Academic literature on the topic 'Finite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Finite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Finite"

1

Sesboüé, André. "Finite monogenic distributive systems." Czechoslovak Mathematical Journal 46, no. 4 (1996): 697–719. http://dx.doi.org/10.21136/cmj.1996.127328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kurdachenko, L. A., and I. Ya Subbotin. "Ideally finite Leibniz algebras." Algebra and Discrete Mathematics 35, no. 2 (2023): 168–79. http://dx.doi.org/10.12958/adm2139.

Full text
Abstract:
The aim of this paper is to consider Leibniz algebras, whose principal ideals are finite dimensional. We prove that the derived ideal of L has finite dimension if every principal ideal of a Leibniz algebra L has dimension at most b, where b is a fixed positive integer.
APA, Harvard, Vancouver, ISO, and other styles
3

Czédli, Gábor. "Cyclic congruences of slim semimodular lattices and non-finite axiomatizability of some finite structures." Archivum Mathematicum, no. 1 (2022): 15–33. http://dx.doi.org/10.5817/am2022-1-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Di Nezza, Eleonora, Vincent Guedj, and Chinh H. Lu. "Finite entropy vs finite energy." Commentarii Mathematici Helvetici 96, no. 2 (June 23, 2021): 389–419. http://dx.doi.org/10.4171/cmh/515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Evans, David M. "Finite covers with finite kernels." Annals of Pure and Applied Logic 88, no. 2-3 (November 1997): 109–47. http://dx.doi.org/10.1016/s0168-0072(97)00018-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kearnes, Keith A., and Emil W. Kiss. "Finite algebras of finite complexity." Discrete Mathematics 207, no. 1-3 (September 1999): 89–135. http://dx.doi.org/10.1016/s0012-365x(99)00042-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Azumaya, Goro. "Finite splitness and finite projectivity." Journal of Algebra 106, no. 1 (March 1987): 114–34. http://dx.doi.org/10.1016/0021-8693(87)90024-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rosset, Shmuel. "Finite index and finite codimension." Journal of Pure and Applied Algebra 104, no. 1 (October 1995): 97–107. http://dx.doi.org/10.1016/0022-4049(94)00120-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Adam, David. "Finite differences in finite characteristic." Journal of Algebra 296, no. 1 (February 2006): 285–300. http://dx.doi.org/10.1016/j.jalgebra.2005.05.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Křížková, Jitka. "Special exact curved finite elements." Applications of Mathematics 36, no. 2 (1991): 81–95. http://dx.doi.org/10.21136/am.1991.104447.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Finite"

1

江傑新 and Jackson Kong. "Analysis of plate-type structures by finite strip, finite prism and finite layer methods." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1994. http://hub.hku.hk/bib/B31233594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kong, Jackson. "Analysis of plate-type structures by finite strip, finite prism and finite layer methods /." [Hong Kong : University of Hong Kong], 1994. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13788048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pham, Du. "Comparison of finite volume and finite difference methods and convergence results for finite volume schemes." [Bloomington, Ind.] : Indiana University, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3277975.

Full text
Abstract:
Thesis (Ph. D.)--Indiana University, Dept. of Mathematics, 2007.
Source: Dissertation Abstracts International, Volume: 68-09, Section: B, page: 6004. Adviser: Roger Temam. Title from dissertation home page (viewed May 8, 2008).
APA, Harvard, Vancouver, ISO, and other styles
4

Ersoy, Kivanc. "Centralizers Of Finite Subgroups In Simple Locally Finite Groups." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610850/index.pdf.

Full text
Abstract:
A group G is called locally finite if every finitely generated subgroup of G is finite. In this thesis we study the centralizers of subgroups in simple locally finite groups. Hartley proved that in a linear simple locally finite group, the fixed point of every semisimple automorphism contains infinitely many elements of distinct prime orders. In the first part of this thesis, centralizers of finite abelian subgroups of linear simple locally finite groups are studied and the following result is proved: If G is a linear simple locally finite group and A is a finite d-abelian subgroup consisting of semisimple elements of G, then C_G(A) has an infinite abelian subgroup isomorphic to the direct product of cyclic groups of order p_i for infinitely many distinct primes pi. Hartley asked the following question: Let G be a non-linear simple locally finite group and F be any subgroup of G. Is CG(F) necessarily infinite? In the second part of this thesis, the following problem is studied: Determine the nonlinear simple locally finite groups G and their finite subgroups F such that C_G(F) contains an infinite abelian subgroup which is isomorphic to the direct product of cyclic groups of order pi for infinitely many distinct primes p_i. We prove the following: Let G be a non-linear simple locally finite group with a split Kegel cover K and F be any finite subgroup consisting of K-semisimple elements of G. Then the centralizer C_G(F) contains an infinite abelian subgroup isomorphic to the direct product of cyclic groups of order p_i for infinitely many distinct primes p_i.
APA, Harvard, Vancouver, ISO, and other styles
5

Abou, Ghadir Mohamed Mohamed Moustafa. "Combined finite strip and finite element methods in structural analysis." Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.446434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ngassam, Ernest Ketcha. "Hardcoding finite automata." Pretoria : [s.n.], 2005. http://upetd.up.ac.za/thesis/available/etd-06132005-115153/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Hanji. "Finite Bargaining Problems." Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/econ_diss/32.

Full text
Abstract:
Bargaining is a process to decide how to divide shared resources between two or more players. And axiomatic bargaining specifies desirable and simple properties the outcome of the bargaining should satisfy and identifies the solution that produces this outcome. This approach was first developed by John Nash in his seminal work(Nash 1950). Since then, numerous studies have been done on bargaining problems with convex feasible set or with non-convex but comprehensive feasible set. There is, however, little work on finite bargaining problems. In this dissertation, we study finite bargaining problems systematically by extending the standard bargaining model to the one consisting of all finite bargaining problems. For our bargaining problems, we first propose the Nash, Maximin, Leximin, Maxiproportionalmin, Lexiproportianlmin solutions, which are the counterparts of those that have been studied extensively in both convex and non-convex but comprehensive problems. We then axiomatically characterize these solutions in our context. We next introduce two new solutions, the maximin-utilitarian solution and the utilitarian-maximin solution, each of which combines the maximin solution and utilitarian solution in different ways. The maximin-utilitarian solution selects the alternatives from the maximin solution that have the greatest sum of individuals’ utilities, and the utilitarian-maximin solution selects the maximin alternatives from the utilitarian solution. These two solutions attempt to combine two important but very different ethical principles to produce compromised solutions to bargaining problems. Finally, we discuss several variants of the egalitarian solution. The egalitarian solution in finite bargaining problems is more complicated than its counterpart in either convex or non-convex but comprehensive bargaining problems. Given its complexity in our context, we start our inquiry by investigating two-person, finite bargaining problems, and then extend some of the analysis to n-person, finite bargaining problems. Our analysis of finite bargaining problems and axiomatic characterizations of the extensions of various standard solutions of convex/non-convex but comprehensive bargaining problems to finite bargaining problems will shed new light on the behavior of these solutions. Our new solutions will expand our understanding of the bargaining theory and distributive justice from a different perspective.
APA, Harvard, Vancouver, ISO, and other styles
8

Phillips, Joel. "Pyramidal finite elements." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96844.

Full text
Abstract:
Pyramidal finite elements can be used as "glue" to combine elements with triangular faces (e.g. tetrahedra) and quadrilateral faces (e.g. hexahedra) in the same mesh. Existing pyramidal finite elements are low order or unsuitable for mixed finite element formulations. In this thesis, two separate families of pyramidal finite elements are constructed. The elements are equipped with unisolvent degrees of freedom and shown to be compatible with existing high order tetrahedral and hexahedral elements. Importantly, the elements are shown to deliver high order approximations and to satisfy a "commuting diagram property", which ensures their suitability for problems whose mixed formulation lies in the spaces of the de Rham complex. It is shown that all pyramidal elements must use non-polynomial basis functions and that this means that the classical theory of finite elements is unable to determine what quadrature methods should be used to assemble stiffness matrices when using pyramids. This problem is resolved by extending the classical theory and a quadrature scheme appropriate for high order pyramidal elements is recommended. Finally, some numerical experiments using pyramidal elements are presented.
Les éléments finis pyramidaux peuvent servir comme «colle» pour combiner des éléments avec faces triangulaires (p. ex. tétraèdres) et avec faces quadrilaterales (p. ex. hexaèdres) dans un même maillage. Les éléments finis pyramidaux qui existent présentement sont soit de bas-ordre ou ne sont pas convenables pour les formulations mixtes d'éléments finis. Dans cette thèse, deux familles d'éléments finis pyramidaux sont construites. Les éléments sont équipés de degrés de libertés unisolvents et on démontre qu'ils sont compatibles avec les éléments pré-existantes triangulaires et quadrilaterales d'ordres élevés. On démontre notamment que les éléments produisent des approximations d'ordres élevés et satisfassent une «propriété de diagramme commutatif». Ceci assure que les éléments sont convenables pour des problèmes avec formulation mixte dans les espaces du complexe de Rham. On démontre que tous les éléments pyramidaux doivent utiliser des fonctions de base non-polynômes et que conséquemment la théorie classique des éléments finis ne peut pas déterminer quelles méthodes de quadrature devrait être employées pour assembler des matrices de rigidité lorsque les pyramides sont utilisées. Le problème est résolu en élargissant la théorie classique et une méthode de quadrature appropriée pour les éléments finis pyramidaux est suggérée. Finalement, des simulations numériques avec éléments pyramidaux sont présentées.
APA, Harvard, Vancouver, ISO, and other styles
9

Teng, Puay Tan Andy. "Intelligent Finite Element." Thesis, University of Exeter, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Forde, Darren Andrew. "Infrared finite amplitudes." Thesis, Durham University, 2004. http://etheses.dur.ac.uk/3047/.

Full text
Abstract:
Soft and collinear singularities, known collectively as infrared singularities here, plague the calculation of scattering amplitudes in gauge theories with massless particles such as QCD. The aim of this thesis is to describe methods of deriving amplitudes that are infrared finite and therefore do not suffer from this problem. We begin with an overview of scattering theory which includes a detailed discussion of the source of infrared singularities and outlines approaches that can be used to avoid them. Taking one of these approaches, namely that of dressed states, we give a detailed description of how such states can be constructed. We then proceed to give an explicit example calculation of the total cross section of the process e+e(^-) →2 jets at NLO. In this example we construct dressed amplitudes and demonstrate their lack of infrared singularities and then go on to show that the total cross section is the same as that calculated using standard field theory techniques. We then move on and attempt to improve the efficiency of calculations using dressed states amplitudes. We describe some of the problems of the method, specifically the large numbers of diagrams produced and the multiple different delta functions present in each amplitude. In attempting to fix these issues we demonstrate the difficulties of producing covariant amplitudes from this formalism. Finally we propose the use of the asymptotic interaction representation as a solution to these difficulties and outline a method of producing covariant infrared finite scattering amplitudes using this.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Finite"

1

Mansfield, Rockett Andrew, ed. FINITE. Boston, MA: Brooks/Cole, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hartley, B., G. M. Seitz, A. V. Borovik, and R. M. Bryant, eds. Finite and Locally Finite Groups. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0329-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maki, Daniel P. Finite mathematics. 4th ed. New York: McGraw-Hill, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nasitta, Karlheinz, and Harald Hagel. Finite Elemente. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-86711-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dwoyer, D. L., M. Y. Hussaini, and R. G. Voigt, eds. Finite Elements. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3786-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Blokhuis, A., J. W. P. Hirschfeld, D. Jungnickel, and J. A. Thas, eds. Finite Geometries. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4613-0283-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Henwood, David, and Javier Bonet. Finite Elements. London: Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-13898-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Knothe, Klaus, and Heribert Wessels. Finite Elemente. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49352-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Braess, Dietrich. Finite Elemente. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34797-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Braess, Dietrich. Finite Elemente. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-07232-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Finite"

1

Lackmann, J., H. Mertens, and R. Liebich. "Finite Berechnungsverfahren Finite Berechnungsverfahren." In Dubbel, C47—C52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17306-6_118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lackmann, J., H. Mertens, and R. Liebich. "Finite Berechnungsverfahren Finite Berechnungsverfahren." In Dubbel, C47—C52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-39412-6_118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Authier, Gilles. "Finite and non-finite." In Studies in Language Companion Series, 143–64. Amsterdam: John Benjamins Publishing Company, 2010. http://dx.doi.org/10.1075/slcs.121.05aut.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hartley, B. "Simple Locally Finite Groups." In Finite and Locally Finite Groups, 1–44. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0329-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Borovik, A. V. "Simple Locally Finite Groups of Finite Morley Rank and Odd Type." In Finite and Locally Finite Groups, 247–84. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0329-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leinen, F. "Existentially Closed Groups in Specific Classes." In Finite and Locally Finite Groups, 285–326. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0329-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bryant, R. M. "Groups Acting on Polynomial Algebras." In Finite and Locally Finite Groups, 327–46. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0329-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Isaacs, I. M. "Characters and Sets of Primes for Solvable Groups." In Finite and Locally Finite Groups, 347–76. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0329-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Turull, A. "Character Theory and Length Problems." In Finite and Locally Finite Groups, 377–400. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0329-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shalev, A. "Finite p-Groups." In Finite and Locally Finite Groups, 401–50. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0329-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Finite"

1

SMITH, BV. "FINITE ELEMENT PRINCIPLES." In Finite Elements Applied to Sonar Transducers 1988. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/22094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MCVEE, JD. "QUALITY ASSURANCE OF STRUCTURAL FINITE ELEMENT MODELS." In Finite Elements Applied to Sonar Transducers 1988. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/22096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

BRIND, RJ. "FINITE ELEMENT MODELLING OF THE A.R.E. LOW FREQUENCY FLEXTENSIONAL TRANSDUCER." In Finite Elements Applied to Sonar Transducers 1988. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/22099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

MACEY, PC. "FLUID LOADING AND PIEZOELECTRIC ELEMENTS." In Finite Elements Applied to Sonar Transducers 1988. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/22098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

DUNN, JR. "THE STRUCTURE OF A SIMPLE PROGRAM." In Finite Elements Applied to Sonar Transducers 1988. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/22097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

GALLAHER, AB. "FIRST EXPERIENCES USING A COMMERCIAL FINITE ELEMENT PACKAGE - A CASE HISTORY." In Finite Elements Applied to Sonar Transducers 1988. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/22093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

HARDIE, DJW. "AN OVERVIEW." In Finite Elements Applied to Sonar Transducers 1988. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/22095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sarma, Sridevi V., and Munther A. Dahleh. "Finite-Rate Control: Finite-Horizon Performance Limitations." In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.376785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Setzer, Bennett. "Minimal finite automata from finite training sets." In the 46th Annual Southeast Regional Conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1593105.1593183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pradeep, Aditya, Ido Nachum, and Michael Gastpar. "Finite Littlestone Dimension Implies Finite Information Complexity." In 2022 IEEE International Symposium on Information Theory (ISIT). IEEE, 2022. http://dx.doi.org/10.1109/isit50566.2022.9834457.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Finite"

1

Bohn, Robert B., and Edward J. Garboczi. User manual for finite element and finite difference programs:. Gaithersburg, MD: National Institute of Standards and Technology, 2003. http://dx.doi.org/10.6028/nist.ir.6997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miller, Nathan. Nonlinear Finite Elements. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1660567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Allen, Franklin, and Gary Gorton. Rational Finite Bubbles. Cambridge, MA: National Bureau of Economic Research, May 1991. http://dx.doi.org/10.3386/w3707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Robert, Kirby. Automatic parallel finite elements. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1093683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jones, Larry, and Rodolfo Manuelli. Finite Lifetimes and Growth. Cambridge, MA: National Bureau of Economic Research, October 1990. http://dx.doi.org/10.3386/w3469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Borgwardt, Stefan, and Barbara Morawska. Finding Finite Herbrand Models. Technische Universität Dresden, 2011. http://dx.doi.org/10.25368/2022.182.

Full text
Abstract:
We show that finding finite Herbrand models for a restricted class of first-order clauses is ExpTime-complete. A Herbrand model is called finite if it interprets all predicates by finite subsets of the Herbrand universe. The restricted class of clauses consists of anti-Horn clauses with monadic predicates and terms constructed over unary function symbols and constants. The decision procedure can be used as a new goal-oriented algorithm to solve linear language equations and unification problems in the description logic FL₀. The new algorithm has only worst-case exponential runtime, in contrast to the previous one which was even best-case exponential.
APA, Harvard, Vancouver, ISO, and other styles
7

Barham, Matthew Ian. Finite Deformation of Magnetoelastic Film. Office of Scientific and Technical Information (OSTI), May 2011. http://dx.doi.org/10.2172/1113436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Leung, Hing. Regular Languages and Finite Automata. Washington, DC: The MAA Mathematical Sciences Digital Library, June 2013. http://dx.doi.org/10.4169/loci003993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

MADLAND, D. G., and J. L. FRIAR. CHIRAL SYMMETRY IN FINITE NUCLEI. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/787258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Costa, Timothy, Stephen D. Bond, David John Littlewood, and Stan Gerald Moore. Peridynamic Multiscale Finite Element Methods. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1227915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography