Academic literature on the topic 'Finite Element Element Method'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Finite Element Element Method.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Finite Element Element Method"

1

ICHIHASHI, Hidetomo, and Hitoshi FURUTA. "Finite Element Method." Journal of Japan Society for Fuzzy Theory and Systems 6, no. 2 (1994): 246–49. http://dx.doi.org/10.3156/jfuzzy.6.2_246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Oden, J. "Finite element method." Scholarpedia 5, no. 5 (2010): 9836. http://dx.doi.org/10.4249/scholarpedia.9836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ito, Yasuhisa, Hajime Igarashi, Kota Watanabe, Yosuke Iijima, and Kenji Kawano. "Non-conforming finite element method with tetrahedral elements." International Journal of Applied Electromagnetics and Mechanics 39, no. 1-4 (September 5, 2012): 739–45. http://dx.doi.org/10.3233/jae-2012-1537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yamada, T., and K. Tani. "Finite element time domain method using hexahedral elements." IEEE Transactions on Magnetics 33, no. 2 (March 1997): 1476–79. http://dx.doi.org/10.1109/20.582539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Panzeca, T., F. Cucco, and S. Terravecchia. "Symmetric boundary element method versus finite element method." Computer Methods in Applied Mechanics and Engineering 191, no. 31 (May 2002): 3347–67. http://dx.doi.org/10.1016/s0045-7825(02)00239-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mirotznik, Mark S., Dennis W. Pratherf, and Joseph N. Mait. "A hybrid finite element-boundary element method for the analysis of diffractive elements." Journal of Modern Optics 43, no. 7 (July 1996): 1309–21. http://dx.doi.org/10.1080/09500349608232806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

В. В. Борисов and В. В. Сухов. "The method of synthesis of finite-element model of strengthened fuselage frames." MECHANICS OF GYROSCOPIC SYSTEMS, no. 26 (December 23, 2013): 80–90. http://dx.doi.org/10.20535/0203-377126201330677.

Full text
Abstract:
One of the main problems, which solved during the design of transport category aircraft, is problem of analysis of the stress distribution in the strengthened fuselage frames structure. Existing integral methods of stress analysis does not allow for the mutual influence of the deformation of a large number of elements. The most effective method of solving the problem of analysis of deformations influence on the stress distribution of structure is finite element method, which is a universal method for analyzing stress distribution arbitrary constructions.This article describes the features of the finite element model synthesis of the strengthened fuselage frames structure of the aircraft fuselage transport category. It is shown that the finite element model of strengthened frames can be synthesized by attaching additional finite element models of the reinforcing elements to the base finite element model which is built by algorithm which is developed for normal frame. For each reinforcing element developed a separate class of finite element model synthesis algorithm. The method of synthesis of finite element model of strengthened frame, which are described in this article, developed for object-oriented information technology implemented in an object-oriented data management system "SPACE".Finite-element models of the reinforcing elements are included in the finite element model of the fuselage box after the formation of a regular finite element model of the fuselage box. As the source data for the synthesis of finite element models of the reinforcing elements used the coordinates of the boundary sections nodes of existing finite element models of conventional frames.Reinforcing elements belong to the group of irregular structural elements that connect regular elements of the cross set with different elements that are not intended for the perception and transmission of loads. The only exceptions are the vertical amplification increasing the stiffness of frames in a direction parallel to the axis OY.Source data input for the synthesis of finite element models of the reinforcing elements can occur only through the individual user interfaces that supported by objects of the corresponding classes. Structure of user interfaces depends on the number and type of additional data that required for the synthesis of finite element models of the reinforcing elements. For example, for the synthesis of structures of finite element models of horizontal beams that support the floor of cargo cabin, you must specify the distance between the upper surface of the beam and the horizontal axis of the fuselage, as well as the height of the beam section. For the synthesis of the structure of the finite element model of vertical reinforcing element is enough to specify the distance between the its inner belt and the a vertical axis of symmetry of the fuselage.And in both cases you must to specify a reference to the basic finite element model, by selecting from a list of frame designations. List of frames, as well as links to objects containing the appropriate finite-element models, must be transmitted from an object which references to the level of decomposition, in which the general model of the fuselage box is created.Finite-element models of the reinforcing elements include two groups of nodes. The first group is taken from an array of nodes, which is transmitted from the base finite element model. The second group is formed by the synthesis algorithm of finite element model of the selected class reinforcing element. Therefore, the synthesis of finite element models of the reinforcing elements starts with the formation of their local model versions. On the basis of these models are formed temporary copies, which are transmitted to the general finite element model of the box. This should be considered when developing of data conversion algorithm of data copying from a local finite element model to the temporary copy.Based on this analysis, we can conclude that this method improves the quality of the design of the aircraft fuselage, increasing the amount of structure variant number and reduce the likelihood of errors.
APA, Harvard, Vancouver, ISO, and other styles
8

Kulkarni, Sachin M., and Dr K. G. Vishwananth. "Analysis for FRP Composite Beams Using Finite Element Method." Bonfring International Journal of Man Machine Interface 4, Special Issue (July 30, 2016): 192–95. http://dx.doi.org/10.9756/bijmmi.8181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matveev, Aleksandr. "Generating finite element method in constructing complex-shaped multigrid finite elements." EPJ Web of Conferences 221 (2019): 01029. http://dx.doi.org/10.1051/epjconf/201922101029.

Full text
Abstract:
The calculations of three-dimensional composite bodies based on the finite element method with allowance for their structure and complex shape come down to constructing high-dimension discrete models. The dimension of discrete models can be effectively reduced by means of multigrid finite elements (MgFE). This paper proposes a generating finite element method for constructing two types of three-dimensional complex-shaped composite MgFE, which can be briefly described as follows. An MgFE domain of the first type is obtained by rotating a specified complex-shaped plane generating single-grid finite element (FE) around a specified axis at a given angle, and an MgFE domain of the second type is obtained by the parallel displacement of a generating FE in a specified direction at a given distance. This method allows designing MgFE with one characteristic dimension significantly larger (smaller) than the other two. The MgFE of the first type are applied to calculate composite shells of revolution and complex-shaped rings, and the MgFE of the second type are used to calculate composite cylindrical shells, complex-shaped plates and beams. The proposed MgFE are advantageous because they account for the inhomogeneous structure and complex shape of bodies and generate low-dimension discrete models and solutions with a small error.
APA, Harvard, Vancouver, ISO, and other styles
10

BARBOSA, R., and J. GHABOUSSI. "DISCRETE FINITE ELEMENT METHOD." Engineering Computations 9, no. 2 (February 1992): 253–66. http://dx.doi.org/10.1108/eb023864.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Finite Element Element Method"

1

Starkloff, Hans-Jörg. "Stochastic finite element method with simple random elements." Universitätsbibliothek Chemnitz, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200800596.

Full text
Abstract:
We propose a variant of the stochastic finite element method, where the random elements occuring in the problem formulation are approximated by simple random elements, i.e. random elements with only a finite number of possible values.
APA, Harvard, Vancouver, ISO, and other styles
2

Rabadi, Kairas. "PERFORMANCE OF INTERFACE ELEMENTS IN THE FINITE ELEMENT METHOD." Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2188.

Full text
Abstract:
The objective of this research is to assess the performance of interface elements in the finite element method. Interface elements are implemented in the finite element codes such as MSC.NASTRAN, which is used in this study. Interface elements in MSC.NASTRAN provide a tool to transition between a shell-meshed region to another shell-meshed region as well as from a shell-meshed region to a solid-meshed region. Often, in practice shell elements are layered on shell elements or on solid elements without the use of interface elements. This is potentially inaccurate arising in mismatched degrees of freedom. In the case of a shell-to-shell interface, we consider the case in which the two regions have mismatched nodes along the boundary. Interface elements are used to connect these mismatched nodes. The interface elements are especially useful in global/local analysis, where a region with a dense mesh interfaces to a region with a less dense mesh. Interface elements are used to help avoid using special transition elements between two meshed regions. This is desirable since the transition elements can be severely distorted and cause poor results. Accurate results are obtained in shell-shell and shell-solid combinations. The most interesting result is that not using interface elements can lead to severe inaccuracies. This difficulty is illustrated by computing the stress concentration of a sharp elliptical hole.
M.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
APA, Harvard, Vancouver, ISO, and other styles
3

Adams, Leila. "Finite element method using vector finite elements applied to eddy current problems." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/9992.

Full text
Abstract:
Vector fields found in electromagnetics are fundamentally different to vector fields found in other research areas such as structural mechanics. Electromagnetic vector fields possess different physical behaviour patterns and different properties in comparison to the other vector fields and therein lies the necessity of the development of a finite element which would be able to cater for these differences . The vector finite element was then developed and used within the finite element method specifically for the approximation of electromagnetic problems. This dissertation investigates the partial differential equation that governs eddy current behaviour. A finite element algorithm is coded and used to solve this partial differential equation and produce vector field simulations for fundamental eddy current problems.
APA, Harvard, Vancouver, ISO, and other styles
4

Kang, David Sung-Soo. "Hybrid stress finite element method." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/14973.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1986.
MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERO
Bibliography: leaves 257-264.
by David Sung-Soo Kang.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
5

Tseng, Gordon Bae-Ji. "Investigation of tetrahedron elements using automatic meshing in finite element analysis /." Online version of thesis, 1992. http://hdl.handle.net/1850/10699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lu, Chuan. "Generalized finite element method for electromagnetic analysis." Diss., Connect to online resource - MSU authorized users, 2008.

Find full text
Abstract:
Thesis (Ph. D.)--Michigan State University. Electrical and Computer Engineering, 2008.
Title from PDF t.p. (viewed on Apr. 8, 2009) Includes bibliographical references (p. 148-153). Also issued in print.
APA, Harvard, Vancouver, ISO, and other styles
7

Irfanoglu, Bulent. "Boundary Element-finite Element Acoustic Analysis Of Coupled Domains." Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605360/index.pdf.

Full text
Abstract:
This thesis studies interactions between coupled acoustic domain(s) and enclosing rigid or elastic boundary. Boundary element-finite element (BE-FE) sound-structure interaction models are developed by coupling frequency domain BE acoustic and FE structural models using linear inviscid acoustic and elasticity theories. Flexibility in analyses is provided by discontinuous triangular and quadrilateral elements in the BE method (BEM), and a rectangular plate and a triangular shell element in the FE method (FEM). An analytical formulation is developed for an extended fundamental sound-structure interaction problem that involves locally reacting sound absorptive treatment on interior elastic boundary. This new formulation is built upon existing analytical solutions for a configuration known as the cavity-backed-plate problem. Results from developed analytical formulation are compared against those from independent BE-FE analyses. Analytical and BE-FE analysis results for a selection of cavity-plate(s) interaction cases are given. Single- and multi-domain BE analyses of cavity-Helmholtz resonator interaction are provided as an alternative to modal method of acoustoelasticity. A discrete-form of the existing BE acoustic particle velocity formulation is presented and demonstrated on a basic case study. Both the existing and the discretized BE acoustic particle velocity formulations could be utilized in acoustic studies. A selection of case studies involving fundamental configurations are studied both analytically and computationally (by BE or BE-FE methods). These studies could provide a basis for benchmark case development in the field of acoustics.
APA, Harvard, Vancouver, ISO, and other styles
8

Sevilla, Cárdenas Rubén. "NURBS-Enhanced Finite Element Method (NEFEM)." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/5857.

Full text
Abstract:
Aquesta tesi proposa una millora del clàssic mètode dels elements finits (finite element method, FEM) per a un tractament eficient de dominis amb contorns corbs: el denominat NURBS-enhanced finite element method (NEFEM). Aquesta millora permet descriure de manera exacta la geometría mitjançant la seva representació del contorn CAD amb non-uniform rational B-splines (NURBS), mentre que la solució s'aproxima amb la interpolació polinòmica estàndard. Per tant, en la major part del domini, la interpolació i la integració numèrica són estàndard, retenint les propietats de convergència clàssiques del FEM i facilitant l'acoblament amb els elements interiors. Només es requereixen estratègies específiques per realitzar la interpolació i la integració numèrica en elements afectats per la descripció del contorn mitjançant NURBS.

La implementació i aplicació de NEFEM a problemes que requereixen una descripció acurada del contorn són, també, objectius prioritaris d'aquesta tesi. Per exemple, la solució numèrica de les equacions de Maxwell és molt sensible a la descripció geomètrica. Es presenta l'aplicació de NEFEM a problemes d'scattering d'ones electromagnètiques amb una formulació de Galerkin discontinu. S'investiga l'habilitat de NEFEM per obtenir solucions precises amb malles grolleres i aproximacions d'alt ordre, i s'exploren les possibilitats de les anomenades malles NEFEM, amb elements que contenen singularitats dintre d'una cara o aresta d'un element. Utilitzant NEFEM, la mida de la malla no està controlada per la complexitat de la geometria. Això implica una dràstica diferència en la mida dels elements i, per tant, suposa un gran estalvi tant des del punt de vista de requeriments de memòria com de cost computacional. Per tant, NEFEM és una eina poderosa per la simulació de problemes tridimensionals a gran escala amb geometries complexes. D'altra banda, la simulació de problemes d'scattering d'ones electromagnètiques requereix mecanismes per aconseguir una absorció eficient de les ones scattered. En aquesta tesi es discuteixen, optimitzen i comparen dues tècniques en el context de mètodes de Galerkin discontinu amb aproximacions d'alt ordre.

La resolució numèrica de les equacions d'Euler de la dinàmica de gasos és també molt sensible a la representació geomètrica. Quan es considera una formulació de Galerkin discontinu i elements isoparamètrics lineals, una producció espúria d'entropia pot evitar la convergència cap a la solució correcta. Amb NEFEM, l'acurada imposició de la condició de contorn en contorns impenetrables proporciona resultats precisos inclús amb una aproximació lineal de la solució. A més, la representació exacta del contorn permet una imposició adequada de les condicions de contorn amb malles grolleres i graus d'interpolació alts. Una propietat atractiva de la implementació proposada és que moltes de les rutines usuals en un codi d'elements finits poden ser aprofitades, per exemple rutines per realitzar el càlcul de les matrius elementals, assemblatge, etc. Només és necessari implementar noves rutines per calcular les quadratures numèriques en elements corbs i emmagatzemar el valor de les funciones de forma en els punts d'integració. S'han proposat vàries tècniques d'elements finits corbs a la literatura. En aquesta tesi, es compara NEFEM amb altres tècniques populars d'elements finits corbs (isoparamètics, cartesians i p-FEM), des de tres punts de vista diferents: aspectes teòrics, implementació i eficiència numèrica. En els exemples numèrics, NEFEM és, com a mínim, un ordre de magnitud més precís comparat amb altres tècniques. A més, per una precisió desitjada NEFEM és també més eficient: necessita un 50% dels graus de llibertat que fan servir els elements isoparamètrics o p-FEM per aconseguir la mateixa precisió. Per tant, l'ús de NEFEM és altament recomanable en presència de contorns corbs i/o quan el contorn té detalls geomètrics complexes.
This thesis proposes an improvement of the classical finite element method (FEM) for an efficient treatment of curved boundaries: the NURBSenhanced FEM (NEFEM). It is able to exactly represent the geometry by means of the usual CAD boundary representation with non-uniform rational Bsplines (NURBS), while the solution is approximated with a standard piecewise polynomial interpolation. Therefore, in the vast majority of the domain, interpolation and numerical integration are standard, preserving the classical finite element (FE) convergence properties, and allowing a seamless coupling with standard FEs on the domain interior. Specifically designed polynomial interpolation and numerical integration are designed only for those elements affected by the NURBS boundary representation.

The implementation and application of NEFEM to problems demanding an accurate boundary representation are also primary goals of this thesis. For instance, the numerical solution of Maxwell's equations is highly sensitive to geometry description. The application of NEFEM to electromagnetic scattering problems using a discontinuous Galerkin formulation is presented. The ability of NEFEM to compute an accurate solution with coarse meshes and high-order approximations is investigated, and the possibilities of NEFEM meshes, with elements containing edge or corner singularities, are explored. With NEFEM, the mesh size is no longer subsidiary to geometry complexity, and depends only on the accuracy requirements on the solution, whereas standard FEs require mesh refinement to properly capture the geometry. This implies a drastic difference in mesh size that results in drastic memory savings, and also important savings in computational cost. Thus, NEFEM is a powerful tool for large-scale scattering simulations with complex geometries in three dimensions. Another key issue in the numerical solution of electromagnetic scattering problems is using a mechanism to perform the absorption of outgoing waves. Two perfectly matched layers are discussed, optimized and compared in a high-order discontinuous Galerkin framework.

The numerical solution of Euler equations of gas dynamics is also very sensitive to geometry description. Using a discontinuous Galerkin formulation and linear isoparametric elements, a spurious entropy production may prevent convergence to the correct solution. With NEFEM, the exact imposition of the solid wall boundary condition provides accurate results even with a linear approximation of the solution. Furthermore, the exact boundary representation allows using coarse meshes, but ensuring the proper implementation of the solid wall boundary condition. An attractive feature of the proposed implementation is that the usual routines of a standard FE code can be directly used, namely routines for the computation of elemental matrices and vectors, assembly, etc. It is only necessary to implement new routines for the computation of numerical quadratures in curved elements and to store the value of shape functions at integration points.

Several curved FE techniques have been proposed in the literature. In this thesis, NEFEM is compared with some popular curved FE techniques (namely isoparametric FEs, cartesian FEs and p-FEM), from three different perspectives: theoretical aspects, implementation and performance. In every example shown, NEFEM is at least one order of magnitude more accurate compared to other techniques. Moreover, for a desired accuracy NEFEM is also computationally more efficient. In some examples, NEFEM needs only 50% of the number of degrees of freedom required by isoparametric FEs or p-FEM. Thus, the use of NEFEM is strongly recommended in the presence of curved boundaries and/or when the boundary of the domain has complex geometric details.
APA, Harvard, Vancouver, ISO, and other styles
9

Valivarthi, Mohan Varma, and Hema Chandra Babu Muthyala. "A Finite Element Time Relaxation Method." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-17728.

Full text
Abstract:
In our project we discuss a finite element time-relaxation method for high Reynolds number flows. The key idea consists of using local projections on polynomials defined on macro element of each pair of two elements sharing a face. We give the formulation for the scalar convection–diffusion equation and a numerical illustration.
APA, Harvard, Vancouver, ISO, and other styles
10

Zarco, Mark Albert. "Solution fo soil-structure interaction problems by coupled boundary element-finite element method /." This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06062008-164808/.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Finite Element Element Method"

1

1943-, Brauer John R., ed. What every engineer should know about finite element analysis. New York: M. Dekker, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

N, Rossettos John, ed. Finite-element method: Basic technique and implementation. Mineola, N.Y: Dover Publications, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lyu, Yongtao. Finite Element Method. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dhatt, Gouri, Gilbert Touzot, and Emmanuel Lefrançois. Finite Element Method. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118569764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schwarz, H. R. Finite element methods. London: Academic, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schwarz, Hans Rudolf. Finite element methods. London: Academic Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Szabo, B. A. Finite element analysis. New York: Wiley, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lakṣmīnarasayya, Ji. Finite element analysis. Hyderabad [India]: BS Publications, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

H, Lo S., and Leung A. Y. T, eds. Finite element implementation. Oxford, [England]: Blackwell Science, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hayrettin, Kardestuncer, Norrie D. H, and Brezzi F. 1945-, eds. Finite element handbook. New York: McGraw-Hill, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Finite Element Element Method"

1

Lyu, Yongtao. "Finite Element Analysis Using 3D Elements." In Finite Element Method, 159–69. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lyu, Yongtao. "Finite Element Analysis Using Triangular Element." In Finite Element Method, 93–118. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lyu, Yongtao. "Finite Element Analysis Using Rectangular Element." In Finite Element Method, 119–57. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lyu, Yongtao. "Finite Element Analysis Using Beam Element." In Finite Element Method, 65–92. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lyu, Yongtao. "Finite Element Analysis Using Bar Element." In Finite Element Method, 45–63. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Otsuru, Toru, Takeshi Okuzono, Noriko Okamoto, and Yusuke Naka. "Finite Element Method." In Computational Simulation in Architectural and Environmental Acoustics, 53–78. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54454-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuna, Meinhard. "Finite Element Method." In Solid Mechanics and Its Applications, 153–92. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6680-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tekkaya, A. Erman, and Celal Soyarslan. "Finite Element Method." In CIRP Encyclopedia of Production Engineering, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35950-7_16699-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Öchsner, Andreas. "Finite Element Method." In A Project-Based Introduction to Computational Statics, 95–238. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58771-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koshiba, Masanori. "Finite Element Method." In Optical Waveguide Theory by the Finite Element Method, 1–51. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1634-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Finite Element Element Method"

1

Mirotznik, Mark S., Dennis W. Prather, and Joseph N. Mait. "Hybrid finite element-boundary element method for vector modeling diffractive optical elements." In Photonics West '96, edited by Ivan Cindrich and Sing H. Lee. SPIE, 1996. http://dx.doi.org/10.1117/12.239620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

SLADEK, VLADIMIR, MIROSLAV REPKA, and JAN SLADEK. "MOVING FINITE ELEMENT METHOD." In BEM/MRM 2018. Southampton UK: WIT Press, 2018. http://dx.doi.org/10.2495/be410111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Favier, J. F., and M. Kremmer. "Modeling a Particle Metering Device Using the Finite Wall Method." In Third International Conference on Discrete Element Methods. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Negrozov, Oleg A., and Pavel A. Akimov. "Combined application of finite element method and discrete-continual finite element method." In THE 6TH INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED PHYSICS (THE 6th ICTAP). Author(s), 2017. http://dx.doi.org/10.1063/1.4973055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prather, Dennis W., Mark S. Mirotznik, and Joseph N. Mait. "Design of subwavelength diffractive optical elements using a hybrid finite element-boundary element method." In Photonics West '96, edited by Ivan Cindrich and Sing H. Lee. SPIE, 1996. http://dx.doi.org/10.1117/12.239612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dziekonski, Adam, Adam Lamecki, and Michal Mrozowski. "GPU-accelerated finite element method." In 2016 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). IEEE, 2016. http://dx.doi.org/10.1109/nemo.2016.7561602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Song, Gaoju, Ruiliang Yang, Caixia Zhu, and Xiaowei Fan. "Finite Element/Infinite Element Method for Acoustic Scattering Problem." In 2009 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 2009. http://dx.doi.org/10.1109/icmtma.2009.158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tuncer, O., B. Shanker, and L. C. Kempel. "A hybrid finite element – Vector generalized finite element method for electromagnetics." In 2010 IEEE International Symposium Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting. IEEE, 2010. http://dx.doi.org/10.1109/aps.2010.5561926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Montañez, John Joshua F., and Anton Louise P. de Ocampo. "Coupled Finite Element Method-Boundary Element Method on Microstrip Transmission Line." In 2023 IEEE Region 10 Symposium (TENSYMP). IEEE, 2023. http://dx.doi.org/10.1109/tensymp55890.2023.10223657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lochner, Nash, and Marinos N. Vouvakis. "Finite Element Boundary Element Hybrid via Direct Domain Decomposition Method." In 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. IEEE, 2020. http://dx.doi.org/10.1109/ieeeconf35879.2020.9329635.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Finite Element Element Method"

1

Babuska, Ivo, Uday Banerjee, and John E. Osborn. Superconvergence in the Generalized Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada440610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Coyle, J. M., and J. E. Flaherty. Adaptive Finite Element Method II: Error Estimation. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada288358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Babuska, I., and J. M. Melenk. The Partition of Unity Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, June 1995. http://dx.doi.org/10.21236/ada301760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Manzini, Gianmarco, and Vitaliy Gyrya. Final Report of the Project "From the finite element method to the virtual element method". Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1415356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiang, W., and Benjamin W. Spencer. Modeling 3D PCMI using the Extended Finite Element Method with higher order elements. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1409274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Duarte, Carlos A. A Generalized Finite Element Method for Multiscale Simulations. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada577139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cox, J. V. A Preliminary Study on Finite Element-Hosted Couplings with the Boundary Element Method. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada197539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Costa, Timothy, Stephen D. Bond, David John Littlewood, and Stan Gerald Moore. Peridynamic Multiscale Finite Element Methods. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1227915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Manzini, Gianmarco. The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1046508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Babuska, I., and H. C. Elman. Performance of the h-p Version of the Finite Element Method with Various Elements. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada250689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography