Academic literature on the topic 'Finite-time thermodynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Finite-time thermodynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Finite-time thermodynamics"
Andresen, Bjarne. "Finite-time thermodynamics and thermodynamic length." Revue Générale de Thermique 35, no. 418-419 (November 1996): 647–50. http://dx.doi.org/10.1016/s0035-3159(96)80060-2.
Full textTsirlin, Anatoly, and Larisa Gagarina. "Finite-Time Thermodynamics in Economics." Entropy 22, no. 8 (August 13, 2020): 891. http://dx.doi.org/10.3390/e22080891.
Full textTsirlin, Anatoly M., Michail A. Sofiev, and Vladimir Kazakov. "Finite-time thermodynamics. Active potentiostatting." Journal of Physics D: Applied Physics 31, no. 18 (September 21, 1998): 2264–68. http://dx.doi.org/10.1088/0022-3727/31/18/011.
Full textFeidt, Michel, and Monica Costea. "From Finite Time to Finite Physical Dimensions Thermodynamics: The Carnot Engine and Onsager’s Relations Revisited." Journal of Non-Equilibrium Thermodynamics 43, no. 2 (April 25, 2018): 151–61. http://dx.doi.org/10.1515/jnet-2017-0047.
Full textTsirlin, Anatoly, and Ivan Sukin. "Averaged Optimization and Finite-Time Thermodynamics." Entropy 22, no. 9 (August 20, 2020): 912. http://dx.doi.org/10.3390/e22090912.
Full textBejan, Adrian. "Engineering advances on finite‐time thermodynamics." American Journal of Physics 62, no. 1 (January 1994): 11–12. http://dx.doi.org/10.1119/1.17730.
Full textAndresen, Bjarne. "Current Trends in Finite‐Time Thermodynamics." Angewandte Chemie International Edition 50, no. 12 (March 14, 2011): 2690–704. http://dx.doi.org/10.1002/anie.201001411.
Full textDe Vos, Alexis, and Bart Desoete. "Equipartition Principles in Finite-Time Thermodynamics." Journal of Non-Equilibrium Thermodynamics 25, no. 1 (January 23, 2000): 1–13. http://dx.doi.org/10.1515/jnetdy.2000.001.
Full textWu, C., R. L. Kiang, V. J. Lopardo, and G. N. Karpouzian. "Finite-Time Thermodynamics and Endoreversible Heat Engines." International Journal of Mechanical Engineering Education 21, no. 4 (October 1993): 337–46. http://dx.doi.org/10.1177/030641909302100404.
Full textDelvenne, Jean-Charles, and Henrik Sandberg. "Finite-time thermodynamics of port-Hamiltonian systems." Physica D: Nonlinear Phenomena 267 (January 2014): 123–32. http://dx.doi.org/10.1016/j.physd.2013.07.017.
Full textDissertations / Theses on the topic "Finite-time thermodynamics"
K, Manikandan Sreekanth. "Finite-time non-equilibrium thermodynamics of a colloidal particle." Licentiate thesis, Stockholms universitet, Fysikum, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-155316.
Full textSchneider, Thomas. "An experimental investigation of the finite time efficiency of a Peltier refrigeration device." PDXScholar, 1991. https://pdxscholar.library.pdx.edu/open_access_etds/4261.
Full textWalters, Joseph D. "Optimization and Thermodynamic Performance Measures of a Class of Finite Time Thermodynamic Cycles." PDXScholar, 1990. https://pdxscholar.library.pdx.edu/open_access_etds/1186.
Full textHumphrey, Tammy Ellen Physics Faculty of Science UNSW. "Mesoscopic quantum ratchets and the thermodynamics of energy selective electron heat engines." Awarded by:University of New South Wales. Physics, 2003. http://handle.unsw.edu.au/1959.4/19186.
Full textApertet, Yann. "Réflexions sur l’optimisation thermodynamique des générateurs thermoélectriques." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112322/document.
Full textThermoelectric phenomena are a way to directly convert thermal energy into electrical energy; they thus are at the heart of several researches in the field of energy conversion. The optimization of the thermoelectric generators includes materials improvement but a reflection on their working conditions is also mandatory. The contribution of the thermal contacts between the generator and the heat reservoirs is a factor that will change the optimum operating conditions of the generator. Using the concept of convective heat flow, developed by Thomson more than 150 years ago, we generalize the classical expression of maximum power conditions. Moreover, we note that these conditions may be reduced to impedance matching conditions, both thermal and electrical. In addition to its practical interest, the thermoelectric generator is also an ideal model system to study the theory of coupled transport and of irreversible phenomena. Using the description of this system given by Ioffe, we show that the maximum power efficiency, a coefficient of performance at the heart of finite time thermodynamics, expressed as a simple function of the system parameters. The novelty of this work is based on a proper consideration of internal dissipation associated with the energy conversion process. The results are then generalized to other thermal engines such as the Feynman ratchet
Boldt, Frank. "A Framework for Modeling Irreversible Processes Based on the Casimir Companion." Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-145179.
Full textThermodynamische Prozesse in endlicher Zeit sind im Allgemeinen irreversibel. Es gibt jedoch Möglichkeiten, diese Irreversibilität zu umgehen. Ein kanonisches Ensemble eines speziellen quantenmechanischen Systems kann zum Beispiel auf eine ganz spezielle Art und Weise gesteuert werden, sodass nach endlicher Zeit T wieder eine kanonische Besetzungverteilung hergestellt ist, sich aber dennoch die Energie des Systems geändert hat (E(0) ungleich E(T)). Solche Prozesse erlauben das Ändern thermodynamischer Größen (Ensemblemittelwerte) der erwähnten speziellen Systeme in endlicher Zeit und auf eine adiabatische und reversible Art. Man nennt diese Art von speziellen Prozessen Shortcuts to Adiabaticity und die speziellen Systeme hamiltonsche Systeme mit dynamischer Algebra. Die vorliegende Dissertation hat zum Ziel den Ursprung dieser Shortcuts to Adiabaticity zu analysieren und eine Methodik zu entwickeln, die es erlaubt irreversible thermodynamische Prozesse adequat mittels dieser speziellen Systeme zu modellieren. Dazu wird deren besondere Eigenschaft ausgenutzt, die kanonische Invarianz, d.h. ein kanonisches Ensemble bleibt kanonisch bezüglich hamiltonscher Dynamik. Der Ursprung dieser Invarianz liegt in der dynamischen Algebra, die mit Hilfe der Theorie der Lie-Gruppen näher betrachtet wird. Dies erlaubt, eine weitere besondere Eigenschaft abzuleiten: Die Ensemblemittelwerte unterliegen ebenfalls den Symmetrien, die die dynamische Algebra widerspiegelt. Bei näherer Betrachtung befinden sich alle Trajektorien der Ensemblemittelwerte auf einer Mannigfaltigkeit, die durch den sogenannten Casimir Companion beschrieben wird. Darüber hinaus wird nicht-hamiltonsche/dissipative Dynamik betrachtet, welche zu einer Deformation der Mannigfaltigkeit führt. Abschließend wird eine Zusammenfassung der grundlegenden Methodik zur Modellierung irreversibler Prozesse mittels hamiltonscher Systeme mit dynamischer Algebra gegeben. Zum besseren Verständnis wird ein ausführliches Anwendungsbeispiel dieser Methodik präsentiert, in dem die zeitoptimale Steuerung eines Ensembles des harmonischen Oszillators zwischen zwei Gleichgewichtszuständen sowie zwischen Gleichgewichts- und Nichtgleichgewichtszuständen abgeleitet wird
Beckstein, Pascal. "Methodenentwicklung zur Simulation von Strömungen mit freier Oberfläche unter dem Einfluss elektromagnetischer Wechselfelder." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-232474.
Full textCheng, Ching-Yang, and 鄭慶陽. "Applications of finite-time thermodynamics in thermodynamic cycles." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/15497210648904347515.
Full text國立成功大學
機械工程研究所
84
In this study, a steady-flow approach in finite-time thermo- dynamics has been used to study on the performance optimizations of heat engines and heat pumps from the viewpoints of various ob- jective functions. The topics studied include: (1) ecological- criterion-function optimizations of endoreversible Brayton heat engines with isothermal heat sources, (2) power optimiztions of endoreversible regenerative Brayton heat engines with isothermal heat sources, (3) power optimizations of endoreversible inter- cooled Brayton heat engines with isothermal heat sources, (4) performance-of- coefficient optimizations of irreversible Carnot heat pumps with isothermal heat sources, (5) power optimizations of irreversible Brayton heat engines with isothermal heat sour- ces,(6) efficiency optimizations of irreversible Brayton heat en- gines with isothermal heat sources, (7) ecological- criterion- function optimizations of irreversible Carnot heat engines with variable-temperature heat sources. The results obtained are: (1) The better design point of a heat engine is positioned between the maximum-power point and the maximum- efficiency point, and with ecological criterion functions as objective functions, a heat engine has a balance between its power output, thermal efficiency and entropy gene- ration rate. (2) The irreversible models consider three types of irreversibilities: finite thermal conductance between the working fluid and reservoirs, heat leaks between the resevoirs and irreversibilities in the processes of expansion and com- pression, and the power-efficiency relationship obtained by this model is a closed loop-like curve, similar to the charac- terisitic curves of real heat engines.
Qiu, Jian-Ying, and 邱建穎. "Analyses on Impinging Heat Transfer and Finite-Time Thermodynamics." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/u5ncgm.
Full text崑山科技大學
機械工程研究所
91
First, the flow and heat transfer characteristics of an impinging laminar slot-jet, twin impinging laminar slot-jets, and heat sinks with sloped plate fins as well as with an inclined confinement surface are investigated by using the Star-CD software. Parameters examined for a single jet include the width of the jet, Reynolds number, the separation distance between the slot-jet exit plane and the impingement surface, free-jet impingement or semiconfined-jet impingement, uniform inlet flow or fully-developed inlet flow. An additional parameter, the separation distance between the twin jets is examined for the analysis on the dual jets. In addition, the effects of the titling of the crests of the plate fins relative to the approaching flow and the inclined confinement surface are found to be indeed the two important heat transfer augmentation features. Secondly, a steady-flow approach in finite-time thermodynamics is employed to investigate the ecological-criterion function optimizations of the endoreversible Diesel, Otto, and Atkinson heat engines with isothermal heat sources. The results show that adopting the ecological-criterion function as the objective function, a heat engine may achieve the balance among the power output, thermal efficiency and entropy generation rate.
Wei-ChingYeh and 葉蔚青. "Maximum Power Output Analysis of Finite-Time Thermodynamics Stirling Engine." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/04816570316678015078.
Full text國立成功大學
機械工程學系碩博士班
98
This study present finite time thermodynamic analysis of Stirling heat engine and obtained the maximum power output by using Genetic Algorithm (GA). The thermodynamic models include an endoreversible Stirling engine and an irreversible Stirling engine with imperfect regeneration and heat loss. Each one of those models has two cases which respectively are heat source by convection transfer and by radiation transfer. The relationship between maximum power output and thermal efficiency, moreover, the optimum working temperature of working fluid can be obtained. The case of heat source by convection transfer shows the accuracy of this method by comparing with analytic solution. The second case is about heat source by radiation transfer. We simulated solar driven Stirling engines in the second case and analyzed the effects of various parameters on maximum power output (i.e., times of regeneration process, compression ratio, temperature of heat source…) In the last case, we have build a model of solar thermal power system, including heat transfer model of collector and endoreversible Stirling engine. The effects of various solar intensity on maximum power output have been discussed.
Books on the topic "Finite-time thermodynamics"
Kaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. Finite Time Thermodynamics of Power and Refrigeration Cycles. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7.
Full textEntropy generation minimization: The method of thermodynamic optimization of finite-size systems and finite-time processes. Boca Raton: CRC Press, 1996.
Find full textStanislaw, Sieniutycz, and Salamon Peter 1950-, eds. Finite-time thermodynamics and thermoeconomics. New York: Taylor & Francis, 1990.
Find full text1936-, Wu Chih, Chen Lingen, and Chen Jincan, eds. Recent advances in finite-time thermodynamics. Commack, NY: Nova Science Publishers, 1999.
Find full text1931-, Berry R. Stephen, ed. Thermodynamic optimization of finite-time processes. Chichester: Wiley, 2000.
Find full textCarrera-Patiño, Martin E. Theoretical and applied contributions to finite-time thermodynamics. 1989.
Find full textKumar, Pramod, Shubhash C. Kaushik, and Sudhir K. Tyagi. Finite Time Thermodynamics of Power and Refrigeration Cycles. Springer, 2017.
Find full text(Editor), Lingen Chen, and Fengrui Sun (Editor), eds. Advances in Finite Time Thermodynamics:: Analysis and Optimization. Nova Science Publishers, 2004.
Find full textHoring, Norman J. Morgenstern. Thermodynamic Green’s Functions and Spectral Structure. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0007.
Full textBook chapters on the topic "Finite-time thermodynamics"
Berry, R. Stephen. "Finite-Time Thermodynamics." In Thermodynamics and Fluctuations far from Equilibrium, 131–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74555-6_14.
Full textKaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamics of Brayton Refrigeration Cycle." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 219–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_10.
Full textAndresen, B. "Minimizing Losses — Tools of Finite-Time Thermodynamics." In Thermodynamic Optimization of Complex Energy Systems, 411–20. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4685-2_30.
Full textKaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamic Analysis of Brayton Cycle." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 37–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_3.
Full textKaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamics of Stirling/Ericsson Refrigeration Cycles." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 241–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_11.
Full textHoffmann, Karl Heinz, Bjarne Andresen, and Peter Salamon. "Finite-Time Thermodynamics Tools to Analyze Dissipative Processes." In Advances in Chemical Physics, 57–67. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118959602.ch5.
Full textKaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamic Analysis of Modified Brayton Cycle." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 57–84. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_4.
Full textKaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamic Analysis of Complex Brayton Cycle." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 85–113. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_5.
Full textKaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "General Introduction and the Concept of Finite Time Thermodynamics." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 1–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_1.
Full textKaushik, Shubhash C., Sudhir K. Tyagi, and Pramod Kumar. "Finite Time Thermodynamics of Cascaded Refrigeration and Heat Pump Cycles." In Finite Time Thermodynamics of Power and Refrigeration Cycles, 181–201. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_8.
Full textConference papers on the topic "Finite-time thermodynamics"
Gruber, Christine. "Black hole thermodynamics in finite time." In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0164.
Full textGerlach, David, and Xiaohong Liao. "Finite Time Thermodynamics Model of an Absorption Chiller." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38777.
Full textAndresen, Bjarne, Gian Paolo Beretta, Ahmed Ghoniem, and George Hatsopoulos. "The Need for Entropy in Finite-Time Thermodynamics and Elsewhere." In MEETING THE ENTROPY CHALLENGE: An International Thermodynamics Symposium in Honor and Memory of Professor Joseph H. Keenan. AIP, 2008. http://dx.doi.org/10.1063/1.2979032.
Full textGu, Weili, Hanqing Wang, Guangxiao Kou, and Qinghai Luo. "The Energy-Saving Optimization of the Organic Heat Transfer Material Heater Based on Finite Time Thermodynamics." In 2009 International Conference on Energy and Environment Technology. IEEE, 2009. http://dx.doi.org/10.1109/iceet.2009.107.
Full textAkhremenkov, Andrei A., Anatoliy M. Tsirlin, and Vladimir Kazakov. "Thermodynamic Estimate of Minimal Dissipation for Heat Exchange System." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66883.
Full textMcGovern, Jim, Barry Cullen, Michel Feidt, and Stoian Petrescu. "Validation of a Simulation Model for a Combined Otto and Stirling Cycle Power Plant." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90220.
Full textChen, Z., C. D. Copeland, B. Ceen, S. Jones, and A. A. Goya. "Modelling and Simulation of an Inverted Brayton Cycle as an Exhaust-Gas Heat-Recovery System." In ASME 2016 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icef2016-9363.
Full textWu, Chih, Lingen Chen, and Fengrui Sun. "Finite-Time Thermodynamic Performance for a Class of Irreversible Heat Pumps." In ASME 1997 Turbo Asia Conference. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-aa-027.
Full textMa, Zheshu, and Ali Turan. "Finite Time Thermodynamic Modeling of a Indirectly Fired Gas Turbine Cycle." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5448475.
Full textSCHÖN, J. CHRISTIAN, and BJARNE ANDRESEN. "FINITE-TIME OPTIMIZATION OF CHEMICAL REACTIONS AND CONNECTIONS TO THERMODYNAMIC SPEED." In 101st WE-Heraeus-Seminar. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814503648_0009.
Full textReports on the topic "Finite-time thermodynamics"
Walters, Joseph. Optimization and Thermodynamic Performance Measures of a Class of Finite Time Thermodynamic Cycles. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1185.
Full textThermodynamics of finite-time processes: Final report, 1986--89. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5830514.
Full text