To see the other types of publications on this topic, follow the link: Finite.

Journal articles on the topic 'Finite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Finite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sesboüé, André. "Finite monogenic distributive systems." Czechoslovak Mathematical Journal 46, no. 4 (1996): 697–719. http://dx.doi.org/10.21136/cmj.1996.127328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kurdachenko, L. A., and I. Ya Subbotin. "Ideally finite Leibniz algebras." Algebra and Discrete Mathematics 35, no. 2 (2023): 168–79. http://dx.doi.org/10.12958/adm2139.

Full text
Abstract:
The aim of this paper is to consider Leibniz algebras, whose principal ideals are finite dimensional. We prove that the derived ideal of L has finite dimension if every principal ideal of a Leibniz algebra L has dimension at most b, where b is a fixed positive integer.
APA, Harvard, Vancouver, ISO, and other styles
3

Czédli, Gábor. "Cyclic congruences of slim semimodular lattices and non-finite axiomatizability of some finite structures." Archivum Mathematicum, no. 1 (2022): 15–33. http://dx.doi.org/10.5817/am2022-1-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Di Nezza, Eleonora, Vincent Guedj, and Chinh H. Lu. "Finite entropy vs finite energy." Commentarii Mathematici Helvetici 96, no. 2 (June 23, 2021): 389–419. http://dx.doi.org/10.4171/cmh/515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Evans, David M. "Finite covers with finite kernels." Annals of Pure and Applied Logic 88, no. 2-3 (November 1997): 109–47. http://dx.doi.org/10.1016/s0168-0072(97)00018-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kearnes, Keith A., and Emil W. Kiss. "Finite algebras of finite complexity." Discrete Mathematics 207, no. 1-3 (September 1999): 89–135. http://dx.doi.org/10.1016/s0012-365x(99)00042-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Azumaya, Goro. "Finite splitness and finite projectivity." Journal of Algebra 106, no. 1 (March 1987): 114–34. http://dx.doi.org/10.1016/0021-8693(87)90024-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rosset, Shmuel. "Finite index and finite codimension." Journal of Pure and Applied Algebra 104, no. 1 (October 1995): 97–107. http://dx.doi.org/10.1016/0022-4049(94)00120-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Adam, David. "Finite differences in finite characteristic." Journal of Algebra 296, no. 1 (February 2006): 285–300. http://dx.doi.org/10.1016/j.jalgebra.2005.05.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Křížková, Jitka. "Special exact curved finite elements." Applications of Mathematics 36, no. 2 (1991): 81–95. http://dx.doi.org/10.21136/am.1991.104447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zámožík, Jozef, and Mária Mišútová. "Finite nondense point set analysis." Applications of Mathematics 38, no. 3 (1993): 161–68. http://dx.doi.org/10.21136/am.1993.104544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tůma, Jiří. "Some finite congruence lattices, I." Czechoslovak Mathematical Journal 36, no. 2 (1986): 298–330. http://dx.doi.org/10.21136/cmj.1986.102093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chajda, Ivan. "Semilattices of finite arithmetical algebras." Czechoslovak Mathematical Journal 45, no. 4 (1995): 659–62. http://dx.doi.org/10.21136/cmj.1995.128561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zelinka, Bohdan. "Atomary tolerances on finite algebras." Mathematica Bohemica 121, no. 1 (1996): 35–39. http://dx.doi.org/10.21136/mb.1996.125948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Heinrich, Harald, and Werner Metz. "Forced finite-time barotropic instability." Meteorologische Zeitschrift 15, no. 4 (August 23, 2006): 451–61. http://dx.doi.org/10.1127/0941-2948/2006/0140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Moncrieff, D., and S. Wilson. "Finite basis set versus finite difference and finite element methods." Chemical Physics Letters 209, no. 4 (July 1993): 423–26. http://dx.doi.org/10.1016/0009-2614(93)80041-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Reid, J. D. "On Finite Groups and Finite Fields." American Mathematical Monthly 98, no. 6 (June 1991): 549. http://dx.doi.org/10.2307/2324878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zine Dine, Khadija, Naceur Achtaich, and Mohamed Chagdali. "Mixed finite element-finite volume methods." Bulletin of the Belgian Mathematical Society - Simon Stevin 17, no. 3 (August 2010): 385–410. http://dx.doi.org/10.36045/bbms/1284570729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Cull, Paul. "Table-automata/ finite co-finite languages." ACM SIGACT News 30, no. 1 (March 1999): 41. http://dx.doi.org/10.1145/309739.309745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Takaki, Osamu. "Finite presentability of strongly finite dilators." RAIRO - Theoretical Informatics and Applications 34, no. 6 (November 2000): 425–31. http://dx.doi.org/10.1051/ita:2000125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

WILSON, JOHN S. "FINITE AXIOMATIZATION OF FINITE SOLUBLE GROUPS." Journal of the London Mathematical Society 74, no. 03 (December 2006): 566–82. http://dx.doi.org/10.1112/s0024610706023106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Thomée, Vidar. "From finite differences to finite elements." Journal of Computational and Applied Mathematics 128, no. 1-2 (March 2001): 1–54. http://dx.doi.org/10.1016/s0377-0427(00)00507-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lubotzky, Alexander, and Avinoam Mann. "Residually finite groups of finite rank." Mathematical Proceedings of the Cambridge Philosophical Society 106, no. 3 (November 1989): 385–88. http://dx.doi.org/10.1017/s0305004100068110.

Full text
Abstract:
The recent constructions, by Rips and Olshanskii, of infinite groups with all proper subgroups of prime order, and similar ‘monsters’, show that even under the imposition of apparently very strong finiteness conditions, the structure of infinite groups can be rather weird. Thus it seems reasonable to impose the type of condition that enables us to apply the theory of finite groups. Two such conditions are local finiteness and residual finiteness, and here we are interested in the latter. Specifically, we consider residually finite groups of finite rank, where a group is said to have rank r, if all finitely generated subgroups of it can be generated by r elements. Recall that a group is said to be virtually of some property, if it has a subgroup of finite index with this property. We prove the following result:Theorem 1. A residually finite group of finite rank is virtually locally soluble.
APA, Harvard, Vancouver, ISO, and other styles
24

Kobus, Jacek. "Finite-difference versus finite-element methods." Chemical Physics Letters 202, no. 1-2 (1993): 7–12. http://dx.doi.org/10.1016/0009-2614(93)85342-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Reid, J. D. "On Finite Groups and Finite Fields." American Mathematical Monthly 98, no. 6 (June 1991): 549–51. http://dx.doi.org/10.1080/00029890.1991.11995756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hamhalter, Jan, Ondřej F. K. Kalenda, and Antonio M. Peralta. "Finite tripotents and finite JBW⁎-triples." Journal of Mathematical Analysis and Applications 490, no. 1 (October 2020): 124217. http://dx.doi.org/10.1016/j.jmaa.2020.124217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Monson, B., and Egon Schulte. "Finite polytopes have finite regular covers." Journal of Algebraic Combinatorics 40, no. 1 (October 5, 2013): 75–82. http://dx.doi.org/10.1007/s10801-013-0479-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Chi, Heng, Cameron Talischi, Oscar Lopez-Pamies, and Glaucio H.Paulino. "Polygonal finite elements for finite elasticity." International Journal for Numerical Methods in Engineering 101, no. 4 (November 11, 2014): 305–28. http://dx.doi.org/10.1002/nme.4802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Kelei, and Juncheng Wei. "Finite Morse Index Implies Finite Ends." Communications on Pure and Applied Mathematics 72, no. 5 (January 23, 2019): 1044–119. http://dx.doi.org/10.1002/cpa.21812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Alexandru, Andrei, and Gabriel Ciobanu. "Finite Sets—What Kind of Finite?" Symmetry 16, no. 6 (June 19, 2024): 770. http://dx.doi.org/10.3390/sym16060770.

Full text
Abstract:
In mathematics, philosophy, cosmology, and theology, the notion of infinity has generated ample debate. Much less discussion has been generated by the notion of finiteness. However, when we consider finitely supported sets, the notion of finiteness becomes more interesting and richer. We present several independent definitions of finite sets within the framework of finitely supported structures, emphasizing the differences between these definitions.
APA, Harvard, Vancouver, ISO, and other styles
31

Banakh, Iryna, Taras Banakh, and Serhii Bardyla. "A Semigroup Is Finite Iff It Is Chain-Finite and Antichain-Finite." Axioms 10, no. 1 (January 16, 2021): 9. http://dx.doi.org/10.3390/axioms10010009.

Full text
Abstract:
A subset A of a semigroup S is called a chain (antichain) if ab∈{a,b} (ab∉{a,b}) for any (distinct) elements a,b∈A. A semigroup S is called periodic if for every element x∈S there exists n∈N such that xn is an idempotent. A semigroup S is called (anti)chain-finite if S contains no infinite (anti)chains. We prove that each antichain-finite semigroup S is periodic and for every idempotent e of S the set e∞={x∈S:∃n∈N(xn=e)} is finite. This property of antichain-finite semigroups is used to prove that a semigroup is finite if and only if it is chain-finite and antichain-finite. Furthermore, we present an example of an antichain-finite semilattice that is not a union of finitely many chains.
APA, Harvard, Vancouver, ISO, and other styles
32

Taghipour, Aliakbar, Jamshid Parvizian, Stephan Heinze, and Alexander Düster. "p-version finite elements and finite cells for finite strain elastoplastic problems." PAMM 16, no. 1 (October 2016): 243–44. http://dx.doi.org/10.1002/pamm.201610110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Klouček, Petr, and Josef Málek. "Transonic flow calculation via finite elements." Applications of Mathematics 33, no. 4 (1988): 296–321. http://dx.doi.org/10.21136/am.1988.104311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Gould, Matthew, Joseph A. Iskra, and Péter Pál Pálfy. "Embedding in globals of finite semilattices." Czechoslovak Mathematical Journal 36, no. 1 (1986): 87–92. http://dx.doi.org/10.21136/cmj.1986.102069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Navara, Mirko. "State space properties of finite logics." Czechoslovak Mathematical Journal 37, no. 2 (1987): 188–96. http://dx.doi.org/10.21136/cmj.1987.102148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zelinka, Bohdan. "Spanning trees of locally finite graphs." Czechoslovak Mathematical Journal 39, no. 2 (1989): 193–97. http://dx.doi.org/10.21136/cmj.1989.102294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

A. Jund, Asaad, and Haval M. Mohammed Salih. "Result Involution Graphs of Finite Groups." Journal of Zankoy Sulaimani - Part A 23, no. 1 (June 20, 2021): 113–18. http://dx.doi.org/10.17656/jzs.10846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Afanas'eva, E. S. "Finite mean oscillation on Finsler manifolds." Reports of the National Academy of Sciences of Ukraine, no. 3 (March 27, 2017): 14–17. http://dx.doi.org/10.15407/dopovidi2017.03.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang, Jinshan, Zhencai Shen, and Jiangtao Shi. "Finite groups with few vanishing elements." Glasnik Matematicki 49, no. 1 (June 8, 2014): 83–103. http://dx.doi.org/10.3336/gm.49.1.07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Djordjević, Marko. "Finite variable logic, stability and finite models." Journal of Symbolic Logic 66, no. 2 (June 2001): 837–58. http://dx.doi.org/10.2307/2695048.

Full text
Abstract:
We will study complete Ln-theories and their models, where Ln is the set of first order formulas in which at most n distinct variables occur. Here, by a complete Ln-theory we mean a theory such that for every Ln-sentence, it or its negation is implied by the theory. Hence, a complete Ln-theory need not necessarily be complete in the usual sense. Our approach is to transfer concepts and methods from stability theory, such as the order property and counting types, to the context of Ln-theories. So, in one sense, we will develop some rudimentary stability theory for a particular class of (possibly) incomplete theories. To make the ‘stability theoretic’ arguments work, we need to assume that models of the complete Ln-theory T which we consider can be amalgamated in certain ways. If this condition is satisfied and T has infinite models then there will exist models of T which are sufficiently saturated with respect to Ln. This allows us to use some counting types arguments from stability theory. If, moreover, we impose some finiteness conditions on the number of Ln-types and the length of Ln-definable orders then a sufficiently saturated model of T will be ω-categorical and ω-stable. Using the theory of ω-categorical and ω-stable structures we derive that T has arbitrarily large finite models.A different approach to combining stability theory with finite model theory is made by Hyttinen in [9] and [10].
APA, Harvard, Vancouver, ISO, and other styles
41

Jabłoński, Dariusz. "FINITE SEQUENCES OF SUBSHIFTS OF FINITE TYPE." Demonstratio Mathematica 38, no. 4 (October 1, 2005): 965–76. http://dx.doi.org/10.1515/dema-2005-0422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Aguzzoli, Stefano, Stefania Boffa, Davide Ciucci, and Brunella Gerla. "Finite IUML-algebras, Finite Forests and Orthopairs." Fundamenta Informaticae 163, no. 2 (November 3, 2018): 139–63. http://dx.doi.org/10.3233/fi-2018-1735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Agibalov, G. P. "CRYPTANALYTICAL FINITE AUTOMATON INVERTIBILITY WITH FINITE DELAY." Prikladnaya Diskretnaya Matematika, no. 46 (2019): 27–37. http://dx.doi.org/10.17223/20710410/46/3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Cotfas, Nicolae, and Daniela Dragoman. "Finite oscillator obtained through finite frame quantization." Journal of Physics A: Mathematical and Theoretical 46, no. 35 (August 8, 2013): 355301. http://dx.doi.org/10.1088/1751-8113/46/35/355301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lu, Ruqian, and Hong Zheng. "Finite State and Finite Stop Quantum Languages." International Journal of Theoretical Physics 44, no. 9 (September 2005): 1495–530. http://dx.doi.org/10.1007/s10773-005-4781-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Drupieski, Christopher M. "Cohomological finite-generation for finite supergroup schemes." Advances in Mathematics 288 (January 2016): 1360–432. http://dx.doi.org/10.1016/j.aim.2015.11.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bergander, H. "Finite plastic constitutive laws for finite deformations." Acta Mechanica 109, no. 1-4 (March 1995): 79–99. http://dx.doi.org/10.1007/bf01176818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Cairns, J. "Allocating finite resources on a finite planet." Ethics in Science and Environmental Politics 4 (May 7, 2004): 25–27. http://dx.doi.org/10.3354/esep004025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Buchweitz, Ragnar-Olaf, Edward L. Green, Dag Madsen, and Øyvind Solberg. "Finite Hochschild cohomology without finite global dimension." Mathematical Research Letters 12, no. 6 (2005): 805–16. http://dx.doi.org/10.4310/mrl.2005.v12.n6.a2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Borovik, Alexandre, and Ulla Karhumäki. "Locally finite groups of finite centralizer dimension." Journal of Group Theory 22, no. 4 (July 1, 2019): 729–40. http://dx.doi.org/10.1515/jgth-2018-0109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography