Academic literature on the topic 'Finite-time thermodynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Finite-time thermodynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Finite-time thermodynamics"

1

Andresen, Bjarne. "Finite-time thermodynamics and thermodynamic length." Revue Générale de Thermique 35, no. 418-419 (November 1996): 647–50. http://dx.doi.org/10.1016/s0035-3159(96)80060-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tsirlin, Anatoly, and Larisa Gagarina. "Finite-Time Thermodynamics in Economics." Entropy 22, no. 8 (August 13, 2020): 891. http://dx.doi.org/10.3390/e22080891.

Full text
Abstract:
In this paper, we consider optimal trading processes in economic systems. The analysis is based on accounting for irreversibility factors using the wealth function concept. The existence of the welfare function is proved, the concept of capital dissipation is introduced as a measure of the irreversibility of processes in the microeconomic system, and the economic balances are recorded, including capital dissipation. Problems in the form of kinetic equations leading to given conditions of minimal dissipation are considered.
APA, Harvard, Vancouver, ISO, and other styles
3

Tsirlin, Anatoly M., Michail A. Sofiev, and Vladimir Kazakov. "Finite-time thermodynamics. Active potentiostatting." Journal of Physics D: Applied Physics 31, no. 18 (September 21, 1998): 2264–68. http://dx.doi.org/10.1088/0022-3727/31/18/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Feidt, Michel, and Monica Costea. "From Finite Time to Finite Physical Dimensions Thermodynamics: The Carnot Engine and Onsager’s Relations Revisited." Journal of Non-Equilibrium Thermodynamics 43, no. 2 (April 25, 2018): 151–61. http://dx.doi.org/10.1515/jnet-2017-0047.

Full text
Abstract:
AbstractMany works have been devoted to finite time thermodynamics since the Curzon and Ahlborn [1] contribution, which is generally considered as its origin. Nevertheless, previous works in this domain have been revealed [2], [3], and recently, results of the attempt to correlate Finite Time Thermodynamics with Linear Irreversible Thermodynamics according to Onsager’s theory were reported [4].The aim of the present paper is to extend and improve the approach relative to thermodynamic optimization of generic objective functions of a Carnot engine with linear response regime presented in [4]. The case study of the Carnot engine is revisited within the steady state hypothesis, when non-adiabaticity of the system is considered, and heat loss is accounted for by an overall heat leak between the engine heat reservoirs.The optimization is focused on the main objective functions connected to engineering conditions, namely maximum efficiency or power output, except the one relative to entropy that is more fundamental.Results given in reference [4] relative to the maximum power output and minimum entropy production as objective function are reconsidered and clarified, and the change from finite time to finite physical dimension was shown to be done by the heat flow rate at the source.Our modeling has led to new results of the Carnot engine optimization and proved that the primary interest for an engineer is mainly connected to what we called Finite Physical Dimensions Optimal Thermodynamics.
APA, Harvard, Vancouver, ISO, and other styles
5

Tsirlin, Anatoly, and Ivan Sukin. "Averaged Optimization and Finite-Time Thermodynamics." Entropy 22, no. 9 (August 20, 2020): 912. http://dx.doi.org/10.3390/e22090912.

Full text
Abstract:
The paper considers typical extremum problems that contain mean values of control variables or some functions of these variables. Relationships between such problems and cyclic modes of dynamical systems are explained and optimality conditions for these modes are found. The paper shows how these problems are linked to the field of finite-time thermodynamics.
APA, Harvard, Vancouver, ISO, and other styles
6

Bejan, Adrian. "Engineering advances on finite‐time thermodynamics." American Journal of Physics 62, no. 1 (January 1994): 11–12. http://dx.doi.org/10.1119/1.17730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Andresen, Bjarne. "Current Trends in Finite‐Time Thermodynamics." Angewandte Chemie International Edition 50, no. 12 (March 14, 2011): 2690–704. http://dx.doi.org/10.1002/anie.201001411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

De Vos, Alexis, and Bart Desoete. "Equipartition Principles in Finite-Time Thermodynamics." Journal of Non-Equilibrium Thermodynamics 25, no. 1 (January 23, 2000): 1–13. http://dx.doi.org/10.1515/jnetdy.2000.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, C., R. L. Kiang, V. J. Lopardo, and G. N. Karpouzian. "Finite-Time Thermodynamics and Endoreversible Heat Engines." International Journal of Mechanical Engineering Education 21, no. 4 (October 1993): 337–46. http://dx.doi.org/10.1177/030641909302100404.

Full text
Abstract:
An endoreversible heat engine is an internally reversible and externally irreversible cyclic device which exchanges heat and power with its surroundings. Classical engineering thermodynamics is based on the concept of equilibrium. Time is not considered in the energy interactions between the heat engine and its environment. On the other hand, although rate of energy transfer is taught in heat transfer, the course does not cover heat engines. The finite-time thermodynamics is a newly developing field to fill in the gap between thermodynamics and heat transfer. Two types of engines are modelled in this paper—a reciprocating and a steady flow—with results obtained for maximum power output and efficiency at maximum power. It is shown that the latter is the same for both types of engines but that the maximum value of power production is different.
APA, Harvard, Vancouver, ISO, and other styles
10

Delvenne, Jean-Charles, and Henrik Sandberg. "Finite-time thermodynamics of port-Hamiltonian systems." Physica D: Nonlinear Phenomena 267 (January 2014): 123–32. http://dx.doi.org/10.1016/j.physd.2013.07.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Finite-time thermodynamics"

1

K, Manikandan Sreekanth. "Finite-time non-equilibrium thermodynamics of a colloidal particle." Licentiate thesis, Stockholms universitet, Fysikum, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-155316.

Full text
Abstract:
In this thesis we have thermodynamically characterized finite time processes performed on a colloidal particle, kept in contact with thermal reservoir(s). Thermodynamic processes are implemented on the colloidal particle by systematically changing the confining potential in a time dependent way, according to an external driving protocol or by controlling the environmental conditions over a finite duration. First, we study two externally driven systems: one in which the driving is deterministic, and another where the driving is stochastic. These models have appeared in the literature as the building blocks of microscopic machines such as Brownian heat engines and are hence of interest to analyze. In particular, it is of interest to understand the distribution of work done by the colloidal particle as well as the distribution of heat dissipated. These distributions are known in all generality only in a very few cases. In the work we present here, we determine exactly the asymptotic forms of the work distributions (for a finite time duration of the process), which is shown to have non-Gaussian fluctuations. We also find a method to obtain the exact moment generating function of the work distribution, using which we can explicitly calculate aspects of a recently discovered relation for non-equilibrium systems, namely the thermodynamic uncertainty relation. To our knowledge, our model provides the only non-trivial example of a system where the uncertainty relation can be investigated exactly for all times. We have studied the system in various temporal regimes, and have found interesting features such as a time of minimum uncertainty, which may be relevant for the functioning of microscopic machines. Finally, we discuss, an experimentally realized colloidal heat engine model which consists of a single colloidal particle as the working substance. Exact finite time statistics can be obtained for this model using the methods we discuss in the thesis. We present our preliminary results illustrating this.
APA, Harvard, Vancouver, ISO, and other styles
2

Schneider, Thomas. "An experimental investigation of the finite time efficiency of a Peltier refrigeration device." PDXScholar, 1991. https://pdxscholar.library.pdx.edu/open_access_etds/4261.

Full text
Abstract:
Since the need of energy conservation has become more and more urgent in the past decades, there has been an increased interest in the study and development of more efficient energy conversion systems. One of the fields that have arisen from that endeavor is a branch of physics called Finite Time Thermodynamics (FIT). It may be said that FIT was initiated through the famous paper by Curzon and Ahlborn (1975) that established new bounds on the efficiency of a finite time Carnot heat engine. Before, the traditional treatments gave a fundamental upper limit on the efficiency of any heat engine. However, this figure, the well-known Carnot efficiency, is far too optimistic in comparison to real heat engines. The reason lies in the fact that the traditional Carnot engine is operating infinitely slowly, thus having zero power output. Curzon and Ahlborn were able to improve upon this treatment and to set an upper limit on engines producing finite power.
APA, Harvard, Vancouver, ISO, and other styles
3

Walters, Joseph D. "Optimization and Thermodynamic Performance Measures of a Class of Finite Time Thermodynamic Cycles." PDXScholar, 1990. https://pdxscholar.library.pdx.edu/open_access_etds/1186.

Full text
Abstract:
Modifications to the quasistatic Carnot cycle are developed in order to formulate improved theoretical bounds on the thermal efficiency of certain refrigeration cycles that produce finite cooling power. The modified refrigeration cycle is based on the idealized endoreversible finite time cycle. Two of the four cycle branches are reversible adiabats, and the other two are the high and low temperature branches along which finite heat fluxes couple the refrigeration cycle with external heat reservoirs. This finite time model has been used to obtain the following results: First, the performance of a finite time Carnot refrigeration cycle (FTCRC) is examined. In the special case of equal heat transfer coefficients along heat transfer branches, it is found that by optimizing the FTCRC to maximize thermal efficiency and then evaluating the efficiency at peak cooling power, a new bound on the thermal efficiency of certain refrigeration cycles is given by $\epsilon\sb{m} = (\tilde\tau\sp2\sb{m}\ (T\sb{H}/T\sb{L}) - 1)\sp{-1},$ where $T\sb{H}$ and $T\sb{L}$ are the absolute high and low temperatures of the heat reservoirs, respectively, and $\tilde\tau\sb{m}=\sqrt{2}$ + 1 $\simeq$ 2.41 is the dimensionless cycle period at maximum cooling power. Second, a finite time refrigeration cycle (FTRC) is optimized to obtain four distinct optimal cycling modes that maximize efficiency and cooling power, and minimize power consumption and irreversible entropy production. It is found that to first order in cycling frequency and in the special symmetric case, the maximum efficiency and minimum irreversible entropy production modes are equally efficient. Additionally, simple analytic expressions are obtained for efficiencies at maximum cooling power within each optimal mode. Under certain limiting conditions the bounding efficiency at maximum cooling power shown above is obtained. Third, the problem of imperfect heat switches linking the working fluid of an FTRC to external heat reservoirs is studied. The maximum efficiency cycling mode is obtained by numerically optimizing the FTRC. Two distinct optimum cycling conditions exist: (1) operation at the global maximum in efficiency, and (2) operation at the frequency of maximum cooling power. The efficiency evaluated at maximum cooling power, and the global maximum efficiency may provide improved bench-mark bounds on thermal efficiencies of certain real irreversible refrigeration cycles.
APA, Harvard, Vancouver, ISO, and other styles
4

Humphrey, Tammy Ellen Physics Faculty of Science UNSW. "Mesoscopic quantum ratchets and the thermodynamics of energy selective electron heat engines." Awarded by:University of New South Wales. Physics, 2003. http://handle.unsw.edu.au/1959.4/19186.

Full text
Abstract:
A ratchet is an asymmetric, non-equilibrated system that can produce a directed current of particles without the need for macroscopic potential gradients. In rocked quantum electron ratchets, tunnelling and wave-reflection can induce reversals in the direction of the net current as a function of system parameters. An asymmetric quantum point contact in a GaAs/GaAlAs heterostructure has been studied experimentally as a realisation of a quantum electron ratchet. A Landauer model predicts reversals in the direction of the net current as a function of temperature, amplitude of the rocking voltage, and Fermi energy. Artifacts such as circuit-induced asymmetry, also known as self-gating, were carefully removed from the experimental data, which showed net current and net differential conductance reversals, as predicted by the model. The model also predicts the existence of a heat current where the net electron current changes sign, as equal numbers of high and low energy electrons are pumped in opposite directions. An idealised quantum electron ratchet is studied analytically as an energy selective electron heat engine and refrigerator. The hypothetical device considered consists of two electron reservoirs with different temperatures and Fermi energies. The reservoirs are linked via a resonant state in a quantum dot, which functions as an idealised energy filter for electrons. The efficiency of the device approaches the Carnot value when the energy transmitted by the filter is tuned to that where the Fermi distributions in the reservoirs are equal. The maximum power regime, where the filter transmits all electrons that contribute positively to the power, is also examined. Analytic expressions are obtained for the power and efficiency of the idealised device as both a heat engine and as a refrigerator in this regime of operation. The expressions depend on the ratio of the voltage to the difference in temperature of the reservoirs, and on the ratio of the reservoir temperatures. The energy selective electron heat engine is shown to be non-endoreversible, and to operate in an analogous manner to the three-level amplifier, a laser based quantum heat engine. Implications for improving the efficiency of thermionic refrigerators and power generators are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Apertet, Yann. "Réflexions sur l’optimisation thermodynamique des générateurs thermoélectriques." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112322/document.

Full text
Abstract:
Les phénomènes thermoélectriques sont un moyen de convertir directement l’énergie thermique en énergie électrique ; ils sont à ce titre au cœur de nombreuses recherches dans le domaine de l’énergétique. Au-delà de l’optimisation des matériaux constituants les générateurs thermoélectriques, il est également nécessaire de mener une réflexion sur la manière dont ces générateurs sont utilisés. La contribution des contacts thermiques entre le générateur et les réservoirs thermiques est un facteur qui va modifier les conditions de fonctionnement optimales du générateur. En utilisant la notion de courant thermique convectif, développée par Thomson il y a plus de 150 ans, nous généralisons les expressions classiques du fonctionnement à puissance maximum pour le générateur pour ce cas de figure. Nous constatons toutefois que ces conditions se réduisent à une adaptation d’impédance, à la fois thermique et électrique Outre son intérêt pratique, le générateur thermoélectrique est également un système modèle de choix pour étudier la théorie du transport couplé et des phénomènes irréversibles. En utilisant la description donnée par Ioffe de ce système, nous montrons que l’efficacité à maximum de puissance, un coefficient de performance au cœur de la thermodynamique à temps fini, s’exprime comme une fonction relativement simple des paramètres du système. La nouveauté de ce travail repose sur une prise en compte appropriée des dissipations internes associées au processus de conversion d’énergie. Les résultats sont généralisés enfin aux cas d’autres machines thermiques telle que la roue à rochet de Feynman
Thermoelectric phenomena are a way to directly convert thermal energy into electrical energy; they thus are at the heart of several researches in the field of energy conversion. The optimization of the thermoelectric generators includes materials improvement but a reflection on their working conditions is also mandatory. The contribution of the thermal contacts between the generator and the heat reservoirs is a factor that will change the optimum operating conditions of the generator. Using the concept of convective heat flow, developed by Thomson more than 150 years ago, we generalize the classical expression of maximum power conditions. Moreover, we note that these conditions may be reduced to impedance matching conditions, both thermal and electrical. In addition to its practical interest, the thermoelectric generator is also an ideal model system to study the theory of coupled transport and of irreversible phenomena. Using the description of this system given by Ioffe, we show that the maximum power efficiency, a coefficient of performance at the heart of finite time thermodynamics, expressed as a simple function of the system parameters. The novelty of this work is based on a proper consideration of internal dissipation associated with the energy conversion process. The results are then generalized to other thermal engines such as the Feynman ratchet
APA, Harvard, Vancouver, ISO, and other styles
6

Boldt, Frank. "A Framework for Modeling Irreversible Processes Based on the Casimir Companion." Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-145179.

Full text
Abstract:
Thermodynamic processes in finite time are in general irreversible. But there are chances to avoid irreversibility. For instance, there are canonical ensembles of special quantum systems with a given probability distribution describing the likelihood to find the system at time t=0 in a particular state with energy E_i(0), which can be controlled in a specific way, such that the initial probability distribution is recovered at the end of the process (t=T), but the state energies did change, hence E_i(0) is not equal to E_i(T). This allows to change thermodynamic quantities (expectation values) adiabatically, reversibly and in finite time. Such special processes are called Shortcuts to Adiabaticity. The presented thesis analyzes the origin of these shortcuts utilizing special Hamiltonian systems with dynamical algebra. Their main feature is to provide canonical invariance, which means a canonical ensemble stays canonical under Hamiltonian dynamics. This invariance carried by the dynamical algebra will be discussed using Lie group theory. In addition, the persistence of the dynamical algebra with respect to calculating expectation values will be deduced. This allows to benefit from all intrinsic symmetries within the discussion of ensemble trajectories. In consequence, these trajectories will evolve under Hamiltonian dynamics on a specific manifold given by the so-called Casimir companion. In addition, the deformation of this manifold due to non-Hamiltonian (dissipative) dynamics will be discussed, which allows to present a framework for modeling irreversible processes based on Hamiltonian systems with dynamical algebra. An application of this framework based on the parametric harmonic oscillator will be presented by determining time-optimal controls for transitions between two equilibrium as well as between non-equilibrium and equilibrium states. The latter one will lead to time-optimal equilibration strategies for a statistical ensemble of parametric harmonic oscillators
Thermodynamische Prozesse in endlicher Zeit sind im Allgemeinen irreversibel. Es gibt jedoch Möglichkeiten, diese Irreversibilität zu umgehen. Ein kanonisches Ensemble eines speziellen quantenmechanischen Systems kann zum Beispiel auf eine ganz spezielle Art und Weise gesteuert werden, sodass nach endlicher Zeit T wieder eine kanonische Besetzungverteilung hergestellt ist, sich aber dennoch die Energie des Systems geändert hat (E(0) ungleich E(T)). Solche Prozesse erlauben das Ändern thermodynamischer Größen (Ensemblemittelwerte) der erwähnten speziellen Systeme in endlicher Zeit und auf eine adiabatische und reversible Art. Man nennt diese Art von speziellen Prozessen Shortcuts to Adiabaticity und die speziellen Systeme hamiltonsche Systeme mit dynamischer Algebra. Die vorliegende Dissertation hat zum Ziel den Ursprung dieser Shortcuts to Adiabaticity zu analysieren und eine Methodik zu entwickeln, die es erlaubt irreversible thermodynamische Prozesse adequat mittels dieser speziellen Systeme zu modellieren. Dazu wird deren besondere Eigenschaft ausgenutzt, die kanonische Invarianz, d.h. ein kanonisches Ensemble bleibt kanonisch bezüglich hamiltonscher Dynamik. Der Ursprung dieser Invarianz liegt in der dynamischen Algebra, die mit Hilfe der Theorie der Lie-Gruppen näher betrachtet wird. Dies erlaubt, eine weitere besondere Eigenschaft abzuleiten: Die Ensemblemittelwerte unterliegen ebenfalls den Symmetrien, die die dynamische Algebra widerspiegelt. Bei näherer Betrachtung befinden sich alle Trajektorien der Ensemblemittelwerte auf einer Mannigfaltigkeit, die durch den sogenannten Casimir Companion beschrieben wird. Darüber hinaus wird nicht-hamiltonsche/dissipative Dynamik betrachtet, welche zu einer Deformation der Mannigfaltigkeit führt. Abschließend wird eine Zusammenfassung der grundlegenden Methodik zur Modellierung irreversibler Prozesse mittels hamiltonscher Systeme mit dynamischer Algebra gegeben. Zum besseren Verständnis wird ein ausführliches Anwendungsbeispiel dieser Methodik präsentiert, in dem die zeitoptimale Steuerung eines Ensembles des harmonischen Oszillators zwischen zwei Gleichgewichtszuständen sowie zwischen Gleichgewichts- und Nichtgleichgewichtszuständen abgeleitet wird
APA, Harvard, Vancouver, ISO, and other styles
7

Beckstein, Pascal. "Methodenentwicklung zur Simulation von Strömungen mit freier Oberfläche unter dem Einfluss elektromagnetischer Wechselfelder." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-232474.

Full text
Abstract:
Im Bereich der industriellen Metallurgie und Kristallzüchtung treten bei zahlreichen Anwendungen, wo magnetische Wechselfelder zur induktiven Beeinflussung von leitfähigen Werkstoffen eingesetzt werden, auch Strömungen mit freier Oberfläche auf. Das Anwendungsspektrum reicht dabei vom einfachen Aufschmelzen eines Metalls in einem offenen Tiegel bis hin zur vollständigen Levitation. Auch der sogenannte RGS-Prozess, ein substratbasiertes Kristallisationsverfahren zur Herstellung siliziumbasierter Dünnschichtmaterialien, ist dafür ein Beispiel. Um bei solchen Prozessen die Interaktion von Magnetfeld und Strömung zu untersuchen, ist die numerische Simulationen ein wertvolles Hilfsmittel. Für beliebige dreidimensionale Probleme werden entsprechende Berechnungen bisher durch eine externe Kopplung kommerzieller Programme realisiert, die für Magnetfeld und Strömung jeweils unterschiedliche numerische Techniken nutzen. Diese Vorgehensweise ist jedoch im Allgemeinen mit unnötigem Rechenaufwand verbunden. In dieser Arbeit wird ein neu entwickelter Methodenapparat auf Basis der FVM vorgestellt, mit welchem sich diese Art von Berechnungen effizient durchführen lassen. Mit der Implementierung dieser Methoden in foam-extend, einer erweiterten Version der quelloffenen Software OpenFOAM, ist daraus ein leistungsfähiges Werkzeug in Form einer freien Simulationsplattform entstanden, welches sich durch einen modularen Aufbau leicht erweitern lässt. Mit dieser Plattform wurden in foam-extend auch erstmalig dreidimensionale Induktionsprozesse im Frequenzraum gelöst.
APA, Harvard, Vancouver, ISO, and other styles
8

Cheng, Ching-Yang, and 鄭慶陽. "Applications of finite-time thermodynamics in thermodynamic cycles." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/15497210648904347515.

Full text
Abstract:
博士
國立成功大學
機械工程研究所
84
In this study, a steady-flow approach in finite-time thermo- dynamics has been used to study on the performance optimizations of heat engines and heat pumps from the viewpoints of various ob- jective functions. The topics studied include: (1) ecological- criterion-function optimizations of endoreversible Brayton heat engines with isothermal heat sources, (2) power optimiztions of endoreversible regenerative Brayton heat engines with isothermal heat sources, (3) power optimizations of endoreversible inter- cooled Brayton heat engines with isothermal heat sources, (4) performance-of- coefficient optimizations of irreversible Carnot heat pumps with isothermal heat sources, (5) power optimizations of irreversible Brayton heat engines with isothermal heat sour- ces,(6) efficiency optimizations of irreversible Brayton heat en- gines with isothermal heat sources, (7) ecological- criterion- function optimizations of irreversible Carnot heat engines with variable-temperature heat sources. The results obtained are: (1) The better design point of a heat engine is positioned between the maximum-power point and the maximum- efficiency point, and with ecological criterion functions as objective functions, a heat engine has a balance between its power output, thermal efficiency and entropy gene- ration rate. (2) The irreversible models consider three types of irreversibilities: finite thermal conductance between the working fluid and reservoirs, heat leaks between the resevoirs and irreversibilities in the processes of expansion and com- pression, and the power-efficiency relationship obtained by this model is a closed loop-like curve, similar to the charac- terisitic curves of real heat engines.
APA, Harvard, Vancouver, ISO, and other styles
9

Qiu, Jian-Ying, and 邱建穎. "Analyses on Impinging Heat Transfer and Finite-Time Thermodynamics." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/u5ncgm.

Full text
Abstract:
碩士
崑山科技大學
機械工程研究所
91
First, the flow and heat transfer characteristics of an impinging laminar slot-jet, twin impinging laminar slot-jets, and heat sinks with sloped plate fins as well as with an inclined confinement surface are investigated by using the Star-CD software. Parameters examined for a single jet include the width of the jet, Reynolds number, the separation distance between the slot-jet exit plane and the impingement surface, free-jet impingement or semiconfined-jet impingement, uniform inlet flow or fully-developed inlet flow. An additional parameter, the separation distance between the twin jets is examined for the analysis on the dual jets. In addition, the effects of the titling of the crests of the plate fins relative to the approaching flow and the inclined confinement surface are found to be indeed the two important heat transfer augmentation features. Secondly, a steady-flow approach in finite-time thermodynamics is employed to investigate the ecological-criterion function optimizations of the endoreversible Diesel, Otto, and Atkinson heat engines with isothermal heat sources. The results show that adopting the ecological-criterion function as the objective function, a heat engine may achieve the balance among the power output, thermal efficiency and entropy generation rate.
APA, Harvard, Vancouver, ISO, and other styles
10

Wei-ChingYeh and 葉蔚青. "Maximum Power Output Analysis of Finite-Time Thermodynamics Stirling Engine." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/04816570316678015078.

Full text
Abstract:
碩士
國立成功大學
機械工程學系碩博士班
98
This study present finite time thermodynamic analysis of Stirling heat engine and obtained the maximum power output by using Genetic Algorithm (GA). The thermodynamic models include an endoreversible Stirling engine and an irreversible Stirling engine with imperfect regeneration and heat loss. Each one of those models has two cases which respectively are heat source by convection transfer and by radiation transfer. The relationship between maximum power output and thermal efficiency, moreover, the optimum working temperature of working fluid can be obtained. The case of heat source by convection transfer shows the accuracy of this method by comparing with analytic solution. The second case is about heat source by radiation transfer. We simulated solar driven Stirling engines in the second case and analyzed the effects of various parameters on maximum power output (i.e., times of regeneration process, compression ratio, temperature of heat source…) In the last case, we have build a model of solar thermal power system, including heat transfer model of collector and endoreversible Stirling engine. The effects of various solar intensity on maximum power output have been discussed.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Finite-time thermodynamics"

1

Kaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. Finite Time Thermodynamics of Power and Refrigeration Cycles. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Entropy generation minimization: The method of thermodynamic optimization of finite-size systems and finite-time processes. Boca Raton: CRC Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stanislaw, Sieniutycz, and Salamon Peter 1950-, eds. Finite-time thermodynamics and thermoeconomics. New York: Taylor & Francis, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1936-, Wu Chih, Chen Lingen, and Chen Jincan, eds. Recent advances in finite-time thermodynamics. Commack, NY: Nova Science Publishers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1931-, Berry R. Stephen, ed. Thermodynamic optimization of finite-time processes. Chichester: Wiley, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carrera-Patiño, Martin E. Theoretical and applied contributions to finite-time thermodynamics. 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kumar, Pramod, Shubhash C. Kaushik, and Sudhir K. Tyagi. Finite Time Thermodynamics of Power and Refrigeration Cycles. Springer, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

(Editor), Lingen Chen, and Fengrui Sun (Editor), eds. Advances in Finite Time Thermodynamics:: Analysis and Optimization. Nova Science Publishers, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Horing, Norman J. Morgenstern. Thermodynamic Green’s Functions and Spectral Structure. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0007.

Full text
Abstract:
Multiparticle thermodynamic Green’s functions, defined in terms of grand canonical ensemble averages of time-ordered products of creation and annihilation operators, are interpreted as tracing the amplitude for time-developing correlated interacting particle motions taking place in the background of a thermal ensemble. Under equilibrium conditions, time-translational invariance permits the one-particle thermal Green’s function to be represented in terms of a single frequency, leading to a Lehmann spectral representation whose frequency poles describe the energy spectrum. This Green’s function has finite values for both t>t′ and t<t′ (unlike retarded Green’s functions), and the two parts G1> and G1< (respectively) obey a simple proportionality relation that facilitates the introduction of a spectral weight function: It is also interpreted in terms of a periodicity/antiperiodicity property of a modified Green’s function in imaginary time capable of a Fourier series representation with imaginary (Matsubara) frequencies. The analytic continuation from imaginary time to real time is discussed, as are related commutator/anticommutator functions, also retarded/advanced Green’s functions, and the spectral weight sum rule is derived. Statistical thermodynamic information is shown to be embedded in physical features of the one- and two-particle thermodynamic Green’s functions.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Finite-time thermodynamics"

1

Berry, R. Stephen. "Finite-Time Thermodynamics." In Thermodynamics and Fluctuations far from Equilibrium, 131–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74555-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamics of Brayton Refrigeration Cycle." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 219–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Andresen, B. "Minimizing Losses — Tools of Finite-Time Thermodynamics." In Thermodynamic Optimization of Complex Energy Systems, 411–20. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4685-2_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamic Analysis of Brayton Cycle." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 37–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamics of Stirling/Ericsson Refrigeration Cycles." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 241–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hoffmann, Karl Heinz, Bjarne Andresen, and Peter Salamon. "Finite-Time Thermodynamics Tools to Analyze Dissipative Processes." In Advances in Chemical Physics, 57–67. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118959602.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamic Analysis of Modified Brayton Cycle." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 57–84. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamic Analysis of Complex Brayton Cycle." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 85–113. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "General Introduction and the Concept of Finite Time Thermodynamics." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 1–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamics of Cascaded Refrigeration and Heat Pump Cycles." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 181–201. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Finite-time thermodynamics"

1

Gruber, Christine. "Black hole thermodynamics in finite time." In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gerlach, David, and Xiaohong Liao. "Finite Time Thermodynamics Model of an Absorption Chiller." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38777.

Full text
Abstract:
A finite time thermodynamic model of an absorption chiller was developed. The effects of irreversibilities due to finite rate heat transfer in the heat exchangers are modeled by using the standard UA formulation with the absorber and condenser lumped as one heat exchanger. In order to match experimental data within 20%, the UA of the generator was modeled as a linear function of the heating fluid flow rate. A constant entropy production due to internal processes was included to model reduction in performance at off design conditions. The UA parameters and internal entropy production constant form a set of five fitting parameters with physical meaning. This is fewer parameters than the non-physical curve fit used in the industry standard Energy Plus model. The model was validated within 20% against data sets from two different systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Andresen, Bjarne, Gian Paolo Beretta, Ahmed Ghoniem, and George Hatsopoulos. "The Need for Entropy in Finite-Time Thermodynamics and Elsewhere." In MEETING THE ENTROPY CHALLENGE: An International Thermodynamics Symposium in Honor and Memory of Professor Joseph H. Keenan. AIP, 2008. http://dx.doi.org/10.1063/1.2979032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gu, Weili, Hanqing Wang, Guangxiao Kou, and Qinghai Luo. "The Energy-Saving Optimization of the Organic Heat Transfer Material Heater Based on Finite Time Thermodynamics." In 2009 International Conference on Energy and Environment Technology. IEEE, 2009. http://dx.doi.org/10.1109/iceet.2009.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Akhremenkov, Andrei A., Anatoliy M. Tsirlin, and Vladimir Kazakov. "Thermodynamic Estimate of Minimal Dissipation for Heat Exchange System." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66883.

Full text
Abstract:
In this paper we consider heat exchange system from point of view of Finite-time thermodynamics. At first time the novel estimate of the minimal entropy production in a general-type heat exchange system with given heat load and fixed heat exchange surface is derived. The corresponding optimal distribution of heat exchange surface and optimal contact temperatures are also obtained. It is proven that if a heat flow is proportional to the difference of contacting flows’ temperatures then dissipation in a multi-flow heat exchanger is minimal only if the ratio of contact temperatures of any two flows at any point inside heat exchanger is the same and the temperatures of all heating flows leaving exchanger are also the same. Our result based on those assumptions: 1. heat transfer law is linear (17); 2. summary exchange surface is given; 3. heat load is given; 4. input tempretures for all flows are given; 5. water equivalents for all flows are given.
APA, Harvard, Vancouver, ISO, and other styles
6

McGovern, Jim, Barry Cullen, Michel Feidt, and Stoian Petrescu. "Validation of a Simulation Model for a Combined Otto and Stirling Cycle Power Plant." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90220.

Full text
Abstract:
A project has been underway at the Dublin Institute of Technology (DIT) to investigate the feasibility of a combined Otto and Stirling cycle power plant in which a Stirling cycle engine would serve as a bottoming cycle for a stationary Otto cycle engine. This type of combined cycle plant is considered to have good potential for industrial use. This paper describes work by DIT and collaborators to validate a computer simulation model of the combined cycle plant. In investigating the feasibility of the type of combined cycle that is proposed there are a range of practical realities to be faced and addressed. Reliable performance data for the component engines are required over a wide range of operating conditions, but there are practical difficulties in accessing such data. A simulation model is required that is sufficiently detailed to represent all important performance aspects and that is capable of being validated. Thermodynamicists currently employ a diverse range of modeling, analysis and optimization techniques for the component engines and the combined cycle. These techniques include traditional component and process simulation, exergy analysis, entropy generation minimization, exergoeconomics, finite time thermodynamics and finite dimensional optimization thermodynamics methodology (FDOT). In the context outlined, the purpose of the present paper is to come up with a practical validation of a practical computer simulation model of the proposed combined Otto and Stirling Cycle Power Plant.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Z., C. D. Copeland, B. Ceen, S. Jones, and A. A. Goya. "Modelling and Simulation of an Inverted Brayton Cycle as an Exhaust-Gas Heat-Recovery System." In ASME 2016 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icef2016-9363.

Full text
Abstract:
The exhaust gas from an internal combustion engine contains approximately 30% of the thermal energy of combustion. The exhaust-gas heat-recovery systems aim to reclaim a proportion of this energy in a bottoming thermodynamic cycle to raise the overall system thermal efficiency. The inverted Brayton cycle considered as a potential exhaust-gas heat-recovery system is a little-studied approach, especially when applied to small automotive power-plants. Hence, a model of the inverted Brayton cycle using finite-time thermodynamics (FTT) is presented to study heat recovery applied to a highly downsizing automotive internal combustion engine. IBC system consists of a turbine, a heat exchanger and compressors in sequence. The use of IBC turbine is to fully expand the exhaust gas available from the upper cycle. The remaining heat in the exhaust after expansion is rejected by the downstream heat exchanger. Then, the cooled exhaust gases are compressed back up to the ambient pressure by one or more compressors. In this paper, the exhaust conditions available from the engine test bench data were introduced as the inlet conditions of the IBC thermodynamic model to quantify the power recovered by IBC, thereby revealing the benefits of IBC to this particular engine. It should be noted that the test bench data of the baseline engine were collected by the worldwide harmonized light vehicles test procedures (WLTP). WLTP define a global harmonized standard for determining the levels of pollutants and CO2 emissions, fuel consumption. The IBC thermodynamic model was simulated with the following variables: IBC inlet pressure, turbine pressure ratio, heat exchanger effectiveness, turbomachinery efficiencies, and the IBC compression stage. The aim of this paper is to analysis the performance of IBC system when it is applied to a light-duty automotive engine operating in a real world driving cycle.
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Chih, Lingen Chen, and Fengrui Sun. "Finite-Time Thermodynamic Performance for a Class of Irreversible Heat Pumps." In ASME 1997 Turbo Asia Conference. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-aa-027.

Full text
Abstract:
The effect of heat resistance and heat leak on the performance of irreversible heat pumps using a generalized heat transfer law is analyzed in this paper. The relationship between the optimal cooling load and the cop (coefficient of performance) for a steady-state irreversible heat pump is derived.
APA, Harvard, Vancouver, ISO, and other styles
9

Ma, Zheshu, and Ali Turan. "Finite Time Thermodynamic Modeling of a Indirectly Fired Gas Turbine Cycle." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5448475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

SCHÖN, J. CHRISTIAN, and BJARNE ANDRESEN. "FINITE-TIME OPTIMIZATION OF CHEMICAL REACTIONS AND CONNECTIONS TO THERMODYNAMIC SPEED." In 101st WE-Heraeus-Seminar. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814503648_0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Finite-time thermodynamics"

1

Walters, Joseph. Optimization and Thermodynamic Performance Measures of a Class of Finite Time Thermodynamic Cycles. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thermodynamics of finite-time processes: Final report, 1986--89. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5830514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography