To see the other types of publications on this topic, follow the link: Finite-Temperature properties.

Journal articles on the topic 'Finite-Temperature properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Finite-Temperature properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ishii, Noriyoshi, Hideo Suganuma, and Hideo Matsufuru. "Glueball properties at finite temperature." Nuclear Physics B - Proceedings Supplements 106-107 (March 2002): 516–18. http://dx.doi.org/10.1016/s0920-5632(01)01765-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Drabold, David A., P. A. Fedders, Stefan Klemm, and Otto F. Sankey. "Finite-temperature properties of amorphous silicon." Physical Review Letters 67, no. 16 (October 14, 1991): 2179–82. http://dx.doi.org/10.1103/physrevlett.67.2179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Seibert, David, and Charles Gale. "Measuring hadron properties at finite temperature." Physical Review C 52, no. 2 (August 1, 1995): R490—R494. http://dx.doi.org/10.1103/physrevc.52.r490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jaklič, J., and P. Prelovšek. "Finite-temperature properties of doped antiferromagnets." Advances in Physics 49, no. 1 (January 2000): 1–92. http://dx.doi.org/10.1080/000187300243381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Hanbin, and Kenneth D. Jordan. "Finite Temperature Properties of (CO2)nClusters." Journal of Physical Chemistry A 107, no. 30 (July 2003): 5703–9. http://dx.doi.org/10.1021/jp0345295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

HAN, FUXIANG, and YONGMEI ZHANG. "FINITE TEMPERATURE PROPERTIES OF OPTICAL LATTICES." International Journal of Modern Physics B 19, no. 31 (December 20, 2005): 4567–86. http://dx.doi.org/10.1142/s0217979205032942.

Full text
Abstract:
Within a mean-field treatment of the Bose–Hubbard model for an optical lattice, we have derived a self-consistent equation for the order parameter of possible phases in the optical lattice at finite temperatures. From the solutions to the self-consistent equation, we have inferred the temperature dependence of the order parameter and transition temperatures of Mott-insulator and superfluid phases into the normal phase. The condensation fraction in the superfluid phase has been deduced from the one-body density matrix and its temperature dependence has been given. In terms of the normalized correlation function of quasiparticles, strong coherence in the superfluid phase and its loss in Mott-insulator phases are demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
7

Ju, Nengjiu, and Aurel Bulgac. "Finite-temperature properties of sodium clusters." Physical Review B 48, no. 4 (July 15, 1993): 2721–32. http://dx.doi.org/10.1103/physrevb.48.2721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, K. L., S. K. Lai, and W. D. Lin. "Finite temperature properties for zinc nanoclusters." Molecular Simulation 31, no. 6-7 (May 2005): 399–403. http://dx.doi.org/10.1080/08927020412331332749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

de Oliveira, N. A., and A. A. Gomes. "Laves phase pseudobinaries: finite temperature properties." Journal of Magnetism and Magnetic Materials 117, no. 1-2 (November 1992): 169–74. http://dx.doi.org/10.1016/0304-8853(92)90307-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Jie, Jue-lian Shen, and Hai-qing Lin. "Finite Temperature Properties of The FrustratedJ1-J2Model." Journal of the Physical Society of Japan 68, no. 7 (July 15, 1999): 2384–89. http://dx.doi.org/10.1143/jpsj.68.2384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kumar, Priyank, N. K. Bhatt, P. R. Vyas, and V. B. Gohel. "Thermophysical properties of iridium at finite temperature." Chinese Physics B 25, no. 11 (November 2016): 116401. http://dx.doi.org/10.1088/1674-1056/25/11/116401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bhatt, N. K., P. R. Vyas, V. B. Gohel, and A. R. Jani. "Finite-temperature thermophysical properties of fcc-Ca." European Physical Journal B 58, no. 1 (July 2007): 61–68. http://dx.doi.org/10.1140/epjb/e2007-00196-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Brunet, L. G., R. M. Ribeiro-Teixeira, and J. R. Iglesias. "FINITE TEMPERATURE PROPERTIES OF THE ANDERSON LATTICE." Le Journal de Physique Colloques 49, no. C8 (December 1988): C8–697—C8–698. http://dx.doi.org/10.1051/jphyscol:19888315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Horwitz, G., and G. Kalbermann. "Properties of a finite-temperature supersymmetric ensemble." Physical Review D 38, no. 2 (July 15, 1988): 714–17. http://dx.doi.org/10.1103/physrevd.38.714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

PASSAMANI, TOMAZ, and MARIA LUIZA CESCATO. "HOT NUCLEAR MATTER PROPERTIES." International Journal of Modern Physics E 16, no. 09 (October 2007): 3041–44. http://dx.doi.org/10.1142/s0218301307009002.

Full text
Abstract:
The nuclear matter at finite temperature is described in the relativistic mean field theory using linear and nonlinear interactions. The behavior of effective nucleon mass with temperature was numerically calculated. For the nonlinear NL3 interaction we also observed the striking decrease at temperatures well below the nucleon mass. The calculation of NL3 nuclear matter equation of state at finite temperature is still on progress.
APA, Harvard, Vancouver, ISO, and other styles
16

DUNNE, GERALD V. "FINITE TEMPERATURE INDUCED FERMION NUMBER." International Journal of Modern Physics A 17, no. 06n07 (March 20, 2002): 890–97. http://dx.doi.org/10.1142/s0217751x02010273.

Full text
Abstract:
The induced fermion number at zero temperature is topological (in the sense that it is only sensitive to global asymptotic properties of the background field), and is a sharp observable (in the sense that it has vanishing rms fluctuations). At finite temperature, it is shown to be generically nontopological, and it is not a sharp observable.
APA, Harvard, Vancouver, ISO, and other styles
17

ITO, IKUO, and TADASHI KON. "THERMAL PROPERTIES OF PARASUPERSYMMETRIC OSCILLATOR." International Journal of Modern Physics A 07, no. 17 (July 10, 1992): 3997–4014. http://dx.doi.org/10.1142/s0217751x92001782.

Full text
Abstract:
Parasupersymmetric oscillator model of one bosonic and one order p parafermionic degrees of freedom at finite temperature is investigated in the framework of Thermo Field Dynamics (TFD). The temperature dependent vacuum |O(β)> is constructed and the generator of thermal unitary transformation |O(β)>=e−iG(β)|O> is obtained. We also comment on a signal of the parasuper-symmetry breaking at finite temperature.
APA, Harvard, Vancouver, ISO, and other styles
18

Shinozaki, Misako, Shintaro Hoshino, Yusuke Masaki, Jun-ichiro Kishine, and Yusuke Kato. "Finite-Temperature Properties of Three-Dimensional Chiral Helimagnets." Journal of the Physical Society of Japan 85, no. 7 (July 15, 2016): 074710. http://dx.doi.org/10.7566/jpsj.85.074710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Yoshimi, Kazuyoshi, Makoto Naka, and Hitoshi Seo. "Finite Temperature Properties of Geometrically Charge Frustrated Systems." Journal of the Physical Society of Japan 89, no. 3 (March 15, 2020): 034003. http://dx.doi.org/10.7566/jpsj.89.034003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

LeSar, R., R. Najafabadi, and D. J. Srolovitz. "Finite-temperature defect properties from free-energy minimization." Physical Review Letters 63, no. 6 (August 7, 1989): 624–27. http://dx.doi.org/10.1103/physrevlett.63.624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ibarra, J. R. Morones, A. J. Garza Aguirre, and Francisco V. Flores-Baez. "Properties of the sigma meson at finite temperature." International Journal of Modern Physics A 30, no. 35 (December 20, 2015): 1550214. http://dx.doi.org/10.1142/s0217751x15502140.

Full text
Abstract:
We study the changes of the mass and width of the sigma meson in the framework of the Linear Sigma Model at finite temperature, in the one-loop approximation. We have found that as the temperature increases, the mass of sigma shifts down. We have also analyzed the [Formula: see text]-spectral function and we observe an enhancement at the threshold which is a signature of partial restoration of chiral symmetry, also interpreted as a tendency to chiral phase transition. Additionally, we studied the width of the sigma, when the threshold enhancement takes place, for different values of the sigma mass. We found that there is a brief enlargement followed by an abrupt fall in the width as the temperature increases, which is also related with the restoration of chiral symmetry and an indication that the sigma is a bound state of two pions.
APA, Harvard, Vancouver, ISO, and other styles
22

López-Urı́as, F., G. M. Pastor, and K. H. Bennemann. "Calculation of finite temperature magnetic properties of clusters." Journal of Applied Physics 87, no. 9 (May 2000): 4909–11. http://dx.doi.org/10.1063/1.373199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Haglin, Kevin L., and Charles Gale. "Properties of the φ-meson at finite temperature." Nuclear Physics B 421, no. 3 (June 1994): 613–31. http://dx.doi.org/10.1016/0550-3213(94)90519-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hasegawa, H. "Finite-temperature surface properties of itinerant-electron ferromagnets." Journal of Physics F: Metal Physics 16, no. 3 (March 1986): 347–64. http://dx.doi.org/10.1088/0305-4608/16/3/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kucharek, H., P. Ring, and P. Schuck. "Pairing properties of nuclear matter at finite temperature." Zeitschrift f�r Physik A Atomic Nuclei 334, no. 2 (June 1989): 119–24. http://dx.doi.org/10.1007/bf01294212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Baranov, M. A., V. S. Gorbachev, and A. V. Senatorov. "Properties of the Josephson medium at finite temperature." Physica C: Superconductivity 179, no. 1-3 (August 1991): 52–58. http://dx.doi.org/10.1016/0921-4534(91)90010-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sun, Z., and J. H. Hetherington. "Magnetic properties of solid 3He at finite temperature." Journal of Low Temperature Physics 86, no. 5-6 (March 1992): 303–9. http://dx.doi.org/10.1007/bf00121500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lutz, M., S. Klimt, and W. Weise. "Meson properties at finite temperature and baryon density." Nuclear Physics A 542, no. 4 (June 1992): 521–58. http://dx.doi.org/10.1016/0375-9474(92)90256-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Jaklic, J., and P. Prelovsek. "ChemInform Abstract: Finite-Temperature Properties of Doped Antiferromagnets." ChemInform 31, no. 42 (October 17, 2000): no. http://dx.doi.org/10.1002/chin.200042249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Spínola, Miguel, Shashank Saxena, Prateek Gupta, Brandon Runnels, and Dennis M. Kochmann. "Finite-temperature grain boundary properties from quasistatic atomistics." Computational Materials Science 244 (September 2024): 113270. http://dx.doi.org/10.1016/j.commatsci.2024.113270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Frick, M., and T. Schneider. "On the theory of layered high-temperature superconductors: Finite temperature properties." Zeitschrift f�r Physik B Condensed Matter 78, no. 2 (June 1990): 159–68. http://dx.doi.org/10.1007/bf01307831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Iwasaki, Y., K. Kanaya, S. Sakai, and T. Yoshié. "Chiral properties of dynamical Wilson quarks at finite temperature." Physical Review Letters 67, no. 12 (September 16, 1991): 1494–97. http://dx.doi.org/10.1103/physrevlett.67.1494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Stoffel, A. J., and M. Gulácsi. "Finite temperature properties of a supersolid: a RPA approach." European Physical Journal B 67, no. 2 (January 2009): 169–81. http://dx.doi.org/10.1140/epjb/e2009-00018-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lesar, R., and J. M. Rickman. "Finite-temperature properties of materials from analytical statistical mechanics." Philosophical Magazine B 73, no. 4 (April 1996): 627–39. http://dx.doi.org/10.1080/13642819608239140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Umeda, Takashi, and Hideo Matsufuru. "Charmonium properties at finite temperature on quenched anisotropic lattices." Nuclear Physics B - Proceedings Supplements 140 (March 2005): 547–49. http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Caldas, A., P. J. von Ranke, and N. A. de Oliveira. "Finite temperature magnetic properties of the PrCo2 intermetallic compound." Physica B: Condensed Matter 253, no. 1-2 (October 1998): 158–62. http://dx.doi.org/10.1016/s0921-4526(98)00055-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Rosenstein, B., A. D. Speliotopoulos, and H. L. Yu. "Some properties of the finite temperature chiral phase transition." Physical Review D 49, no. 12 (June 15, 1994): 6822–28. http://dx.doi.org/10.1103/physrevd.49.6822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Craco, Luis. "Finite-temperature properties of the two-orbital Anderson model." Journal of Physics: Condensed Matter 11, no. 44 (October 20, 1999): 8689–95. http://dx.doi.org/10.1088/0953-8984/11/44/307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Borisenko, O., V. Petrov, and G. Zinovjev. "Confining properties of noncompact gauge theories at finite temperature." Nuclear Physics B - Proceedings Supplements 42, no. 1-3 (April 1995): 466–68. http://dx.doi.org/10.1016/0920-5632(95)00281-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Shu, Song, and Jia-Rong Li. "Studying the baryon properties through chiral soliton model at finite temperature and density." International Journal of Modern Physics: Conference Series 29 (January 2014): 1460213. http://dx.doi.org/10.1142/s2010194514602130.

Full text
Abstract:
We have studied the chiral soliton model in a thermal vacuum. The soliton equations are solved at finite temperature and density. The temperature or density dependent soliton solutions are presented. The physical properties of baryons are derived from the soliton solutions at finite temperature and density. The temperature or density dependent variation of the baryon properties are discussed.
APA, Harvard, Vancouver, ISO, and other styles
41

MENEZES, DÉBORA P., and C. PROVIDÊNCIA. "FINITE TEMPERATURE EQUATIONS OF STATE FOR MIXED STARS." International Journal of Modern Physics D 13, no. 07 (August 2004): 1249–53. http://dx.doi.org/10.1142/s0218271804005389.

Full text
Abstract:
We investigate the properties of mixed stars formed by hadronic and quark matter in β-equilibrium described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. The calculations were performed for T=0 and for finite temperatures and also for fixed entropies with and without neutrino trapping in order to describe neutron and proto-neutron stars. The star properties are discussed. Maximum allowed masses for proto-neutron stars are much larger when neutrino trapping is imposed.
APA, Harvard, Vancouver, ISO, and other styles
42

Teo, Lee Peng. "Dispersive Correction to Casimir Force at Finite Temperature." Applied Mechanics and Materials 110-116 (October 2011): 465–71. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.465.

Full text
Abstract:
We study the dispersive correction to the finite temperature Casimir force acting on a pair of plates immersed in a magnetodielectric medium. We consider the case where both the plates are perfectly conducting and the case where one plate is perfectly conducting and one plate is infinitely permeable. Although the sign and the strength of the Casimir force depend strongly on the properties of the plates, it is found that in the high temperature regime, the Casimir force has a classical limit that does not depend on the properties of the medium separating the plates.
APA, Harvard, Vancouver, ISO, and other styles
43

Rickman, J. M., R. Najafabadi, L. Zhao, and D. J. Srolovitz. "Finite-temperature properties of perfect crystals and defects from zero-temperature energy minimization." Journal of Physics: Condensed Matter 4, no. 21 (May 25, 1992): 4923–34. http://dx.doi.org/10.1088/0953-8984/4/21/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Apalowo, RK, D. Chronopoulos, M. Ichchou, Y. Essa, and F. Martin De La Escalera. "The impact of temperature on wave interaction with damage in composite structures." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, no. 16 (August 2017): 3042–56. http://dx.doi.org/10.1177/0954406217718217.

Full text
Abstract:
The increased use of composite materials in modern aerospace and automotive structures, and the broad range of launch vehicles’ operating temperature imply a great temperature range for which the structures has to be frequently and thoroughly inspected. A thermal mechanical analysis is used to experimentally measure the temperature-dependent mechanical properties of a composite layered panel in the range of −100 ℃ to 150 ℃. A hybrid wave finite element/finite element computational scheme is developed to calculate the temperature-dependent wave propagation and interaction properties of a system of two structural waveguides connected through a coupling joint. Calculations are made using the measured thermomechanical properties. Temperature-dependent wave propagation constants of each structural waveguide are obtained by the wave finite element approach and then coupled to the fully finite element described coupling joint, on which damage is modelled, in order to calculate the scattering magnitudes of the waves interaction with damage across the coupling joint. The significance of the panel’s glass transition range on the measured and calculated properties is emphasised. Numerical results are presented as illustration of the work.
APA, Harvard, Vancouver, ISO, and other styles
45

Fantoni, Riccardo. "One-component fermion plasma on a sphere at finite temperature." International Journal of Modern Physics C 29, no. 08 (August 2018): 1850064. http://dx.doi.org/10.1142/s012918311850064x.

Full text
Abstract:
We study through a computer experiment, using the restricted path integral Monte Carlo method, a one-component fermion plasma on a sphere at finite, nonzero, temperature. We extract thermodynamic properties like the kinetic and internal energy per particle and structural properties like the radial distribution function. This study could be relevant for the characterization and better understanding of the electronic properties of hollow graphene spheres.
APA, Harvard, Vancouver, ISO, and other styles
46

Feuston, Bradley P., Wanda Andreoni, Michele Parrinello, and Enrico Clementi. "Electronic and vibrational properties ofC60at finite temperature fromab initiomolecular dynamics." Physical Review B 44, no. 8 (August 15, 1991): 4056–59. http://dx.doi.org/10.1103/physrevb.44.4056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Koskinen, P., M. Koskinen, and M. Manninen. "Low-energy spectrum and finite temperature properties of quantum rings." European Physical Journal B 28, no. 4 (August 2002): 483–89. http://dx.doi.org/10.1140/epjb/e2002-00251-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lopez-Arias, Teresa, and Augusto Smerzi. "Kinetic properties of a Bose-Einstein gas at finite temperature." Physical Review A 58, no. 1 (July 1, 1998): 526–30. http://dx.doi.org/10.1103/physreva.58.526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Goedecker, S. "Decay properties of the finite-temperature density matrix in metals." Physical Review B 58, no. 7 (August 15, 1998): 3501–2. http://dx.doi.org/10.1103/physrevb.58.3501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Haule, K., J. Bonča, and P. Prelovšek. "Finite-temperature properties of the two-dimensional Kondo lattice model." Physical Review B 61, no. 4 (January 15, 2000): 2482–87. http://dx.doi.org/10.1103/physrevb.61.2482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography