To see the other types of publications on this topic, follow the link: Finite density QCD.

Journal articles on the topic 'Finite density QCD'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Finite density QCD.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Barbour, I. M. "QCD at finite density." Nuclear Physics B - Proceedings Supplements 26 (January 1992): 22–30. http://dx.doi.org/10.1016/0920-5632(92)90226-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lombardo, Maria-Paola. "Lattice QCD at Finite Density." Progress of Theoretical Physics Supplement 153 (2004): 26–39. http://dx.doi.org/10.1143/ptps.153.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Son, D. T., and M. A. Stephanov. "QCD at Finite Isospin Density." Physical Review Letters 86, no. 4 (January 22, 2001): 592–95. http://dx.doi.org/10.1103/physrevlett.86.592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kogut, J. B., M. P. Lombardo, and D. K. Sinclair. "Quenched QCD at finite density." Physical Review D 51, no. 3 (February 1, 1995): 1282–91. http://dx.doi.org/10.1103/physrevd.51.1282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aloisio, R., V. Azcoiti, G. Di Carlo, A. Galante, and A. F. Grillo. "Frustration in finite density QCD." Physics Letters B 435, no. 1-2 (September 1998): 175–80. http://dx.doi.org/10.1016/s0370-2693(98)00762-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barbour, Ian M., Susan E. Morrison, Elyakum G. Klepfish, John B. Kogut, and Maria-Paola Lombardo. "Results on finite density QCD." Nuclear Physics B - Proceedings Supplements 60, no. 1-2 (January 1998): 220–33. http://dx.doi.org/10.1016/s0920-5632(97)00484-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barbour, I. M., C. T. H. Davies, and Z. Sabeur. "Lattice QCD at finite density." Physics Letters B 215, no. 3 (December 1988): 567–72. http://dx.doi.org/10.1016/0370-2693(88)91361-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vladikas, A. "QCD at finite baryon density." Nuclear Physics B - Proceedings Supplements 4 (April 1988): 322–26. http://dx.doi.org/10.1016/0920-5632(88)90122-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barbour, I. M. "Lattice QCD at finite density." Nuclear Physics B - Proceedings Supplements 17 (September 1990): 243–47. http://dx.doi.org/10.1016/0920-5632(90)90246-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Toussaint, D. "Simulating QCD at finite density." Nuclear Physics B - Proceedings Supplements 17 (September 1990): 248–51. http://dx.doi.org/10.1016/0920-5632(90)90247-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Davies, C. T. H., and E. G. Klepfish. "Quenched QCD at finite density." Physics Letters B 256, no. 1 (February 1991): 68–74. http://dx.doi.org/10.1016/0370-2693(91)90220-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gocksch, Andreas. "Lattice QCD at finite density." Physical Review D 37, no. 4 (February 15, 1988): 1014–19. http://dx.doi.org/10.1103/physrevd.37.1014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Karsch, Frithjof. "Lattice QCD at finite density." Nuclear Physics A 461, no. 1-2 (January 1987): 305–16. http://dx.doi.org/10.1016/0375-9474(87)90490-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kogut, J. B., M. P. Lombardo, and D. K. Sinclair. "Quenched QCD at finite density." Nuclear Physics B - Proceedings Supplements 34 (April 1994): 301–3. http://dx.doi.org/10.1016/0920-5632(94)90373-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

NAKAMURA, Atsushi. "Finite Density Simulations: Comparison of Various Approaches." Modern Physics Letters A 22, no. 07n10 (March 28, 2007): 473–89. http://dx.doi.org/10.1142/s0217732307023067.

Full text
Abstract:
This is a short overview of the lattice QCD simulations of finite density systems. We first describe a brief introduction of the lattice QCD at finite density, including the minimum necessary formulation, where we show why an annoying complex fermion determinant appears, and why in some cases it does not appear. Then we review several approaches of present and past days. We conclude possible directions of lattice QCD simulations at finite density in near future.
APA, Harvard, Vancouver, ISO, and other styles
16

Lawlor, Dale, Simon Hands, Seyong Kim, and Jon-Ivar Skullerud. "Thermal Transitions in Dense Two-Colour QCD." EPJ Web of Conferences 274 (2022): 07012. http://dx.doi.org/10.1051/epjconf/202227407012.

Full text
Abstract:
The infamous sign problem makes it impossible to probe dense (baryon density μB > 0) QCD at temperatures near or below the deconfinement threshold. As a workaround, one can explore QCD-like theories such as twocolour QCD (QC2D) which don’t suffer from this sign problem but are qualitively similar to real QCD. Previous studies on smaller lattice volumes have investigated deconfinement and colour superfluid to normal matter transitions. In this study we look at a larger lattice volume Ns = 24 in an attempt to disentangle finite volume and finite temperature effects. We also fit to a larger number of diquark sources to better allow for extrapolation to zero diquark source.
APA, Harvard, Vancouver, ISO, and other styles
17

Azcoiti, V., G. Di Carlo, A. Galante, and V. Laliena. "Finite density QCD: a new approach." Journal of High Energy Physics 2004, no. 12 (December 4, 2004): 010. http://dx.doi.org/10.1088/1126-6708/2004/12/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Azcoiti, V., G. Di Carlo, A. Galante, and V. Laliena. "New Ideas in Finite Density QCD." Nuclear Physics B - Proceedings Supplements 140 (March 2005): 499–501. http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gocksch, Andreas. "Simulating Lattice QCD at Finite Density." Physical Review Letters 61, no. 18 (October 31, 1988): 2054–57. http://dx.doi.org/10.1103/physrevlett.61.2054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Aloisio, R., V. Azcoiti, G. Di Carlo, A. Galante, and A. F. Grillo. "Finite density QCD with heavy quarks." Nuclear Physics B - Proceedings Supplements 73, no. 1-3 (March 1999): 489–91. http://dx.doi.org/10.1016/s0920-5632(99)85114-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kogut, J. B., and D. K. Sinclair. "Lattice QCD at finite isospin density." Nuclear Physics B - Proceedings Supplements 106-107 (March 2002): 444–46. http://dx.doi.org/10.1016/s0920-5632(01)01741-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gocksch, Andreas. "Simulating lattice QCD at finite density." Nuclear Physics B - Proceedings Supplements 9 (June 1989): 344–46. http://dx.doi.org/10.1016/0920-5632(89)90123-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

YA. GLOZMAN, L., and R. F. WAGENBRUNN. "CHIRALLY SYMMETRIC BUT CONFINED HADRONS AT FINITE DENSITY." Modern Physics Letters A 23, no. 27n30 (September 30, 2008): 2385–88. http://dx.doi.org/10.1142/s0217732308029435.

Full text
Abstract:
At a critical finite chemical potential and low temperature QCD undergoes the chiral restoration phase transition. The folklore tradition is that simultaneously hadrons are deconfined and there appears the quark matter. We demonstrate that it is possible to have confined but chirally symmetric hadrons at a finite chemical potential and hence beyond the chiral restoration point at a finite chemical potential and low temperature there could exist a chirally symmetric matter consisting of chirally symmetric but confined hadrons. If it does happen in QCD, then the QCD phase diagram should be reconsidered with obvious implications for heavy ion programs and astrophysics.
APA, Harvard, Vancouver, ISO, and other styles
24

Scior, Philipp, Lorenz von Smekal, and Dominik Smith. "Spectrum of QCD at Finite Isospin Density." EPJ Web of Conferences 175 (2018): 07042. http://dx.doi.org/10.1051/epjconf/201817507042.

Full text
Abstract:
We study the phase diagram of QCD at finite isospin density using two flavors of staggered quarks. We investigate the low temperature region of the phase diagram where we find a pion condensation phase at high chemical potential. We started a basic analysis of the spectrum at finite isospin density. In particular, we measured pion, rho and nucleon masses inside and outside of the pion condensation phase. In agreement with previous studies in two-color QCD at finite baryon density we find that the Polyakov loop does not depend on the density in the staggered formulation.
APA, Harvard, Vancouver, ISO, and other styles
25

GAMBOA, J., J. LÓPEZ-SARRIÓN, M. LOEWE, and F. MÉNDEZ. "CENTRAL CHARGES AND EFFECTIVE ACTION AT FINITE TEMPERATURE AND DENSITY." Modern Physics Letters A 19, no. 03 (January 30, 2004): 223–38. http://dx.doi.org/10.1142/s0217732304012952.

Full text
Abstract:
The current algebra for gauge theories like QCD at finite temperature and density is studied. We start considering, the massless Thirring model at finite temperature and density, finding an explicit expression for the current algebra. The central charge only depends on the coupling constant and there are not new effects due to temperature and density. From this calculation, we argue how to compute the central charge for QCD4 and we argue why the central charge in four dimensions could be modified by finite temperature and density.
APA, Harvard, Vancouver, ISO, and other styles
26

Schindler, Moses A., Stella T. Schindler, and Michael C. Ogilvie. "PT symmetry, pattern formation, and finite-density QCD." Journal of Physics: Conference Series 2038, no. 1 (October 1, 2021): 012022. http://dx.doi.org/10.1088/1742-6596/2038/1/012022.

Full text
Abstract:
Abstract A longstanding issue in the study of quantum chromodynamics (QCD) is its behavior at nonzero baryon density, which has implications for many areas of physics. The path integral has a complex integrand when the quark chemical potential is nonzero and therefore has a sign problem, but it also has a generalized PT symmetry. We review some new approaches to PT -symmetric field theories, including both analytical techniques and methods for lattice simulation. We show that PT -symmetric field theories with more than one field generally have a much richer phase structure than their Hermitian counterparts, including stable phases with patterning behavior. The case of a PT -symmetric extension of a φ4 model is explained in detail. The relevance of these results to finite density QCD is explained, and we show that a simple model of finite density QCD exhibits a patterned phase in its critical region.
APA, Harvard, Vancouver, ISO, and other styles
27

LOMBARDO, M. P. "Lattice QCD at Finite Temperature and Density." Modern Physics Letters A 22, no. 07n10 (March 28, 2007): 457–71. http://dx.doi.org/10.1142/s0217732307023055.

Full text
Abstract:
A general introduction into the subject aimed at a general theoretical physics audience. We introduce the sign problem posed by finite density lattice QCD, and we discuss the main methods proposed to circumvent it, with emphasis on the imaginary chemical potential approach. The interrelation between Taylor expansion and analytic continuation from imaginary chemical potential is discussed in detail. The main applications to the calculation of the critical line, and to the thermodynamics of the hot and normal phase are reviewed.
APA, Harvard, Vancouver, ISO, and other styles
28

Niégawa, Akira. "Perturbative QCD at Finite Temperature and Density." Progress of Theoretical Physics Supplement 129 (1997): 105–18. http://dx.doi.org/10.1143/ptps.129.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ejiri, Shinji. "Lattice QCD at Finite Temperature and Density." Progress of Theoretical Physics Supplement 186 (October 1, 2010): 510–15. http://dx.doi.org/10.1143/ptps.186.510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Shuryak, E. V. "QCD at finite density and color superconductivity." Physics of Atomic Nuclei 64, no. 3 (March 2001): 574–78. http://dx.doi.org/10.1134/1.1358483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Philipsen, O. "Lattice QCD at finite temperature and density." European Physical Journal Special Topics 152, no. 1 (December 2007): 29–60. http://dx.doi.org/10.1140/epjst/e2007-00376-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kim, Y. "AdS/QCD at finite density and temperature." Physics of Atomic Nuclei 75, no. 7 (July 2012): 870–72. http://dx.doi.org/10.1134/s1063778812060208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

de Forcrand, Philippe, and Slavo Kratochvila. "Finite density QCD with a canonical approach." Nuclear Physics B - Proceedings Supplements 153, no. 1 (March 2006): 62–67. http://dx.doi.org/10.1016/j.nuclphysbps.2006.01.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shuster, E., and D. T. Son. "On finite-density QCD at large Nc." Nuclear Physics B 573, no. 1-2 (May 2000): 434–46. http://dx.doi.org/10.1016/s0550-3213(99)00615-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Aloisio, R., V. Azcoiti, G. Di Carlo, A. Galante, and A. F. Grillo. "Finite density QCD in the chiral limit." Nuclear Physics B - Proceedings Supplements 63, no. 1-3 (April 1998): 442–44. http://dx.doi.org/10.1016/s0920-5632(97)00796-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Alford, Mark. "New possibilities for QCD at finite density." Nuclear Physics B - Proceedings Supplements 73, no. 1-3 (March 1999): 161–66. http://dx.doi.org/10.1016/s0920-5632(99)85015-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Karsch, F., B. J. Schaefer, M. Wagner, and J. Wambach. "Towards finite density QCD with Taylor expansions." Physics Letters B 698, no. 3 (April 2011): 256–64. http://dx.doi.org/10.1016/j.physletb.2011.03.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Drukarev, E. G. "Finite density QCD sum rules for nucleons." Progress in Particle and Nuclear Physics 50, no. 2 (January 2003): 659–75. http://dx.doi.org/10.1016/s0146-6410(03)00060-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kogut, J. B., M. A. Stephanov, D. Toublan, J. J. M. Verbaarschot, and A. Zhitnitsky. "QCD-like theories at finite baryon density." Nuclear Physics B 582, no. 1-3 (August 2000): 477–513. http://dx.doi.org/10.1016/s0550-3213(00)00242-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Aloisio, R., V. Azcoiti, G. Di Carlo, A. Galante, and A. F. Grillo. "Phase transition(s) in finite density QCD." Nuclear Physics A 642, no. 1-2 (November 1998): c263—c268. http://dx.doi.org/10.1016/s0375-9474(98)00524-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Carter, G. W., and D. Diakonov. "Instanton-induced interactions in finite density QCD." Nuclear Physics A 663-664 (January 2000): 741c—744c. http://dx.doi.org/10.1016/s0375-9474(99)00708-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Karsch, F. "Lattice QCD at Finite Temperature and Density." Nuclear Physics B - Proceedings Supplements 83-84, no. 1-3 (March 2000): 14–23. http://dx.doi.org/10.1016/s0920-5632(00)00195-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Shuryak, E. "QCD at Finite Density and Color Superconductivity." Nuclear Physics B - Proceedings Supplements 83-84, no. 1-3 (March 2000): 103–7. http://dx.doi.org/10.1016/s0920-5632(00)00204-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Aloisio, R. "Strongly Coupled QCD at Finite Baryon Density." Nuclear Physics B - Proceedings Supplements 83-84, no. 1-3 (March 2000): 351–53. http://dx.doi.org/10.1016/s0920-5632(00)00300-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Karsch, Frithjof. "Lattice QCD at finite temperature and density." Nuclear Physics B - Proceedings Supplements 83-84 (April 2000): 14–23. http://dx.doi.org/10.1016/s0920-5632(00)91591-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Shuryak, E. "QCD at finite density and color superconductivity." Nuclear Physics B - Proceedings Supplements 83-84 (April 2000): 103–7. http://dx.doi.org/10.1016/s0920-5632(00)91600-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Aloisio, R., V. Azcoiti, G. Di Carlo, A. Galante, and A. F. Grillo. "Strongly coupled QCD at finite baryon density." Nuclear Physics B - Proceedings Supplements 83-84 (April 2000): 351–53. http://dx.doi.org/10.1016/s0920-5632(00)91670-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Barbour, I. M., and Z. A. Sabeur. "Simulations with lattice QCD at finite density." Nuclear Physics B 342, no. 1 (September 1990): 269–78. http://dx.doi.org/10.1016/0550-3213(90)90578-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kashiwa, Kouji. "Imaginary Chemical Potential, NJL-Type Model and Confinement–Deconfinement Transition." Symmetry 11, no. 4 (April 18, 2019): 562. http://dx.doi.org/10.3390/sym11040562.

Full text
Abstract:
In this review, we present of an overview of several interesting properties of QCD at finite imaginary chemical potential and those applications to exploring the QCD phase diagram. The most important properties of QCD at a finite imaginary chemical potential are the Roberge–Weiss periodicity and the transition. We summarize how these properties play a crucial role in understanding QCD properties at finite temperature and density. This review covers several topics in the investigation of the QCD phase diagram based on the imaginary chemical potential.
APA, Harvard, Vancouver, ISO, and other styles
50

Hajizadeh, Ouraman, Tamer Boz, Axel Maas, and Jon-Ivar Skullerud. "Gluon and ghost correlation functions of 2-color QCD at finite density." EPJ Web of Conferences 175 (2018): 07012. http://dx.doi.org/10.1051/epjconf/201817507012.

Full text
Abstract:
2-color QCD, i. e. QCD with the gauge group SU(2), is the simplest non-Abelian gauge theory without sign problem at finite quark density. Therefore its study on the lattice is a benchmark for other non-perturbative approaches at finite density. To provide such benchmarks we determine the minimal-Landau-gauge 2-point and 3-gluon correlation functions of the gauge sector and the running gauge coupling at finite density. We observe no significant effects, except for some low-momentum screening of the gluons at and above the supposed high-density phase transition.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography