Academic literature on the topic 'Fingerprinting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fingerprinting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fingerprinting"
Gowda, Ashmitha. "Brain Fingerprinting." International Journal of Research Publication and Reviews 4, no. 5 (May 4, 2023): 1707–10. http://dx.doi.org/10.55248/gengpi.234.5.40436.
Full textSetiabudi, Christian Alvin, and Gede Putra Kusuma. "Performance Evaluation of Multilateration and Fingerprinting Method in Indoor Positioning System." International Journal of Emerging Technology and Advanced Engineering 11, no. 10 (October 15, 2021): 143–52. http://dx.doi.org/10.46338/ijetae1021_18.
Full textSmolens, Jared C., Brian T. Gold, Jangwoo Kim, Babak Falsafi, James C. Hoe, and Andreas G. Nowatzyk. "Fingerprinting." ACM SIGPLAN Notices 39, no. 11 (November 2004): 224–34. http://dx.doi.org/10.1145/1037187.1024420.
Full textSmolens, Jared C., Brian T. Gold, Jangwoo Kim, Babak Falsafi, James C. Hoe, and Andreas G. Nowatzyk. "Fingerprinting." ACM SIGARCH Computer Architecture News 32, no. 5 (December 2004): 224–34. http://dx.doi.org/10.1145/1037947.1024420.
Full textSmolens, Jared C., Brian T. Gold, Jangwoo Kim, Babak Falsafi, James C. Hoe, and Andreas G. Nowatzyk. "Fingerprinting." ACM SIGOPS Operating Systems Review 38, no. 5 (December 2004): 224–34. http://dx.doi.org/10.1145/1037949.1024420.
Full textGarcia, David, and Karla Miño. "DNA fingerprinting." Bionatura 2, no. 4 (December 15, 2017): 477–80. http://dx.doi.org/10.21931/rb/2017.02.04.12.
Full textBrown, George B. "DNA Fingerprinting." Science 247, no. 4946 (March 2, 1990): 1018–19. http://dx.doi.org/10.1126/science.247.4946.1018.c.
Full textSarkar, Gobinda. "DNA Fingerprinting." Science 247, no. 4946 (March 2, 1990): 1018. http://dx.doi.org/10.1126/science.247.4946.1018.b.
Full textKumar, Sanjay. "DNA Fingerprinting." Science 247, no. 4946 (March 2, 1990): 1019. http://dx.doi.org/10.1126/science.247.4946.1019.a.
Full textBrown, George B. "DNA Fingerprinting." Science 247, no. 4946 (March 2, 1990): 1018–19. http://dx.doi.org/10.1126/science.247.4946.1018-c.
Full textDissertations / Theses on the topic "Fingerprinting"
Strobel, Cornelia. "Fuzzy Fingerprinting." Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200500106.
Full textFingerabdrücke besitzen sowohl in der Kryptographie als auch in der Biometrie eine große Bedeutung. In kryptographischen Anwendungen werden diese durch Einweg-Hash-Verfahren erzeugt, die für bestimmte Anwendungen auch kollisionsresitent sein müssen. In der Praxis schenken Benutzer diesen Fingerprints weit weniger Aufmerksamkeit - oft genügt es nur hinreichend ähnliche Fingerprints auszugeben, um die Nutzer zu täuschen Die Kriterien, die dabei erfüllt sein müssen und die Erzeugung dieser "Fuzzy Fingerprints" sind Hauptbestandteil dieses Vortrags. Durch die Demonstration eines Tools im praktischen Einsatz wird dieser abgeschlossen
Kristoffer, Frisell. "FINGERPRINTING AV HÅRDVARULIKA ENHETER : Precisionsmätning med fingerprinting på mobila enheter." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-10052.
Full textEllch, Jonathan P. "Fingerprinting 802.11 devices." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Sep%5FEllch.pdf.
Full textThesis Advisor(s): Dennis Volpano and Chris Eagle. "September 2006." Includes bibliographical references (p. 67). Also available in print.
Kim, Joonsoo. "Reliable SRAM Fingerprinting." Thesis, The University of Texas at Austin, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3572874.
Full textDevice identification, as human identification has been, has become critical to mitigate growing security problems. In the era of ubiquitous computing, it is important to ensure universal device identities that are versatile in number of ways, for example, to enhance computer security or to enable large-scale data capture, management and analysis. For device identities, simple labeling works only if they are properly managed under a highly controlled environment. We can also impose hard-coded serial numbers into non-volatile memories but it is well known that this is expensive and vulnerable to security attacks. Hence, it is desirable to develop reliable and secure device identification methods using fingerprint-like characteristics of the electronic devices.
As technology scales, process variation has become the most critical barrier to overcome for modern chip development. Ironically, there are some research works to exploit the aggressive process variation for the identification of individual devices. They find measurable physical characteristics that are unique to each integrated circuit. Among them, device identification using initial power-up values of SRAM cells, called SRAM fingerprints, has been emphasized lately in part due to the abundant availability of SRAM cells in modern microprocessors. More importantly, since the cross-coupled inverter structure of each SRAM cell amplifies even the small mismatches between two inverter nodes, it is thus very sensitive to and maximizes the effect of random process variation, making SRAM fingerprints to acquire great features as a naturally inherent device ID.
Therefore, this work focuses on achieving reliable device identification using SRAM fingerprints. As of date, this dissertation shows the most comprehensive feature characterization of SRAM fingerprints based on the large datasets measured from the real devices under various environmental conditions. SRAM fingerprints in three different process technologies—IBM 32nm SOI technology, IBM 65nm bulk technology, and TSMC 90nm low-k dielectric technology—have been investigated across different temperatures or voltages. By using formal statistical tools, the required features for SRAM fingerprints necessary to be usable as device IDs—uniqueness, randomness, independence, reproducibility, etc.—have been empirically proven.
As some of the previous works mentioned, there is an inherent unreliability of the initial states of SRAM cells so that there is always some chance of errors during identification process. It is observed that, under environmental variations, the instability aggravates even more. Most of the previous work, however, ignores the temperature dependence of the SRAM power-up values, which turns out to be critical against our past speculations and becomes a real challenge in realizing a reliable SRAM-based device identification. Note that temperature variation will not be negligible in many situations, for example, authentication of widely distributed sensors.
We show that it is possible to achieve SRAM-based device identification system that reliably operates under a wide range of temperatures. The proposed system is composed of three major steps: enrollment, system evaluation, and matching. During the enrollment process, power-up samples of SRAM fingerprints are captured from each manufactured device and the feature information or characterization identifier (CID) is characterized to generate a representative fingerprint value associated with the product device. By collecting the samples and the CIDs, system database gets constructed before distributing devices to the field. During the matching process, we take a single sample fingerprint of a power-cycle experiment, the field identifier (FID), and perform a match against a repository of CID’s of all manufactured devices. There is an additional monitoring subsystem, called system evaluation, that estimates the system accuracy with the system database. It controls the system parameters while maintaining the system accuracy requirement.
This work delivers a total-package statistical framework that raises design issues of each step and provides systematic solutions to deal with these inter-related issues. We provide statistical methods to determine sample size for the enrollment of chip identities, to generate the representative fingerprint features with the limited number of test samples, and to estimate the system performance along with the proposed system parameter values and the confidence interval of the estimation. A novel matching scheme is proposed to improve the system accuracy and increase population coverage under environmental variations, especially temperature variation. Several advanced mechanisms to exploit the instability for our benefit is also discussed along with supporting state-of-the-art circuit technologies. All these pioneering theoretical frameworks have been validated by the comprehensive empirical analysis based on the real SRAM fingerprint datasets introduced earlier.
The main contribution here is that this work provides a comprehensive interdisciplinary framework to enable reliable SRAM fingerprinting, even if the fingerprint, depending on ambient conditions, exhibits nondeterministic behaviors. Furthermore, the interdisciplinary bases introduced in our work are expected to provide generic fundamental methodologies that apply to device fingerprints in general, not just to SRAM fingerprints. (Abstract shortened by UMI.)
MA, DAN. "Magnetic Resonance Fingerprinting." Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1426170542.
Full textLiu, Hui Qing 1957. "Fingerprinting biological materials." Thesis, The University of Arizona, 1992. http://hdl.handle.net/10150/291369.
Full textKarlsson, Anna. "Device Sensor Fingerprinting : Mobile Device Sensor Fingerprinting With A Biometric Approach." Thesis, Linköpings universitet, Informationskodning, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119341.
Full textLöfvenberg, Jacob. "Codes for digital fingerprinting /." Linköping : Univ, 2001. http://www.bibl.liu.se/liupubl/disp/disp2001/tek722s.pdf.
Full textLindkvist, Tina. "Fingerprinting of digital documents /." Linköping : Univ, 2001. http://www.bibl.liu.se/liupubl/disp/disp2001/tek706s.pdf.
Full textPorter, Alastair. "Evaluating musical fingerprinting systems." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=117191.
Full textLe système d'empreinte audio est un procédé qui analyse de courts extraits de musique avec un ordinateur pour répondre à une question courante: « Quelle est le nom de cette chanson que j'écoute? ». Les systèmes d'empreintes audio identifient le contenu musical d'un enregistrement et cherchent des documents sonores possédant les même traits musicaux au sein d'une base de données de référence. Ces systèmes sont capables de fonctionner même si les requêtes qui leur sont transmises sont enregistrées dans un espace public, avec de nombreuses sources de bruit extérieur. Les différents algorithmes d'empreinte audio se distinguent par le type de requête qu'ils peuvent traiter: certains se concentrent sur des requêtes de courte durée, d'autres sont optimisés pour pouvoir être performant même dans des conditions de bruit très défavorables. Dans la littérature, il existe peu d'études comparatives poussées traitant spécifiquement des performances des systèmes de reconnaissance par empreinte audio dans un large éventail de cas.Cette thèse présente une vue d'ensemble de l'histoire du développement des systèmes d'empreinte audio. Cette thèse introduit en suite des facteurs qui doivent être pris en compte lors de l'évaluation comparative de plusieurs algorithmes pour la reconnaissance par empreinte audio. De plus, ce travail présente un nouveau cadre d'évaluation développé afin d'incorporer ces facteurs. Cette thèse combine les résultats d'une comparaison à grande échelle de trois algorithmes d'identification d'empreinte audio avec une analyse recommandant lequel de ces algorithmes est le plus efficace pour identifier la plus grande variété d'extraits audio.
Books on the topic "Fingerprinting"
America, Boy Scouts of. Fingerprinting. 2nd ed. Irving, Tex: Boy Scouts of America, 2003.
Find full textAhouse, Jeremy John. Fingerprinting. Berkeley, Calif: Great Explorations in Math and Science (GEMS), Lawrence Hall of Science, 1989.
Find full textKirby, Lorne T. DNA Fingerprinting. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-12040-6.
Full textWang, Cliff, Ryan M. Gerdes, Yong Guan, and Sneha Kumar Kasera, eds. Digital Fingerprinting. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6601-1.
Full textJ, Schmidtke, ed. DNA fingerprinting. 2nd ed. Oxford: BIOS Scientific, 1998.
Find full textKrawczak, Michael. DNA fingerprinting. Oxford, UK: Bios Scientific Publishers, 1994.
Find full textDNA fingerprinting. New York: F. Watts, 1991.
Find full textAhouse, Jeremy John. Fingerprinting: Teacher's guide. Berkeley, CA: Lawrence Hall of Science, University of California, 1987.
Find full textKirby, Lorne T. DNA fingerprinting: An introduction. New York: W.H. Freeman, 1992.
Find full textKirby, Lorne T. DNA fingerprinting: An introduction. New York: Oxford University Press, 1997.
Find full textBook chapters on the topic "Fingerprinting"
Krafsur, E. S., R. D. Moon, R. Albajes, O. Alomar, Elisabetta Chiappini, John Huber, John L. Capinera, et al. "Fingerprinting." In Encyclopedia of Entomology, 1429. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_3808.
Full textBarg, Alexander, and Gregory Kabatiansky. "Fingerprinting." In Encyclopedia of Cryptography and Security, 465–67. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-5906-5_381.
Full textDietzfelbinger, Martin. "Fingerprinting." In Algorithms Unplugged, 181–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15328-0_19.
Full textHromkoviČ, Juraj. "Fingerprinting." In Texts in Theoretical Computer Science An EATCS Series, 131–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27903-2_4.
Full textKirby, Lorne T. "Introduction." In DNA Fingerprinting, 1–5. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-12040-6_1.
Full textMelson, Kenneth E. "Legal and Ethical Considerations." In DNA Fingerprinting, 189–215. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-12040-6_10.
Full textKirby, Lorne T. "Case Applications." In DNA Fingerprinting, 217–59. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-12040-6_11.
Full textKirby, Lorne T. "Genetic Principles." In DNA Fingerprinting, 7–34. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-12040-6_2.
Full textKirby, Lorne T. "Laboratory Organization." In DNA Fingerprinting, 35–50. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-12040-6_3.
Full textKirby, Lorne T. "Specimens." In DNA Fingerprinting, 51–74. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-12040-6_4.
Full textConference papers on the topic "Fingerprinting"
Smolens, Jared C., Brian T. Gold, Jangwoo Kim, Babak Falsafi, James C. Hoe, and Andreas G. Nowatzyk. "Fingerprinting." In the 11th international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1024393.1024420.
Full textKobusińska, Anna, Jerzy Brzeziński, and Kamil Pawulczuk. "Device Fingerprinting: Analysis of Chosen Fingerprinting Methods." In 2nd International Conference on Internet of Things, Big Data and Security. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0006375701670177.
Full textSirinam, Payap, Mohsen Imani, Marc Juarez, and Matthew Wright. "Deep Fingerprinting." In CCS '18: 2018 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3243734.3243768.
Full textWang, Chenggang, Jimmy Dani, Xiang Li, Xiaodong Jia, and Boyang Wang. "Adaptive Fingerprinting." In CODASPY '21: Eleventh ACM Conference on Data and Application Security and Privacy. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3422337.3447835.
Full textGil, Joseph, Alexander Gorovoy, and Alon Itai. "Software Fingerprinting." In 2006 International Conference on Information Technology: Research and Education. IEEE, 2006. http://dx.doi.org/10.1109/itre.2006.381536.
Full textKhakpour, Amir R., Joshua W. Hulst, Zihui Ge, Alex X. Liu, Dan Pei, and Jia Wang. "Firewall fingerprinting." In IEEE INFOCOM 2012 - IEEE Conference on Computer Communications. IEEE, 2012. http://dx.doi.org/10.1109/infcom.2012.6195544.
Full textHerrmann, Dominik, Rolf Wendolsky, and Hannes Federrath. "Website fingerprinting." In the 2009 ACM workshop. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1655008.1655013.
Full textHouser, Rebekah L., Willett Kempton, Rodney McGee, Fouad Kiamilev, and Nick Waite. "EV Fingerprinting." In WCX™ 17: SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017. http://dx.doi.org/10.4271/2017-01-1700.
Full textVanaubel, Yves, Jean-Jacques Pansiot, Pascal Mérindol, and Benoit Donnet. "Network fingerprinting." In IMC'13: Internet Measurement Conference. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2504730.2504761.
Full textHarrison, Chris, Munehiko Sato, and Ivan Poupyrev. "Capacitive fingerprinting." In the 25th annual ACM symposium. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2380116.2380183.
Full textReports on the topic "Fingerprinting"
Daugherty, Patrick. Rapid Molecular Fingerprinting of Pathogens. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada455360.
Full textJackson, S. E., B. Dubé, P. Mercier-Langevin, and D. Rhys. Fingerprinting ore processes in auriferous systems. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/299583.
Full textPeisert, Sean. Fingerprinting Communication and Computation on HPC Machines. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/983323.
Full textEcht, Craig, and Sedley Josserand. DNA fingerprinting sets for four southern pines. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2018. http://dx.doi.org/10.2737/srs-rn-24.
Full textEcht, Craig, and Sedley Josserand. DNA fingerprinting sets for four southern pines. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2018. http://dx.doi.org/10.2737/srs-rn-24.
Full textGupta, Shweta. DNA Fingerprinting: A Major Tool for Crime Investigation. Spring Library, April 2021. http://dx.doi.org/10.47496/nl.blog.24.
Full textPoulin, R. S., A. M. McDonald, D. J. Kontak, and M. B. McClenaghan. Scheelite geochemical signatures and potential for fingerprinting ore deposits. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296473.
Full textStetzenbach, K., and K. Johannesson. Fingerprinting of ground water by ICP-MS. Final report. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/239302.
Full textBischof, Laura. DNA fingerprinting analysis of captive Asian elephants, Elephas maximas. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5850.
Full textWinston Chen, C. H., N. I. Taranenko, Y. F. Zhu, C. N. Chung, and S. L. Allman. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting. Office of Scientific and Technical Information (OSTI), March 1997. http://dx.doi.org/10.2172/446348.
Full text