To see the other types of publications on this topic, follow the link: Finite element modelling.

Journal articles on the topic 'Finite element modelling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Finite element modelling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kumar, Anil, Anil kumar chhotu, Ghausul Azam Ansari, et al. "Finite Element Modelling of Corroded RC Flexural Elements." International Journal of Engineering Trends and Technology 71, no. 4 (2023): 462–73. http://dx.doi.org/10.14445/22315381/ijett-v71i4p239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Merodo, José Antonio Fernandez, and Manuel Pastor. "Finite Element Modelling of Landslides." Revue Française de Génie Civil 6, no. 6 (2002): 1193–212. http://dx.doi.org/10.1080/12795119.2002.9692739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ridley, P. H. W., G. W. Roberts, M. A. Wongsam, and R. W. Chantrell. "Finite element modelling of nanoelements." Journal of Magnetism and Magnetic Materials 193, no. 1-3 (1999): 423–26. http://dx.doi.org/10.1016/s0304-8853(98)00467-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shinwari, M. W., M. J. Deen, and P. R. Selvaganapathy. "Finite-Element Modelling of Biotransistors." Nanoscale Research Letters 5, no. 3 (2010): 494–500. http://dx.doi.org/10.1007/s11671-009-9522-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carey, Graham F. "Parallelism in finite element modelling." Communications in Applied Numerical Methods 2, no. 3 (1986): 281–87. http://dx.doi.org/10.1002/cnm.1630020309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Moskvichev, Egor. "Distribution of material properties in finite element models of inhomogeneous elements of structures." EPJ Web of Conferences 221 (2019): 01034. http://dx.doi.org/10.1051/epjconf/201922101034.

Full text
Abstract:
This paper discusses an approach to finite element modelling of structure elements considering material inhomogeneity. This approach is based on the functional dependence of mechanical properties on the spatial coordinates of finite elements. It allows modelling gradient transitions between different materials, which avoid stress discontinuities during strength analysis. The finite element models of cold formed angle, welded joint and thermal barrier coating, created by this method, have been presented.
APA, Harvard, Vancouver, ISO, and other styles
7

Fernández Ruiz, M., G. Argirova, and A. Muttoni. "How simple can nonlinear finite element modelling be for structural concrete?" Informes de la Construcción 66, Extra-1 (2014): m013. http://dx.doi.org/10.3989/ic.13.085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kukiełka, Leon, and Krzysztof Kukiełka. "Modelling and analysis of the technological processes using finite element method." Mechanik, no. 3 (March 2015): 195/317–195/340. http://dx.doi.org/10.17814/mechanik.2015.3.149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brůha, Jan, and Drahomír Rychecký. "Modelling of Rotating Twisted Blades as 1D Continuum." Applied Mechanics and Materials 821 (January 2016): 183–90. http://dx.doi.org/10.4028/www.scientific.net/amm.821.183.

Full text
Abstract:
Presented paper deals with modelling of a twisted blade with rhombic shroud as one-dimensional continuum by means of Rayleigh beam finite elements with varying cross-sectional parameters along the finite elements. The blade is clamped into a rotating rigid disk and the shroud is considered to be a rigid body. Since the finite element models based on the Rayleigh beam theory tend to slightly overestimate natural frequencies and underestimate deflections in comparison with finite element models including shear deformation effects, parameter tuning of the blade is performed.
APA, Harvard, Vancouver, ISO, and other styles
10

Kushwaha, R. L. "FINITE ELEMENT MODELLING OF TILLAGE TOOL DESIGN." Transactions of the Canadian Society for Mechanical Engineering 17, no. 2 (1993): 257–69. http://dx.doi.org/10.1139/tcsme-1993-0016.

Full text
Abstract:
A non-linear finite element model was developed for three dimensional soil cutting by tillage tools. A hyperbolic constitutive relation for soil was used in the model. Analysis was carried out to simulate soil cutting with rectangular flat and triangular tillage blades at different rake angles and with curved blades. Interface elements were used to model the adhesion and the friction between soil and blade surface. Soil forces obtained from the finite element model for the straight blades were verified with the results from laboratory tillage tests in the soil bin. The finite element model pre
APA, Harvard, Vancouver, ISO, and other styles
11

Chia, Julian Y. H., Kais Hbaieb, and Q. X. Wang. "Finite Element Modelling Epoxy/Clay Nanocomposites." Key Engineering Materials 334-335 (March 2007): 785–88. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.785.

Full text
Abstract:
A full 3D finite element method has been used to understand how nano-clay particles affect the mechanical properties of an epoxy/clay nanocomposite. The epoxy/clay nanocomposite has been modelled as a representative volume element (RVE) containing intercalated clay platelets that internally delaminates at the gallery layer upon satisfying an energy criterion, and an epoxy matrix that is elastic-plastic. A cohesive traction-displacement law is used to model the clay gallery behaviour until failure. For clay volume fractions >1%, clay particle interaction is observed to develop during uniaxia
APA, Harvard, Vancouver, ISO, and other styles
12

Jónás, Szabolcs, and Miklós Tisza. "Finite Element Modelling of Clinched Joints." Advanced Technologies & Materials 43, no. 1 (2018): 1–6. http://dx.doi.org/10.24867/atm-2018-1-001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bouziane, Salah, Hamoudi Bouzerd, and Mohamed Guenfoud. "Mixed finite element for modelling interfaces." European Journal of Computational Mechanics 18, no. 2 (2009): 155–75. http://dx.doi.org/10.3166/ejcm.18.155-175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Tang, B., H. S. Mitri, and M. Bouteldja. "Finite-element modelling of rock anchors." Proceedings of the Institution of Civil Engineers - Ground Improvement 4, no. 2 (2000): 65–71. http://dx.doi.org/10.1680/grim.2000.4.2.65.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kopysov, S. P., A. K. Novikov, V. N. Rychkov, Yu A. Sagdeeva, and L. E. Tonkov. "Virtual laboratory for finite element modelling." Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, no. 4 (December 2010): 131–45. http://dx.doi.org/10.20537/vm100415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sykulski, J. K., and R. L. Stoll. "FINITE ELEMENT MODELLING OF INDUCTIVE SENSORS." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 11, no. 1 (1992): 69–72. http://dx.doi.org/10.1108/eb051754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bougharriou, A., K. Saï, and W. Bouzid. "Finite element modelling of burnishing process." Materials Technology 25, no. 1 (2010): 56–62. http://dx.doi.org/10.1179/175355509x387110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

AAMO, O. M., and T. I. FOSSEN. "Finite Element Modelling of Moored Vessels." Mathematical and Computer Modelling of Dynamical Systems 7, no. 1 (2001): 47–75. http://dx.doi.org/10.1076/mcmd.7.1.47.3632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Krichen, A., K. Sai, and W. Bouzid. "Finite element modelling of countersinking process." International Journal of Materials and Product Technology 33, no. 4 (2008): 376. http://dx.doi.org/10.1504/ijmpt.2008.022516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pecingina, O. M. "Modelling bucket excavation by finite element." IOP Conference Series: Materials Science and Engineering 95 (November 3, 2015): 012046. http://dx.doi.org/10.1088/1757-899x/95/1/012046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Servranckx, D., and A. A. Mufti. "Data structures for finite element modelling." Engineering Computations 3, no. 1 (1986): 27–35. http://dx.doi.org/10.1108/eb023638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gay, Derek A. "Finite element modelling of steelpan acoustics." Journal of the Acoustical Society of America 123, no. 5 (2008): 3799. http://dx.doi.org/10.1121/1.2935485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Röhrle, O., J. Davidson, and A. Pullan. "Finite element modelling of human mastication." Journal of Biomechanics 39 (January 2006): S55. http://dx.doi.org/10.1016/s0021-9290(06)83099-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pavlović, M. N., S. Arnaout, and D. Hitchings. "Finite element modelling of sewer linings." Computers & Structures 63, no. 4 (1997): 837–48. http://dx.doi.org/10.1016/s0045-7949(96)00067-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Rucki, M. D., and G. R. Miller. "An adaptable finite element modelling kernel." Computers & Structures 69, no. 3 (1998): 399–409. http://dx.doi.org/10.1016/s0045-7949(98)00104-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mohr, G. "Finite element modelling of distribution problems." Applied Mathematics and Computation 105, no. 1 (1999): 69–76. http://dx.doi.org/10.1016/s0096-3003(98)10097-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Marotti de Sciarra, Francesco. "Finite element modelling of nonlocal beams." Physica E: Low-dimensional Systems and Nanostructures 59 (May 2014): 144–49. http://dx.doi.org/10.1016/j.physe.2014.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Aamo, O. M., and T. I. Fossen. "Finite element modelling of mooring lines." Mathematics and Computers in Simulation 53, no. 4-6 (2000): 415–22. http://dx.doi.org/10.1016/s0378-4754(00)00235-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ramakrishnan, N., and V. S. Arunachalam. "Finite element methods for materials modelling." Progress in Materials Science 42, no. 1-4 (1997): 253–61. http://dx.doi.org/10.1016/s0079-6425(97)00031-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Holzinger, M. "Finite-element modelling of unbounded media." Simulation Practice and Theory 5, no. 6 (1997): p27—p28. http://dx.doi.org/10.1016/s0928-4869(97)84249-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Prendergast, Patrick J., Caitríona Lally, and Alexander B. Lennon. "Finite element modelling of medical devices." Medical Engineering & Physics 31, no. 4 (2009): 419. http://dx.doi.org/10.1016/j.medengphy.2009.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Petty, D. M. "Friction models for finite element modelling." Journal of Materials Processing Technology 45, no. 1-4 (1994): 7–12. http://dx.doi.org/10.1016/0924-0136(94)90310-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mohammed, A. K., and S. T. Gomaa. "Finite element modelling of deep beams." Computers & Structures 48, no. 1 (1993): 63–71. http://dx.doi.org/10.1016/0045-7949(93)90458-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Henrotte, F., B. Meys, H. Hedia, P. Dular, and W. Legros. "Finite element modelling with transformation techniques." IEEE Transactions on Magnetics 35, no. 3 (1999): 1434–37. http://dx.doi.org/10.1109/20.767235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Armstrong, Cecil G. "Modelling requirements for finite-element analysis." Computer-Aided Design 26, no. 7 (1994): 573–78. http://dx.doi.org/10.1016/0010-4485(94)90088-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lin, Hua, Martin Sherburn, Jonathan Crookston, Andrew C. Long, Mike J. Clifford, and I. Arthur Jones. "Finite element modelling of fabric compression." Modelling and Simulation in Materials Science and Engineering 16, no. 3 (2008): 035010. http://dx.doi.org/10.1088/0965-0393/16/3/035010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lin, Hua, Mike J. Clifford, Andrew C. Long, and Martin Sherburn. "Finite element modelling of fabric shear." Modelling and Simulation in Materials Science and Engineering 17, no. 1 (2008): 015008. http://dx.doi.org/10.1088/0965-0393/17/1/015008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Girdinio, P., M. Repetto, and J. Simkin. "Finite element modelling of charged beams." IEEE Transactions on Magnetics 30, no. 5 (1994): 2932–35. http://dx.doi.org/10.1109/20.312551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Leonard, P. J., D. Rodger, T. Karagular, and P. C. Coles. "Finite element modelling of magnetic hysteresis." IEEE Transactions on Magnetics 31, no. 3 (1995): 1801–4. http://dx.doi.org/10.1109/20.376386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Beynon, John H. "Finite–element modelling of thermomechanical processing." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, no. 1756 (1999): 1573–87. http://dx.doi.org/10.1098/rsta.1999.0390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Seetharamu, K. N., R. Paragasam, Ghulam A. Quadir, Z. A. Zainal, B. Sathya Prasad, and T. Sundararajan. "Finite element modelling of solidification phenomena." Sadhana 26, no. 1-2 (2001): 103–20. http://dx.doi.org/10.1007/bf02728481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Papatriantafillou, Ioannis, Nikolaos Aravas, and Gregory N. Haidemenopoulos. "Finite Element Modelling of TRIP Steels." steel research international 75, no. 11 (2004): 730–36. http://dx.doi.org/10.1002/srin.200405835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sizova, Irina, Alexander Sviridov, Martin Günther, and Markus Bambach. "Finite Element Modelling of Titanium Aluminides." Computer Methods in Material Science 17, no. 1 (2017): 51–58. http://dx.doi.org/10.7494/cmms.2017.1.0575.

Full text
Abstract:
Hot forging is an important process for shaping and property control of lightweight titanium aluminide parts. Dynamic recrystallization and phase transformations play an essential role for the resulting grain size and accordingly the mechanical properties. Due to the fact that titanium aluminides require forging under isothermal conditions, reliable process modeling is needed to predict the microstructure evolution, to optimize the process time and to avoid excessive die loads. In the present study an isothermal forging process of a compressor blade made of TNB-V4 (Ti–44.5Al–6.25Nb–0.8Mo–0.1B,
APA, Harvard, Vancouver, ISO, and other styles
44

Cheng, Xianchao, and Lin Zhang. "Finite-element modelling of multilayer X-ray optics." Journal of Synchrotron Radiation 24, no. 3 (2017): 717–24. http://dx.doi.org/10.1107/s1600577517004738.

Full text
Abstract:
Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanome
APA, Harvard, Vancouver, ISO, and other styles
45

Kalanta, Stanislovas. "FINITE ELEMENTS FOR MODELLING BEAMS AFFECTED BY A DISTRIBUTED LOAD." JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 5, no. 2 (1999): 91–99. http://dx.doi.org/10.3846/13921525.1999.10531442.

Full text
Abstract:
Usually a finite element with cubic deflection approximation function is applied when evaluating the stress and strain field of bar structures. But such an element only approximately evaluates the actual strain field of the bar affected by a distributed load. The improved finite elements (Fig 1, 2) with fourth and fifth-order deflection approximation functions (1), (6) and (13) are presented in the actual manuscript. The fifth-order deflection approximation function is used for modelling the beams affected by a linearly distributed load (11). The plain bending of the finite element is modelled
APA, Harvard, Vancouver, ISO, and other styles
46

Yushchenko, K. A., E. A. Velikoivanenko, N. O. Chervyakov, G. F. Rozynka, and N. I. Pivtorak. "Finite-element modelling of stress-strain state in weldability tests (PVR-TEST)." Paton Welding Journal 2016, no. 12 (2016): 9–12. http://dx.doi.org/10.15407/tpwj2016.12.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gabrielaitienė, Irena, Rimantas Kačianauskas, and Bengt Sunden. "THERMO-HYDRAULIC FINITE ELEMENT MODELLING OF DISTRICT HEATING NETWORK BY THE UNCOUPLED APPROACH." JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 9, no. 3 (2003): 153–62. http://dx.doi.org/10.3846/13923730.2003.10531321.

Full text
Abstract:
The modelling of uncoupled fluid flow and heat transfer problems of a district heating network using the finite element method (FEM) is presented. Since the standard thermo-hydraulic pipe elements cannot be directly used for modelling insulation, the main attention was paid to discretisation of multilayered structure of pipes and surrounding by one-dimensional thermal elements. In addition, validity of the finite element method was verified numerically by solving fluid flow and heat transfer problems in district heating pipelines. Verification analysis involves standard single pipe problems an
APA, Harvard, Vancouver, ISO, and other styles
48

Lengiewicz, Jakub, and Stanisław Stupkiewicz. "Continuum framework for finite element modelling of finite wear." Computer Methods in Applied Mechanics and Engineering 205-208 (January 2012): 178–88. http://dx.doi.org/10.1016/j.cma.2010.12.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rezaeealam, Behrooz. "Finite-element/boundary-element transient modelling of hysteresis motors." Journal of Magnetism and Magnetic Materials 519 (February 2021): 167474. http://dx.doi.org/10.1016/j.jmmm.2020.167474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Das, S., Eric J. Palmiere, and I. C. Howard. "Modelling Recrystallisation during Thermomechanical Processing Using CAFE." Materials Science Forum 467-470 (October 2004): 623–28. http://dx.doi.org/10.4028/www.scientific.net/msf.467-470.623.

Full text
Abstract:
A common feature that stimulates modelling efforts across the various physical sciences is that complex microscopic behaviour underlies apparently simple macroscopic effects. Mathematical formulations attempt to capture the initial and evolving microstructural entities either implicitly or explicitly and link their effects to measurable macroscopic variables such as load or stress by averaging out any microscopic fluctuations. The implicit formulations that ignore the inherent spatial heterogeneity in the deforming domain form the basis of constitutive models for input to finite element (FE) s
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!