Academic literature on the topic 'Finite element method'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Finite element method.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Finite element method"

1

ICHIHASHI, Hidetomo, and Hitoshi FURUTA. "Finite Element Method." Journal of Japan Society for Fuzzy Theory and Systems 6, no. 2 (1994): 246–49. http://dx.doi.org/10.3156/jfuzzy.6.2_246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Oden, J. "Finite element method." Scholarpedia 5, no. 5 (2010): 9836. http://dx.doi.org/10.4249/scholarpedia.9836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kulkarni, Sachin M., and Dr K. G. Vishwananth. "Analysis for FRP Composite Beams Using Finite Element Method." Bonfring International Journal of Man Machine Interface 4, Special Issue (July 30, 2016): 192–95. http://dx.doi.org/10.9756/bijmmi.8181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Panzeca, T., F. Cucco, and S. Terravecchia. "Symmetric boundary element method versus finite element method." Computer Methods in Applied Mechanics and Engineering 191, no. 31 (May 2002): 3347–67. http://dx.doi.org/10.1016/s0045-7825(02)00239-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

BARBOSA, R., and J. GHABOUSSI. "DISCRETE FINITE ELEMENT METHOD." Engineering Computations 9, no. 2 (February 1992): 253–66. http://dx.doi.org/10.1108/eb023864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Desai,, CS, T. Kundu,, and Xiaoyan Lei,. "Introductory Finite Element Method." Applied Mechanics Reviews 55, no. 1 (January 1, 2002): B2. http://dx.doi.org/10.1115/1.1445303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kai-yuan, Yeh, and Ji Zhen-yi. "Exact finite element method." Applied Mathematics and Mechanics 11, no. 11 (November 1990): 1001–11. http://dx.doi.org/10.1007/bf02015684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Lucy, Axel Gerstenberger, Xiaodong Wang, and Wing Kam Liu. "Immersed finite element method." Computer Methods in Applied Mechanics and Engineering 193, no. 21-22 (May 2004): 2051–67. http://dx.doi.org/10.1016/j.cma.2003.12.044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fries, Thomas-Peter, Andreas Zilian, and Nicolas Moës. "Extended Finite Element Method." International Journal for Numerical Methods in Engineering 86, no. 4-5 (March 10, 2011): 403. http://dx.doi.org/10.1002/nme.3191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Warsa, James S. "A Continuous Finite Element-Based, Discontinuous Finite Element Method forSNTransport." Nuclear Science and Engineering 160, no. 3 (November 2008): 385–400. http://dx.doi.org/10.13182/nse160-385tn.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Finite element method"

1

Starkloff, Hans-Jörg. "Stochastic finite element method with simple random elements." Universitätsbibliothek Chemnitz, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200800596.

Full text
Abstract:
We propose a variant of the stochastic finite element method, where the random elements occuring in the problem formulation are approximated by simple random elements, i.e. random elements with only a finite number of possible values.
APA, Harvard, Vancouver, ISO, and other styles
2

Kang, David Sung-Soo. "Hybrid stress finite element method." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/14973.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1986.
MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERO
Bibliography: leaves 257-264.
by David Sung-Soo Kang.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
3

Adams, Leila. "Finite element method using vector finite elements applied to eddy current problems." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/9992.

Full text
Abstract:
Vector fields found in electromagnetics are fundamentally different to vector fields found in other research areas such as structural mechanics. Electromagnetic vector fields possess different physical behaviour patterns and different properties in comparison to the other vector fields and therein lies the necessity of the development of a finite element which would be able to cater for these differences . The vector finite element was then developed and used within the finite element method specifically for the approximation of electromagnetic problems. This dissertation investigates the partial differential equation that governs eddy current behaviour. A finite element algorithm is coded and used to solve this partial differential equation and produce vector field simulations for fundamental eddy current problems.
APA, Harvard, Vancouver, ISO, and other styles
4

Rabadi, Kairas. "PERFORMANCE OF INTERFACE ELEMENTS IN THE FINITE ELEMENT METHOD." Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2188.

Full text
Abstract:
The objective of this research is to assess the performance of interface elements in the finite element method. Interface elements are implemented in the finite element codes such as MSC.NASTRAN, which is used in this study. Interface elements in MSC.NASTRAN provide a tool to transition between a shell-meshed region to another shell-meshed region as well as from a shell-meshed region to a solid-meshed region. Often, in practice shell elements are layered on shell elements or on solid elements without the use of interface elements. This is potentially inaccurate arising in mismatched degrees of freedom. In the case of a shell-to-shell interface, we consider the case in which the two regions have mismatched nodes along the boundary. Interface elements are used to connect these mismatched nodes. The interface elements are especially useful in global/local analysis, where a region with a dense mesh interfaces to a region with a less dense mesh. Interface elements are used to help avoid using special transition elements between two meshed regions. This is desirable since the transition elements can be severely distorted and cause poor results. Accurate results are obtained in shell-shell and shell-solid combinations. The most interesting result is that not using interface elements can lead to severe inaccuracies. This difficulty is illustrated by computing the stress concentration of a sharp elliptical hole.
M.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
APA, Harvard, Vancouver, ISO, and other styles
5

Lu, Chuan. "Generalized finite element method for electromagnetic analysis." Diss., Connect to online resource - MSU authorized users, 2008.

Find full text
Abstract:
Thesis (Ph. D.)--Michigan State University. Electrical and Computer Engineering, 2008.
Title from PDF t.p. (viewed on Apr. 8, 2009) Includes bibliographical references (p. 148-153). Also issued in print.
APA, Harvard, Vancouver, ISO, and other styles
6

Vu, Thu Hang. "Enhancing the scaled boundary finite element method." University of Western Australia. School of Civil and Resource Engineering, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0068.

Full text
Abstract:
[Truncated abstract] The scaled boundary finite element method is a novel computational method developed by Wolf and Song which reduces partial differential equations to a set of ordinary linear differential equations. The method, which is semi-analytical, is suitable for solving linear elliptic, parabolic and hyperbolic partial differential equations. The method has proved to be very efficient in solving various types of problems, including problems of potential flow and diffusion. The method out performs the finite element method when solving unbounded domain problems and problems involving stress singularities and discontinuities. The scaled boundary finite element method involves solution of a quadratic eigenproblem, the computational expense of which increases rapidly as the number of degrees of freedom increases. Consequently, to a greater extent than the finite element method, it is desirable to obtain solutions at a specified level of accuracy while using the minimum number of degrees of freedom necessary. In previous work, no systematic study had been performed so far into the use of elements of higher order, and no consideration made of p adaptivity. . . The primal problem is solved normally using the basic scaled boundary finite element method. The dual problem is solved by the new technique using the fundamental solution. A guaranteed upper error bound based on the Cauchy-Schwarz inequality is derived. A iv goal-oriented p-hierarchical adaptive procedure is proposed and implemented efficiently in the scaled boundary finite element method.
APA, Harvard, Vancouver, ISO, and other styles
7

Sevilla, Cárdenas Rubén. "NURBS-Enhanced Finite Element Method (NEFEM)." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/5857.

Full text
Abstract:
Aquesta tesi proposa una millora del clàssic mètode dels elements finits (finite element method, FEM) per a un tractament eficient de dominis amb contorns corbs: el denominat NURBS-enhanced finite element method (NEFEM). Aquesta millora permet descriure de manera exacta la geometría mitjançant la seva representació del contorn CAD amb non-uniform rational B-splines (NURBS), mentre que la solució s'aproxima amb la interpolació polinòmica estàndard. Per tant, en la major part del domini, la interpolació i la integració numèrica són estàndard, retenint les propietats de convergència clàssiques del FEM i facilitant l'acoblament amb els elements interiors. Només es requereixen estratègies específiques per realitzar la interpolació i la integració numèrica en elements afectats per la descripció del contorn mitjançant NURBS.

La implementació i aplicació de NEFEM a problemes que requereixen una descripció acurada del contorn són, també, objectius prioritaris d'aquesta tesi. Per exemple, la solució numèrica de les equacions de Maxwell és molt sensible a la descripció geomètrica. Es presenta l'aplicació de NEFEM a problemes d'scattering d'ones electromagnètiques amb una formulació de Galerkin discontinu. S'investiga l'habilitat de NEFEM per obtenir solucions precises amb malles grolleres i aproximacions d'alt ordre, i s'exploren les possibilitats de les anomenades malles NEFEM, amb elements que contenen singularitats dintre d'una cara o aresta d'un element. Utilitzant NEFEM, la mida de la malla no està controlada per la complexitat de la geometria. Això implica una dràstica diferència en la mida dels elements i, per tant, suposa un gran estalvi tant des del punt de vista de requeriments de memòria com de cost computacional. Per tant, NEFEM és una eina poderosa per la simulació de problemes tridimensionals a gran escala amb geometries complexes. D'altra banda, la simulació de problemes d'scattering d'ones electromagnètiques requereix mecanismes per aconseguir una absorció eficient de les ones scattered. En aquesta tesi es discuteixen, optimitzen i comparen dues tècniques en el context de mètodes de Galerkin discontinu amb aproximacions d'alt ordre.

La resolució numèrica de les equacions d'Euler de la dinàmica de gasos és també molt sensible a la representació geomètrica. Quan es considera una formulació de Galerkin discontinu i elements isoparamètrics lineals, una producció espúria d'entropia pot evitar la convergència cap a la solució correcta. Amb NEFEM, l'acurada imposició de la condició de contorn en contorns impenetrables proporciona resultats precisos inclús amb una aproximació lineal de la solució. A més, la representació exacta del contorn permet una imposició adequada de les condicions de contorn amb malles grolleres i graus d'interpolació alts. Una propietat atractiva de la implementació proposada és que moltes de les rutines usuals en un codi d'elements finits poden ser aprofitades, per exemple rutines per realitzar el càlcul de les matrius elementals, assemblatge, etc. Només és necessari implementar noves rutines per calcular les quadratures numèriques en elements corbs i emmagatzemar el valor de les funciones de forma en els punts d'integració. S'han proposat vàries tècniques d'elements finits corbs a la literatura. En aquesta tesi, es compara NEFEM amb altres tècniques populars d'elements finits corbs (isoparamètics, cartesians i p-FEM), des de tres punts de vista diferents: aspectes teòrics, implementació i eficiència numèrica. En els exemples numèrics, NEFEM és, com a mínim, un ordre de magnitud més precís comparat amb altres tècniques. A més, per una precisió desitjada NEFEM és també més eficient: necessita un 50% dels graus de llibertat que fan servir els elements isoparamètrics o p-FEM per aconseguir la mateixa precisió. Per tant, l'ús de NEFEM és altament recomanable en presència de contorns corbs i/o quan el contorn té detalls geomètrics complexes.
This thesis proposes an improvement of the classical finite element method (FEM) for an efficient treatment of curved boundaries: the NURBSenhanced FEM (NEFEM). It is able to exactly represent the geometry by means of the usual CAD boundary representation with non-uniform rational Bsplines (NURBS), while the solution is approximated with a standard piecewise polynomial interpolation. Therefore, in the vast majority of the domain, interpolation and numerical integration are standard, preserving the classical finite element (FE) convergence properties, and allowing a seamless coupling with standard FEs on the domain interior. Specifically designed polynomial interpolation and numerical integration are designed only for those elements affected by the NURBS boundary representation.

The implementation and application of NEFEM to problems demanding an accurate boundary representation are also primary goals of this thesis. For instance, the numerical solution of Maxwell's equations is highly sensitive to geometry description. The application of NEFEM to electromagnetic scattering problems using a discontinuous Galerkin formulation is presented. The ability of NEFEM to compute an accurate solution with coarse meshes and high-order approximations is investigated, and the possibilities of NEFEM meshes, with elements containing edge or corner singularities, are explored. With NEFEM, the mesh size is no longer subsidiary to geometry complexity, and depends only on the accuracy requirements on the solution, whereas standard FEs require mesh refinement to properly capture the geometry. This implies a drastic difference in mesh size that results in drastic memory savings, and also important savings in computational cost. Thus, NEFEM is a powerful tool for large-scale scattering simulations with complex geometries in three dimensions. Another key issue in the numerical solution of electromagnetic scattering problems is using a mechanism to perform the absorption of outgoing waves. Two perfectly matched layers are discussed, optimized and compared in a high-order discontinuous Galerkin framework.

The numerical solution of Euler equations of gas dynamics is also very sensitive to geometry description. Using a discontinuous Galerkin formulation and linear isoparametric elements, a spurious entropy production may prevent convergence to the correct solution. With NEFEM, the exact imposition of the solid wall boundary condition provides accurate results even with a linear approximation of the solution. Furthermore, the exact boundary representation allows using coarse meshes, but ensuring the proper implementation of the solid wall boundary condition. An attractive feature of the proposed implementation is that the usual routines of a standard FE code can be directly used, namely routines for the computation of elemental matrices and vectors, assembly, etc. It is only necessary to implement new routines for the computation of numerical quadratures in curved elements and to store the value of shape functions at integration points.

Several curved FE techniques have been proposed in the literature. In this thesis, NEFEM is compared with some popular curved FE techniques (namely isoparametric FEs, cartesian FEs and p-FEM), from three different perspectives: theoretical aspects, implementation and performance. In every example shown, NEFEM is at least one order of magnitude more accurate compared to other techniques. Moreover, for a desired accuracy NEFEM is also computationally more efficient. In some examples, NEFEM needs only 50% of the number of degrees of freedom required by isoparametric FEs or p-FEM. Thus, the use of NEFEM is strongly recommended in the presence of curved boundaries and/or when the boundary of the domain has complex geometric details.
APA, Harvard, Vancouver, ISO, and other styles
8

Valivarthi, Mohan Varma, and Hema Chandra Babu Muthyala. "A Finite Element Time Relaxation Method." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-17728.

Full text
Abstract:
In our project we discuss a finite element time-relaxation method for high Reynolds number flows. The key idea consists of using local projections on polynomials defined on macro element of each pair of two elements sharing a face. We give the formulation for the scalar convection–diffusion equation and a numerical illustration.
APA, Harvard, Vancouver, ISO, and other styles
9

梁耀華 and Yew-wah Leung. "Finite element solution on microcomputers." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1989. http://hub.hku.hk/bib/B31209300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leung, Yew-wah. "Finite element solution on microcomputers /." [Hong Kong] : University of Hong Kong, 1989. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12754948.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Finite element method"

1

Lyu, Yongtao. Finite Element Method. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dhatt, Gouri, Gilbert Touzot, and Emmanuel Lefrançois. Finite Element Method. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118569764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

1943-, Brauer John R., ed. What every engineer should know about finite element analysis. New York: M. Dekker, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

N, Rossettos John, ed. Finite-element method: Basic technique and implementation. Mineola, N.Y: Dover Publications, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Poceski, A. Mixed finite element method. Berlin: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bofang, Zhu. The Finite Element Method. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2018. http://dx.doi.org/10.1002/9781119107323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Poceski, Apostol. Mixed Finite Element Method. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84676-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khoei, Amir R. Extended Finite Element Method. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118869673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mohammadi, Soheil, ed. Extended Finite Element Method. Oxford, UK: Blackwell Publishing Ltd, 2008. http://dx.doi.org/10.1002/9780470697795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

1934-, Taylor Robert L., ed. The finite element method. 4th ed. London: McGraw-Hill, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Finite element method"

1

Lyu, Yongtao. "Finite Element Analysis Using 3D Elements." In Finite Element Method, 159–69. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lyu, Yongtao. "Finite Element Analysis Using Triangular Element." In Finite Element Method, 93–118. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lyu, Yongtao. "Finite Element Analysis Using Rectangular Element." In Finite Element Method, 119–57. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lyu, Yongtao. "Finite Element Analysis Using Beam Element." In Finite Element Method, 65–92. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lyu, Yongtao. "Finite Element Analysis Using Bar Element." In Finite Element Method, 45–63. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Otsuru, Toru, Takeshi Okuzono, Noriko Okamoto, and Yusuke Naka. "Finite Element Method." In Computational Simulation in Architectural and Environmental Acoustics, 53–78. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54454-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuna, Meinhard. "Finite Element Method." In Solid Mechanics and Its Applications, 153–92. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6680-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tekkaya, A. Erman, and Celal Soyarslan. "Finite Element Method." In CIRP Encyclopedia of Production Engineering, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35950-7_16699-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Öchsner, Andreas. "Finite Element Method." In A Project-Based Introduction to Computational Statics, 95–238. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58771-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koshiba, Masanori. "Finite Element Method." In Optical Waveguide Theory by the Finite Element Method, 1–51. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1634-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Finite element method"

1

SLADEK, VLADIMIR, MIROSLAV REPKA, and JAN SLADEK. "MOVING FINITE ELEMENT METHOD." In BEM/MRM 2018. Southampton UK: WIT Press, 2018. http://dx.doi.org/10.2495/be410111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Negrozov, Oleg A., and Pavel A. Akimov. "Combined application of finite element method and discrete-continual finite element method." In THE 6TH INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED PHYSICS (THE 6th ICTAP). Author(s), 2017. http://dx.doi.org/10.1063/1.4973055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dziekonski, Adam, Adam Lamecki, and Michal Mrozowski. "GPU-accelerated finite element method." In 2016 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). IEEE, 2016. http://dx.doi.org/10.1109/nemo.2016.7561602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mirotznik, Mark S., Dennis W. Prather, and Joseph N. Mait. "Hybrid finite element-boundary element method for vector modeling diffractive optical elements." In Photonics West '96, edited by Ivan Cindrich and Sing H. Lee. SPIE, 1996. http://dx.doi.org/10.1117/12.239620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Favier, J. F., and M. Kremmer. "Modeling a Particle Metering Device Using the Finite Wall Method." In Third International Conference on Discrete Element Methods. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tuncer, O., B. Shanker, and L. C. Kempel. "A hybrid finite element – Vector generalized finite element method for electromagnetics." In 2010 IEEE International Symposium Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting. IEEE, 2010. http://dx.doi.org/10.1109/aps.2010.5561926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Montañez, John Joshua F., and Anton Louise P. de Ocampo. "Coupled Finite Element Method-Boundary Element Method on Microstrip Transmission Line." In 2023 IEEE Region 10 Symposium (TENSYMP). IEEE, 2023. http://dx.doi.org/10.1109/tensymp55890.2023.10223657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bunting, Charles F. "Introduction to the finite element method." In 2008 IEEE International Symposium on Electromagnetic Compatibility - EMC 2008. IEEE, 2008. http://dx.doi.org/10.1109/isemc.2008.4652216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bunting, Chuck. "Introduction to the finite element method." In 2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI). IEEE, 2017. http://dx.doi.org/10.1109/isemc.2017.8078050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Martin, Daniel T., and Duncan Koon. "F.E.M.P.B – Finite Element Method Panel Buckling." In AIAA Scitech 2021 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-1171.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Finite element method"

1

Babuska, Ivo, Uday Banerjee, and John E. Osborn. Superconvergence in the Generalized Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada440610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Coyle, J. M., and J. E. Flaherty. Adaptive Finite Element Method II: Error Estimation. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada288358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Babuska, I., and J. M. Melenk. The Partition of Unity Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, June 1995. http://dx.doi.org/10.21236/ada301760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Duarte, Carlos A. A Generalized Finite Element Method for Multiscale Simulations. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada577139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Manzini, Gianmarco, and Vitaliy Gyrya. Final Report of the Project "From the finite element method to the virtual element method". Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1415356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Manzini, Gianmarco. The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1046508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Babuska, I., B. Andersson, B. Guo, H. S. Oh, and J. M. Melenk. Finite Element Method for Solving Problems with Singular Solutions. Fort Belvoir, VA: Defense Technical Information Center, July 1995. http://dx.doi.org/10.21236/ada301749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Babuska, Ivo, and Manil Suri. On Locking and Robustness in the Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, May 1990. http://dx.doi.org/10.21236/ada232245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gerken, Jobie M. An implicit finite element method for discrete dynamic fracture. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/751964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Roach, Robert. Laser Spot Welding using an ALE Finite Element Method. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1762029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography