Estimation. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada288358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Babuska, I., and J. M. Melenk. The Partition of Unity Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, June 1995. http://dx.doi.org/10.21236/ada301760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zheng, Jinhui, Matteo Ciantia, and Jonathan Knappett. On the efficiency of coupled discrete-continuum modelling analyses of cemented materials. University of Dundee, December 2021. http://dx.doi.org/10.20933/100001236.

Full text
Abstract:
Computational load of discrete element modelling (DEM) simulations is known to increase with the number of particles. To improve the computational efficiency hybrid methods using continuous elements in the far-field, have been developed to decrease the number of discrete particles required for the model. In the present work, the performance of using such coupling methods is investigated. In particular, the coupled wall method, known as the “wall-zone” method when coupling DEM and the continuum Finite Differences Method (FDM) using the Itasca commercial codes PFC and FLAC respectively, is here analysed. To determine the accuracy and the efficiency of such a coupling approach, 3-point bending tests of cemented materials are simulated numerically. To validate the coupling accuracy first the elastic response of the beam is considered. The advantage of employing such a coupling method is then investigated by loading the beam until failure. Finally, comparing the results between DEM, DEM-FDM coupled and FDM models, the advantages and disadvantages of each method are outlined.
APA, Harvard, Vancouver, ISO, and other styles
9

Duarte, Carlos A. A Generalized Finite Element Method for Multiscale Simulations. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada577139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manzini, Gianmarco, and Vitaliy Gyrya. Final Report of the Project "From the finite element method to the virtual element method". Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1415356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography