Academic literature on the topic 'Finite Element Element Method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Finite Element Element Method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Finite Element Element Method"
ICHIHASHI, Hidetomo, and Hitoshi FURUTA. "Finite Element Method." Journal of Japan Society for Fuzzy Theory and Systems 6, no. 2 (1994): 246–49. http://dx.doi.org/10.3156/jfuzzy.6.2_246.
Full textOden, J. "Finite element method." Scholarpedia 5, no. 5 (2010): 9836. http://dx.doi.org/10.4249/scholarpedia.9836.
Full textIto, Yasuhisa, Hajime Igarashi, Kota Watanabe, Yosuke Iijima, and Kenji Kawano. "Non-conforming finite element method with tetrahedral elements." International Journal of Applied Electromagnetics and Mechanics 39, no. 1-4 (September 5, 2012): 739–45. http://dx.doi.org/10.3233/jae-2012-1537.
Full textYamada, T., and K. Tani. "Finite element time domain method using hexahedral elements." IEEE Transactions on Magnetics 33, no. 2 (March 1997): 1476–79. http://dx.doi.org/10.1109/20.582539.
Full textPanzeca, T., F. Cucco, and S. Terravecchia. "Symmetric boundary element method versus finite element method." Computer Methods in Applied Mechanics and Engineering 191, no. 31 (May 2002): 3347–67. http://dx.doi.org/10.1016/s0045-7825(02)00239-6.
Full textMirotznik, Mark S., Dennis W. Pratherf, and Joseph N. Mait. "A hybrid finite element-boundary element method for the analysis of diffractive elements." Journal of Modern Optics 43, no. 7 (July 1996): 1309–21. http://dx.doi.org/10.1080/09500349608232806.
Full textВ. В. Борисов and В. В. Сухов. "The method of synthesis of finite-element model of strengthened fuselage frames." MECHANICS OF GYROSCOPIC SYSTEMS, no. 26 (December 23, 2013): 80–90. http://dx.doi.org/10.20535/0203-377126201330677.
Full textKulkarni, Sachin M., and Dr K. G. Vishwananth. "Analysis for FRP Composite Beams Using Finite Element Method." Bonfring International Journal of Man Machine Interface 4, Special Issue (July 30, 2016): 192–95. http://dx.doi.org/10.9756/bijmmi.8181.
Full textMatveev, Aleksandr. "Generating finite element method in constructing complex-shaped multigrid finite elements." EPJ Web of Conferences 221 (2019): 01029. http://dx.doi.org/10.1051/epjconf/201922101029.
Full textBARBOSA, R., and J. GHABOUSSI. "DISCRETE FINITE ELEMENT METHOD." Engineering Computations 9, no. 2 (February 1992): 253–66. http://dx.doi.org/10.1108/eb023864.
Full textDissertations / Theses on the topic "Finite Element Element Method"
Starkloff, Hans-Jörg. "Stochastic finite element method with simple random elements." Universitätsbibliothek Chemnitz, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200800596.
Full textRabadi, Kairas. "PERFORMANCE OF INTERFACE ELEMENTS IN THE FINITE ELEMENT METHOD." Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2188.
Full textM.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
Adams, Leila. "Finite element method using vector finite elements applied to eddy current problems." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/9992.
Full textKang, David Sung-Soo. "Hybrid stress finite element method." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/14973.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND AERO
Bibliography: leaves 257-264.
by David Sung-Soo Kang.
Ph.D.
Tseng, Gordon Bae-Ji. "Investigation of tetrahedron elements using automatic meshing in finite element analysis /." Online version of thesis, 1992. http://hdl.handle.net/1850/10699.
Full textLu, Chuan. "Generalized finite element method for electromagnetic analysis." Diss., Connect to online resource - MSU authorized users, 2008.
Find full textTitle from PDF t.p. (viewed on Apr. 8, 2009) Includes bibliographical references (p. 148-153). Also issued in print.
Irfanoglu, Bulent. "Boundary Element-finite Element Acoustic Analysis Of Coupled Domains." Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605360/index.pdf.
Full textSevilla, Cárdenas Rubén. "NURBS-Enhanced Finite Element Method (NEFEM)." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/5857.
Full textLa implementació i aplicació de NEFEM a problemes que requereixen una descripció acurada del contorn són, també, objectius prioritaris d'aquesta tesi. Per exemple, la solució numèrica de les equacions de Maxwell és molt sensible a la descripció geomètrica. Es presenta l'aplicació de NEFEM a problemes d'scattering d'ones electromagnètiques amb una formulació de Galerkin discontinu. S'investiga l'habilitat de NEFEM per obtenir solucions precises amb malles grolleres i aproximacions d'alt ordre, i s'exploren les possibilitats de les anomenades malles NEFEM, amb elements que contenen singularitats dintre d'una cara o aresta d'un element. Utilitzant NEFEM, la mida de la malla no està controlada per la complexitat de la geometria. Això implica una dràstica diferència en la mida dels elements i, per tant, suposa un gran estalvi tant des del punt de vista de requeriments de memòria com de cost computacional. Per tant, NEFEM és una eina poderosa per la simulació de problemes tridimensionals a gran escala amb geometries complexes. D'altra banda, la simulació de problemes d'scattering d'ones electromagnètiques requereix mecanismes per aconseguir una absorció eficient de les ones scattered. En aquesta tesi es discuteixen, optimitzen i comparen dues tècniques en el context de mètodes de Galerkin discontinu amb aproximacions d'alt ordre.
La resolució numèrica de les equacions d'Euler de la dinàmica de gasos és també molt sensible a la representació geomètrica. Quan es considera una formulació de Galerkin discontinu i elements isoparamètrics lineals, una producció espúria d'entropia pot evitar la convergència cap a la solució correcta. Amb NEFEM, l'acurada imposició de la condició de contorn en contorns impenetrables proporciona resultats precisos inclús amb una aproximació lineal de la solució. A més, la representació exacta del contorn permet una imposició adequada de les condicions de contorn amb malles grolleres i graus d'interpolació alts. Una propietat atractiva de la implementació proposada és que moltes de les rutines usuals en un codi d'elements finits poden ser aprofitades, per exemple rutines per realitzar el càlcul de les matrius elementals, assemblatge, etc. Només és necessari implementar noves rutines per calcular les quadratures numèriques en elements corbs i emmagatzemar el valor de les funciones de forma en els punts d'integració. S'han proposat vàries tècniques d'elements finits corbs a la literatura. En aquesta tesi, es compara NEFEM amb altres tècniques populars d'elements finits corbs (isoparamètics, cartesians i p-FEM), des de tres punts de vista diferents: aspectes teòrics, implementació i eficiència numèrica. En els exemples numèrics, NEFEM és, com a mínim, un ordre de magnitud més precís comparat amb altres tècniques. A més, per una precisió desitjada NEFEM és també més eficient: necessita un 50% dels graus de llibertat que fan servir els elements isoparamètrics o p-FEM per aconseguir la mateixa precisió. Per tant, l'ús de NEFEM és altament recomanable en presència de contorns corbs i/o quan el contorn té detalls geomètrics complexes.
This thesis proposes an improvement of the classical finite element method (FEM) for an efficient treatment of curved boundaries: the NURBSenhanced FEM (NEFEM). It is able to exactly represent the geometry by means of the usual CAD boundary representation with non-uniform rational Bsplines (NURBS), while the solution is approximated with a standard piecewise polynomial interpolation. Therefore, in the vast majority of the domain, interpolation and numerical integration are standard, preserving the classical finite element (FE) convergence properties, and allowing a seamless coupling with standard FEs on the domain interior. Specifically designed polynomial interpolation and numerical integration are designed only for those elements affected by the NURBS boundary representation.
The implementation and application of NEFEM to problems demanding an accurate boundary representation are also primary goals of this thesis. For instance, the numerical solution of Maxwell's equations is highly sensitive to geometry description. The application of NEFEM to electromagnetic scattering problems using a discontinuous Galerkin formulation is presented. The ability of NEFEM to compute an accurate solution with coarse meshes and high-order approximations is investigated, and the possibilities of NEFEM meshes, with elements containing edge or corner singularities, are explored. With NEFEM, the mesh size is no longer subsidiary to geometry complexity, and depends only on the accuracy requirements on the solution, whereas standard FEs require mesh refinement to properly capture the geometry. This implies a drastic difference in mesh size that results in drastic memory savings, and also important savings in computational cost. Thus, NEFEM is a powerful tool for large-scale scattering simulations with complex geometries in three dimensions. Another key issue in the numerical solution of electromagnetic scattering problems is using a mechanism to perform the absorption of outgoing waves. Two perfectly matched layers are discussed, optimized and compared in a high-order discontinuous Galerkin framework.
The numerical solution of Euler equations of gas dynamics is also very sensitive to geometry description. Using a discontinuous Galerkin formulation and linear isoparametric elements, a spurious entropy production may prevent convergence to the correct solution. With NEFEM, the exact imposition of the solid wall boundary condition provides accurate results even with a linear approximation of the solution. Furthermore, the exact boundary representation allows using coarse meshes, but ensuring the proper implementation of the solid wall boundary condition. An attractive feature of the proposed implementation is that the usual routines of a standard FE code can be directly used, namely routines for the computation of elemental matrices and vectors, assembly, etc. It is only necessary to implement new routines for the computation of numerical quadratures in curved elements and to store the value of shape functions at integration points.
Several curved FE techniques have been proposed in the literature. In this thesis, NEFEM is compared with some popular curved FE techniques (namely isoparametric FEs, cartesian FEs and p-FEM), from three different perspectives: theoretical aspects, implementation and performance. In every example shown, NEFEM is at least one order of magnitude more accurate compared to other techniques. Moreover, for a desired accuracy NEFEM is also computationally more efficient. In some examples, NEFEM needs only 50% of the number of degrees of freedom required by isoparametric FEs or p-FEM. Thus, the use of NEFEM is strongly recommended in the presence of curved boundaries and/or when the boundary of the domain has complex geometric details.
Valivarthi, Mohan Varma, and Hema Chandra Babu Muthyala. "A Finite Element Time Relaxation Method." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-17728.
Full textZarco, Mark Albert. "Solution fo soil-structure interaction problems by coupled boundary element-finite element method /." This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06062008-164808/.
Full textBooks on the topic "Finite Element Element Method"
1943-, Brauer John R., ed. What every engineer should know about finite element analysis. New York: M. Dekker, 1988.
Find full textN, Rossettos John, ed. Finite-element method: Basic technique and implementation. Mineola, N.Y: Dover Publications, 2008.
Find full textLyu, Yongtao. Finite Element Method. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9.
Full textDhatt, Gouri, Gilbert Touzot, and Emmanuel Lefrançois. Finite Element Method. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118569764.
Full textSchwarz, H. R. Finite element methods. London: Academic, 1988.
Find full textSchwarz, Hans Rudolf. Finite element methods. London: Academic Press, 1988.
Find full textSzabo, B. A. Finite element analysis. New York: Wiley, 1991.
Find full textLakṣmīnarasayya, Ji. Finite element analysis. Hyderabad [India]: BS Publications, 2008.
Find full textH, Lo S., and Leung A. Y. T, eds. Finite element implementation. Oxford, [England]: Blackwell Science, 1996.
Find full textHayrettin, Kardestuncer, Norrie D. H, and Brezzi F. 1945-, eds. Finite element handbook. New York: McGraw-Hill, 1987.
Find full textBook chapters on the topic "Finite Element Element Method"
Lyu, Yongtao. "Finite Element Analysis Using 3D Elements." In Finite Element Method, 159–69. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_7.
Full textLyu, Yongtao. "Finite Element Analysis Using Triangular Element." In Finite Element Method, 93–118. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_5.
Full textLyu, Yongtao. "Finite Element Analysis Using Rectangular Element." In Finite Element Method, 119–57. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_6.
Full textLyu, Yongtao. "Finite Element Analysis Using Beam Element." In Finite Element Method, 65–92. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_4.
Full textLyu, Yongtao. "Finite Element Analysis Using Bar Element." In Finite Element Method, 45–63. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3363-9_3.
Full textOtsuru, Toru, Takeshi Okuzono, Noriko Okamoto, and Yusuke Naka. "Finite Element Method." In Computational Simulation in Architectural and Environmental Acoustics, 53–78. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54454-8_3.
Full textKuna, Meinhard. "Finite Element Method." In Solid Mechanics and Its Applications, 153–92. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6680-8_4.
Full textTekkaya, A. Erman, and Celal Soyarslan. "Finite Element Method." In CIRP Encyclopedia of Production Engineering, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35950-7_16699-3.
Full textÖchsner, Andreas. "Finite Element Method." In A Project-Based Introduction to Computational Statics, 95–238. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58771-0_3.
Full textKoshiba, Masanori. "Finite Element Method." In Optical Waveguide Theory by the Finite Element Method, 1–51. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1634-3_1.
Full textConference papers on the topic "Finite Element Element Method"
Mirotznik, Mark S., Dennis W. Prather, and Joseph N. Mait. "Hybrid finite element-boundary element method for vector modeling diffractive optical elements." In Photonics West '96, edited by Ivan Cindrich and Sing H. Lee. SPIE, 1996. http://dx.doi.org/10.1117/12.239620.
Full textSLADEK, VLADIMIR, MIROSLAV REPKA, and JAN SLADEK. "MOVING FINITE ELEMENT METHOD." In BEM/MRM 2018. Southampton UK: WIT Press, 2018. http://dx.doi.org/10.2495/be410111.
Full textFavier, J. F., and M. Kremmer. "Modeling a Particle Metering Device Using the Finite Wall Method." In Third International Conference on Discrete Element Methods. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40647(259)5.
Full textNegrozov, Oleg A., and Pavel A. Akimov. "Combined application of finite element method and discrete-continual finite element method." In THE 6TH INTERNATIONAL CONFERENCE ON THEORETICAL AND APPLIED PHYSICS (THE 6th ICTAP). Author(s), 2017. http://dx.doi.org/10.1063/1.4973055.
Full textPrather, Dennis W., Mark S. Mirotznik, and Joseph N. Mait. "Design of subwavelength diffractive optical elements using a hybrid finite element-boundary element method." In Photonics West '96, edited by Ivan Cindrich and Sing H. Lee. SPIE, 1996. http://dx.doi.org/10.1117/12.239612.
Full textDziekonski, Adam, Adam Lamecki, and Michal Mrozowski. "GPU-accelerated finite element method." In 2016 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). IEEE, 2016. http://dx.doi.org/10.1109/nemo.2016.7561602.
Full textSong, Gaoju, Ruiliang Yang, Caixia Zhu, and Xiaowei Fan. "Finite Element/Infinite Element Method for Acoustic Scattering Problem." In 2009 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 2009. http://dx.doi.org/10.1109/icmtma.2009.158.
Full textTuncer, O., B. Shanker, and L. C. Kempel. "A hybrid finite element – Vector generalized finite element method for electromagnetics." In 2010 IEEE International Symposium Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting. IEEE, 2010. http://dx.doi.org/10.1109/aps.2010.5561926.
Full textMontañez, John Joshua F., and Anton Louise P. de Ocampo. "Coupled Finite Element Method-Boundary Element Method on Microstrip Transmission Line." In 2023 IEEE Region 10 Symposium (TENSYMP). IEEE, 2023. http://dx.doi.org/10.1109/tensymp55890.2023.10223657.
Full textLochner, Nash, and Marinos N. Vouvakis. "Finite Element Boundary Element Hybrid via Direct Domain Decomposition Method." In 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. IEEE, 2020. http://dx.doi.org/10.1109/ieeeconf35879.2020.9329635.
Full textReports on the topic "Finite Element Element Method"
Babuska, Ivo, Uday Banerjee, and John E. Osborn. Superconvergence in the Generalized Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada440610.
Full textCoyle, J. M., and J. E. Flaherty. Adaptive Finite Element Method II: Error Estimation. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada288358.
Full textBabuska, I., and J. M. Melenk. The Partition of Unity Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, June 1995. http://dx.doi.org/10.21236/ada301760.
Full textManzini, Gianmarco, and Vitaliy Gyrya. Final Report of the Project "From the finite element method to the virtual element method". Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1415356.
Full textJiang, W., and Benjamin W. Spencer. Modeling 3D PCMI using the Extended Finite Element Method with higher order elements. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1409274.
Full textDuarte, Carlos A. A Generalized Finite Element Method for Multiscale Simulations. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada577139.
Full textCox, J. V. A Preliminary Study on Finite Element-Hosted Couplings with the Boundary Element Method. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada197539.
Full textCosta, Timothy, Stephen D. Bond, David John Littlewood, and Stan Gerald Moore. Peridynamic Multiscale Finite Element Methods. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1227915.
Full textManzini, Gianmarco. The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1046508.
Full textBabuska, I., and H. C. Elman. Performance of the h-p Version of the Finite Element Method with Various Elements. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada250689.
Full text