Journal articles on the topic 'Finite-difference time-domain method'

To see the other types of publications on this topic, follow the link: Finite-difference time-domain method.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Finite-difference time-domain method.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Doerr, Christopher R. "Sparse Finite Difference Time Domain Method." IEEE Photonics Technology Letters 25, no. 23 (December 2013): 2259–62. http://dx.doi.org/10.1109/lpt.2013.2285181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sorrentino, R., L. Roselli, and P. Mezzanotte. "Time reversal in finite difference time domain method." IEEE Microwave and Guided Wave Letters 3, no. 11 (November 1993): 402–4. http://dx.doi.org/10.1109/75.248513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Saitoh, I., Y. Suzuki, and N. Takahashi. "The symplectic finite difference time domain method." IEEE Transactions on Magnetics 37, no. 5 (2001): 3251–54. http://dx.doi.org/10.1109/20.952588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Masoudi, H. M., M. A. AlSunaidi, and J. M. Arnold. "Time-domain finite-difference beam propagation method." IEEE Photonics Technology Letters 11, no. 10 (October 1999): 1274–76. http://dx.doi.org/10.1109/68.789715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Shumin, Robert Lee, and Fernando L. Teixeira. "Implicit nonstaggered finite-difference time-domain method." Microwave and Optical Technology Letters 45, no. 4 (2005): 317–19. http://dx.doi.org/10.1002/mop.20809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hong, Ic-Pyo. "2D Finite Difference Time Domain Method Using the Domain Decomposition Method." Journal of the Korean Institute of Information and Communication Engineering 17, no. 5 (May 31, 2013): 1049–54. http://dx.doi.org/10.6109/jkiice.2013.17.5.1049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tirkas, P. A., and C. A. Balanis. "Finite-difference time-domain method for antenna radiation." IEEE Transactions on Antennas and Propagation 40, no. 3 (March 1992): 334–40. http://dx.doi.org/10.1109/8.135478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, J., and J. Wang. "Weakly conditionally stable finite-difference time-domain method." IET Microwaves, Antennas & Propagation 4, no. 11 (2010): 1927. http://dx.doi.org/10.1049/iet-map.2009.0542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Huawei, Stuart Crozier, and Feng Liu. "A high definition, finite difference time domain method." Applied Mathematical Modelling 27, no. 5 (May 2003): 409–19. http://dx.doi.org/10.1016/s0307-904x(03)00049-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schneider, R. N., M. M. Okoniewski, and L. E. Turner. "Finite-difference time-domain method in custom hardware?" IEEE Microwave and Wireless Components Letters 12, no. 12 (December 2002): 488–90. http://dx.doi.org/10.1109/lmwc.2002.805948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rycroft, M. J. "Computational electrodynamics, the finite-difference time-domain method." Journal of Atmospheric and Terrestrial Physics 58, no. 15 (November 1996): 1817–18. http://dx.doi.org/10.1016/0021-9169(96)80449-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lim, J. J., T. M. Benson, E. C. Larkins, and P. Sewell. "Wideband finite-difference-time-domain beam propagation method." Microwave and Optical Technology Letters 34, no. 4 (July 19, 2002): 243–47. http://dx.doi.org/10.1002/mop.10428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gunes, Ahmet, and Serkan Aksoy. "Pseudospectral Time Domain Method Implementation Using Finite Difference Time Stepping." IEEE Microwave and Wireless Components Letters 28, no. 5 (May 2018): 365–67. http://dx.doi.org/10.1109/lmwc.2018.2812638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yang, Bo, and Constantine A. Balanis. "An isotropy-improved nonstandard finite-difference time-domain method." IEEE Transactions on Antennas and Propagation 54, no. 7 (July 2006): 1935–42. http://dx.doi.org/10.1109/tap.2006.877185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jiang, Le-Le, Jun-Fa Mao, and Xian-Liang Wu. "Symplectic finite-difference time-domain method for maxwell equations." IEEE Transactions on Magnetics 42, no. 8 (August 2006): 1991–95. http://dx.doi.org/10.1109/tmag.2006.877540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Nan Zheng, Ronghong Jin, Xianling Liang, and Junping Geng. "A Modified Lumped-Network Finite-Difference Time-Domain Method." IEEE Antennas and Wireless Propagation Letters 11 (2012): 326–29. http://dx.doi.org/10.1109/lawp.2012.2191260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yan Wu and I. Wassell. "Introduction to the Segmented Finite-Difference Time-Domain Method." IEEE Transactions on Magnetics 45, no. 3 (March 2009): 1364–67. http://dx.doi.org/10.1109/tmag.2009.2012628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Jiang, Haolin, and Tiejun Cui. "Simple PML implementation for finite‐difference time‐domain method." Electronics Letters 54, no. 16 (August 2018): 988–90. http://dx.doi.org/10.1049/el.2018.0940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kapoor, S. "Sub-cellular technique for finite-difference time-domain method." IEEE Transactions on Microwave Theory and Techniques 45, no. 5 (May 1997): 673–77. http://dx.doi.org/10.1109/22.575584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

UNO, T. "Antenna Design Using the Finite Difference Time Domain Method." IEICE Transactions on Communications E88-B, no. 5 (May 1, 2005): 1774–89. http://dx.doi.org/10.1093/ietcom/e88-b.5.1774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Edwards, Robert S., Andrew C. Marvin, and Stuart J. Porter. "Uncertainty Analyses in the Finite-Difference Time-Domain Method." IEEE Transactions on Electromagnetic Compatibility 52, no. 1 (February 2010): 155–63. http://dx.doi.org/10.1109/temc.2009.2034645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Chan, C. H., H. Sangani, K. S. Yee, and J. T. Elson. "A finite-difference time-domain method using whitney elements." Microwave and Optical Technology Letters 7, no. 14 (October 5, 1994): 673–76. http://dx.doi.org/10.1002/mop.4650071413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

De Moerloose, Jan, and Daniel De Zutter. "Poynting's theorem for the finite-difference–time-domain method." Microwave and Optical Technology Letters 8, no. 5 (April 5, 1995): 257–60. http://dx.doi.org/10.1002/mop.4650080512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Chieh-Tsao Hwang and Ruey-Beei Wu. "Treating late-time instability of hybrid finite-element/finite-difference time-domain method." IEEE Transactions on Antennas and Propagation 47, no. 2 (1999): 227–32. http://dx.doi.org/10.1109/8.761061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Sun, Qingtao, Qiang Ren, Qiwei Zhan, and Qing Huo Liu. "3-D Domain Decomposition Based Hybrid Finite-Difference Time-Domain/Finite-Element Time-Domain Method With Nonconformal Meshes." IEEE Transactions on Microwave Theory and Techniques 65, no. 10 (October 2017): 3682–88. http://dx.doi.org/10.1109/tmtt.2017.2686386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bardak, Cemile, Yanhan Zhu, Ayrton A. Bernussi, and Mohammad Saed. "Terahertz Imaging With a Time-Reversed Finite Difference Time-Domain Method." IEEE Transactions on Terahertz Science and Technology 4, no. 2 (March 2014): 240–46. http://dx.doi.org/10.1109/tthz.2014.2303788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Shao, W., B. Z. Wang, and Z. J. Yu. "Space-Domain Finite-Difference and Time-Domain Moment Method for Electromagnetic Simulation." IEEE Transactions on Electromagnetic Compatibility 48, no. 1 (February 2006): 10–18. http://dx.doi.org/10.1109/temc.2005.861376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yamauchi, Junji, Koji Nishio, and Hisamatsu Nakano. "Hybrid numerical technique combining the finite-difference beam-propagation method and the finite-difference time-domain method." Optics Letters 22, no. 5 (March 1, 1997): 259. http://dx.doi.org/10.1364/ol.22.000259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Grinenko, A., P. D. Wilcox, C. R. P. Courtney, and B. W. Drinkwater. "Acoustic radiation force analysis using finite difference time domain method." Journal of the Acoustical Society of America 131, no. 5 (May 2012): 3664–70. http://dx.doi.org/10.1121/1.3699204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Schneider, J., and S. Hudson. "A finite-difference time-domain method applied to anisotropic material." IEEE Transactions on Antennas and Propagation 41, no. 7 (July 1993): 994–99. http://dx.doi.org/10.1109/8.237636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

ElMahgoub, Khaled, Atef Z. Elsherbeni, and Fan Yang. "Dispersive Periodic Boundary Conditions for Finite-Difference Time-Domain Method." IEEE Transactions on Antennas and Propagation 60, no. 4 (April 2012): 2118–22. http://dx.doi.org/10.1109/tap.2012.2186243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Suzuki, Hisaharu, Akira Omoto, and Kyoji Fujiwara. "Treatment of boundary conditions by finite difference time domain method." Acoustical Science and Technology 28, no. 1 (2007): 16–26. http://dx.doi.org/10.1250/ast.28.16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Goyal, Priyanka, Soumya Gupta, Gurjit Kaur, and Brajesh Kumar Kaushik. "Performance analysis of VCSEL using finite difference time domain method." Optik 156 (March 2018): 505–13. http://dx.doi.org/10.1016/j.ijleo.2017.11.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Xiaohua Wu, D. Conn, Jian Song, and K. Nickerson. "Faster finite-difference time-domain method using moving spatial boundaries." Electronics Letters 28, no. 24 (1992): 2229. http://dx.doi.org/10.1049/el:19921432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Thiel, D. V., and R. Mittra. "Surface impedance modeling using the finite-difference time-domain method." IEEE Transactions on Geoscience and Remote Sensing 35, no. 5 (1997): 1350–56. http://dx.doi.org/10.1109/36.628800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hadi, Mohammed F., and Seyed A. Esmaeili. "CUDA Fortran acceleration for the finite-difference time-domain method." Computer Physics Communications 184, no. 5 (May 2013): 1395–400. http://dx.doi.org/10.1016/j.cpc.2013.01.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Christensen, Douglas, and David Fowers. "Modeling SPR sensors with the finite-difference time-domain method." Biosensors and Bioelectronics 11, no. 6-7 (January 1996): 677–84. http://dx.doi.org/10.1016/0956-5663(96)83301-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Remis, Rob F. "On the Stability of the Finite-Difference Time-Domain Method." Journal of Computational Physics 163, no. 1 (September 2000): 249–61. http://dx.doi.org/10.1006/jcph.2000.6573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Johnson, J. Michael, and Yahya Rahmat-Samil. "MR/FDTD: A multiple-region finite-difference--time-domain method." Microwave and Optical Technology Letters 14, no. 2 (February 5, 1997): 101–5. http://dx.doi.org/10.1002/(sici)1098-2760(19970205)14:2<101::aid-mop8>3.0.co;2-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Reineix, A., T. Monediere, and F. Jecko. "Ferrite analysis using the finite-difference time-domain (FDTD) method." Microwave and Optical Technology Letters 5, no. 13 (December 1992): 685–86. http://dx.doi.org/10.1002/mop.4650051311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wei, Jianguo, Song Wang, Qingzhi Hou, and Jianwu Dang. "Generalized Finite Difference Time Domain Method and Its Application to Acoustics." Mathematical Problems in Engineering 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/640305.

Full text
Abstract:
A meshless generalized finite difference time domain (GFDTD) method is proposed and applied to transient acoustics to overcome difficulties due to use of grids or mesh. Inspired by the derivation of meshless particle methods, the generalized finite difference method (GFDM) is reformulated utilizing Taylor series expansion. It is in a way different from the conventional derivation of GFDM in which a weighted energy norm was minimized. The similarity and difference between GFDM and particle methods are hence conveniently examined. It is shown that GFDM has better performance than the modified smoothed particle method in approximating the first- and second-order derivatives of 1D and 2D functions. To solve acoustic wave propagation problems, GFDM is used to approximate the spatial derivatives and the leap-frog scheme is used for time integration. By analog with FDTD, the whole algorithm is referred to as GFDTD. Examples in one- and two-dimensional domain with reflection and absorbing boundary conditions are solved and good agreements with the FDTD reference solutions are observed, even with irregular point distribution. The developed GFDTD method has advantages in solving wave propagation in domain with irregular and moving boundaries.
APA, Harvard, Vancouver, ISO, and other styles
42

Zhang, Lei, Tong Bin Yu, De Xin Qu, and Xiao Gang Xie. "Analysis of Microstrip Circuit by Using Finite Difference Time Domain (FDTD) Method." Applied Mechanics and Materials 347-350 (August 2013): 1758–62. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.1758.

Full text
Abstract:
The microstrip circuit is mostly analyzed in transform domain, because its equivalent circuit equation is often nonlinear differential equation, which is easily analyzed in transform domain relatively, but hardly did in time domain, so the analysis of microstrip circuit is a hard work in time domain. In this paper, the FDTD method is used to analyze the microstrip circuit in time domain, by transforming the nonlinear differential equation into time domain iterative equation, selecting suitable time step, and having an iterative computing, the time domain numerical solution can be solved. The FDTD method analyzing the microstrip circuit provides a new way of thought for analyzing microstrip circuit in time domain.
APA, Harvard, Vancouver, ISO, and other styles
43

Rouf, Hasan Khaled. "IMPROVEMENT OF COMPUTATIONAL PERFORMANCE OF IMPLICIT FINITE DIFFERENCE TIME DOMAIN METHOD." Progress In Electromagnetics Research M 43 (2015): 1–8. http://dx.doi.org/10.2528/pierm15052402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Young-Seek Chung, T. K. Sarkar, Baek Ho Jung, and M. Salazar-Palma. "An unconditionally stable scheme for the finite-difference time-domain method." IEEE Transactions on Microwave Theory and Techniques 51, no. 3 (March 2003): 697–704. http://dx.doi.org/10.1109/tmtt.2003.808732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Simon, A. E., and A. A. Kishk. "Asymptotic strip boundary condition in the finite difference time domain method." IEEE Transactions on Antennas and Propagation 53, no. 3 (March 2005): 1187–93. http://dx.doi.org/10.1109/tap.2004.842622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chung, Sun-Oh, and Yeong-Seog Lim. "Indoor Propagation Channel Modeling Using the Finite Difference Time Domain Method." Journal of the Korean Institute of Information and Communication Engineering 15, no. 9 (September 30, 2011): 1847–53. http://dx.doi.org/10.6109/jkiice.2011.15.9.1847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chen, J., and J. Wang. "Stability condition for body-of-revolution finite-difference time-domain method." Electronics Letters 43, no. 21 (2007): 1126. http://dx.doi.org/10.1049/el:20072044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

DU, LIU-GE, KANG LI, FAN-MIN KONG, and YUAN HU. "PARALLEL 3D FINITE-DIFFERENCE TIME-DOMAIN METHOD ON MULTI-GPU SYSTEMS." International Journal of Modern Physics C 22, no. 02 (February 2011): 107–21. http://dx.doi.org/10.1142/s012918311101618x.

Full text
Abstract:
Finite-difference time-domain (FDTD) is a popular but computational intensive method to solve Maxwell's equations for electrical and optical devices simulation. This paper presents implementations of three-dimensional FDTD with convolutional perfect match layer (CPML) absorbing boundary conditions on graphics processing unit (GPU). Electromagnetic fields in Yee cells are calculated in parallel millions of threads arranged as a grid of blocks with compute unified device architecture (CUDA) programming model and considerable speedup factors are obtained versus sequential CPU code. We extend the parallel algorithm to multiple GPUs in order to solve electrically large structures. Asynchronous memory copy scheme is used in data exchange procedure to improve the computation efficiency. We successfully use this technique to simulate pointwise source radiation and validate the result by comparison to high precision computation, which shows favorable agreements. With four commodity GTX295 graphics cards on a single personal computer, more than 4000 million Yee cells can be updated in one second, which is hundreds of times faster than traditional CPU computation.
APA, Harvard, Vancouver, ISO, and other styles
49

Stephen, Ralph A. "Modeling sea surface scattering by the time‐domain finite‐difference method." Journal of the Acoustical Society of America 100, no. 4 (October 1996): 2070–78. http://dx.doi.org/10.1121/1.417917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sudiarta, I. Wayan, and D. J. Wallace Geldart. "Solving the Schrödinger equation using the finite difference time domain method." Journal of Physics A: Mathematical and Theoretical 40, no. 8 (February 6, 2007): 1885–96. http://dx.doi.org/10.1088/1751-8113/40/8/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography