Academic literature on the topic 'Filtre Gm-C'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Filtre Gm-C.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Filtre Gm-C"
Kiela, Karolis, and Romualdas Navickas. "AUTOMATED INTEGRATED ANALOG FILTER DESIGN ISSUES / AUTOMATIZUOTOJO INTEGRINIŲ ANALOGINIŲ FILTRŲ PROJEKTAVIMO YPATUMAI." Mokslas – Lietuvos ateitis 7, no. 3 (July 13, 2015): 323–29. http://dx.doi.org/10.3846/mla.2015.793.
Full textBhanja, Mousumi, and Baidyanath Ray. "Design of Configurable gm−C Biquadratic Filter." Journal of Circuits, Systems and Computers 26, no. 03 (November 21, 2016): 1750036. http://dx.doi.org/10.1142/s0218126617500360.
Full textChoi, Moon-Ho, and Yeong-Seuk Kim. "A Gm-C Filter using CMFF CMOS Inverter-type OTA." Journal of the Korean Institute of Electrical and Electronic Material Engineers 23, no. 4 (April 1, 2010): 267–72. http://dx.doi.org/10.4313/jkem.2010.23.4.267.
Full textLin, Haijun, Tomoyuki Tanabe, Hao San, and Haruo Kobayashi. "Analysis and Design of Inverter-Type Gm-C Bandpass Filter." IEEJ Transactions on Electronics, Information and Systems 129, no. 8 (2009): 1483–89. http://dx.doi.org/10.1541/ieejeiss.129.1483.
Full textHu, Hui Yong, Liu Sun, He Ming Zhang, and Jian Jun Song. "A Low-Power High Linearity Gm-C Filter." Applied Mechanics and Materials 109 (October 2011): 266–70. http://dx.doi.org/10.4028/www.scientific.net/amm.109.266.
Full textKarami, Poorya, and Seyed Mojtaba Atarodi. "A configurable high frequency Gm-C filter using a novel linearized Gm." AEU - International Journal of Electronics and Communications 109 (September 2019): 55–66. http://dx.doi.org/10.1016/j.aeue.2019.06.029.
Full textMoreno, Ricardo F. L., Fernando A. P. Barúqui, and Antonio Petraglia. "Bulk-tuned Gm – C filter using current cancellation." Microelectronics Journal 46, no. 8 (August 2015): 777–82. http://dx.doi.org/10.1016/j.mejo.2015.05.010.
Full textKoziel, S., S. Szczepanski, and E. Sanchez-Sinencio. "NONLINEAR DISTORTION AND NOISE ANALYSIS OF GENERAL GM-C FILTERS." SYNCHROINFO JOURNAL 7, no. 6 (2021): 2–7. http://dx.doi.org/10.36724/2664-066x-2021-7-6-2-7.
Full textParvizi, Mostafa, Abouzar Taghizadeh, Hamid Mahmoodian, and Ziaadin Daei Kozehkanani. "A Low-Power Mixed-Mode SIMO Universal Gm–C Filter." Journal of Circuits, Systems and Computers 26, no. 10 (March 24, 2017): 1750164. http://dx.doi.org/10.1142/s021812661750164x.
Full textLv, Qiu Ye, Chong He, Wen Jie Fan, Yu Feng Zhang, and Xiao Wei Liu. "The Design of Gm-C Low-Pass Filter for Micromachined Gyroscope." Key Engineering Materials 609-610 (April 2014): 1072–76. http://dx.doi.org/10.4028/www.scientific.net/kem.609-610.1072.
Full textDissertations / Theses on the topic "Filtre Gm-C"
Jolivet, Sylvain. "Limitations et opportunités des circuits actifs pour la réalisation d’un filtrage RF Haute performance et accordable en fréquence pour les récepteurs TV." Limoges, 2011. https://aurore.unilim.fr/theses/nxfile/default/56d5de2a-ced2-41b7-a0b5-fd2b83722f0a/blobholder:0/2011LIMO4027.pdf.
Full textLa présente thèse étudie les limitations et les opportunités résultant de l’utilisation de circuits purement actifs comme alternative aux circuits passifs classiques pour la réalisation d’un filtrage RF pour récepteur TV. Ce filtrage RF doit être accordable en fréquence, sélectif et à hautes performances en termes de bruit et de linéarité. Après étude de l’état de l’art, deux structures de filtres ont été étudiées plus en détails et simulées, sur une topologie passe bande du second ordre qui est celle qui répond le mieux à nos spécifications. Les filtres Gm-C propose��s ont des performances intéressantes mais limitées car le gyrateur dégrade le signal RF. Un filtre de Rauch est proposé par ailleurs avec le but de créer un filtre hautement linéaire pour augmenter la dynamique. Une rétroaction originale permet l’utilisation de ce filtre avec un bon compromis sélectivité – amplification, ainsi que de très bonnes performances RF. Ce filtre a été réalisé sur silicium et mesuré en laboratoire, menant à une très bonne corrélation des résultats. Enfin, les deux structures proposées ont été comparées à l’état de l’art de la littérature grâce à une figure de mérite. Une perspective intéressante à ce travail est également introduite à travers les filtres N-path, qui fournissent des résultats encourageants mais qui nécessitent un remaniement de l’architecture du récepteur TV
Vrba, Adam. "Analýza a realizace kmitočtového filtru přeladitelného změnou parametru aktivního prvku." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2010. http://www.nusl.cz/ntk/nusl-218675.
Full textZlámal, Jiří. "Návrh elektronicky laditelných kmitočtových filtrů v technologii CMOS." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-221016.
Full textHrdina, Robin. "Návrh laditelného kmitočtového filtru 2. řádu v technologii CMOS." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242168.
Full textParajuli, Purushottam. "Design and Simulation of All-CMOS Temperature-Compensated gm-C Bandpass Filters and Sinusoidal Oscillators." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1311859702.
Full textChamla, David. "Filtres actifs Gm-C reconfigurables pour récepteurs mobiles multi-standards." Lille 1, 2006. https://pepite-depot.univ-lille.fr/RESTREINT/Th_Num/2006/50376_2006_63.pdf.
Full textVoghell, Jean-Charles. "Réalisation de filtres analogiques Gm-C configurables dan les circuits intégrés." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0012/MQ60919.pdf.
Full textChandrasekaran, Girish. "Design of a Second-order Filter Using the gm-C Technique." PDXScholar, 1996. https://pdxscholar.library.pdx.edu/open_access_etds/5241.
Full textDong, Zhiwei. "Low-power, low-distortion constant transconductance Gm-C filters." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/25400.
Full textPimenta, Wallace Alane. "Projeto e caracterização de um filtro gm-C sub-hertz integrado de ultra-baixo consumo." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259235.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-18T14:24:01Z (GMT). No. of bitstreams: 1 Pimenta_WallaceAlane_M.pdf: 1696709 bytes, checksum: 2f32b6a38a0f8cb824562743faee308d (MD5) Previous issue date: 2011
Resumo: Este trabalho envolve o estudo de uma nova arquitetura para filtros integrados com freqüência de corte em sub-hertz, orientado para aplicações na área biomédica, possuindo requisitos como baixo consumo e baixa tensão de operação. Devido a sua aplicação também em sistemas implantáveis, o circuito deve operar com tensão de alimentação variando de 0,9V até 1,6V. Para as aplicações envolvendo circuitos implantáveis, as variações de temperatura não são críticas, embora o circuito tenha sido projetado para uma variação de 0°C até 100°C. Este estudo engloba análise, projeto, simulação, fabricação e caracterização experimental do filtro, sendo também testado com um modelo de sinal de eletrocardiograma (ECG). O filtro proposto é do tipo gm-C e se utiliza do controle da impedância vista pela fonte de um transistor NMOS para o ajuste da freqüência de corte. Comparativamente a outras topologias, possui vantagens como o simples controle da freqüência de corte, além da facilidade de imposição de uma tensão de modo-comum. Em termos de desvantagens, uma das principais está no fato de haver distorções significativas para sinais de alta amplitude (tipicamente acima de algumas dezenas de mili-volts). Na maioria das aplicações biomédicas, ou mesmo, por exemplo, sinais de origem sísmica, onde ambos possuem componentes de freqüência bem baixas, as amplitudes são de baixa magnitude. O principal parâmetro testado no circuito foi a freqüência de corte e seu ajuste com a corrente de polarização. Ainda, de forma a testar a capacidade do circuito de processar um sinal sem distorção, impondo um modo comum ao mesmo, foi utilizado o padrão adotado pela norma européia CENELEC (European Committee for Electrotechnical Standardization) para o sinal de ECG. No desenvolvimento foram utilizadas técnicas de projeto para circuitos de baixa potência, assim como utilização do modelo compacto ACM (Advanced Compact Model) para dimensionamento e cálculos manuais, obtendo-se expressões simples para a freqüência de corte. Fatores importantes para este tipo de projeto como correntes de fuga e nível de inversão do canal foram considerados, assim como as influências das capacitâncias parasitas. As correntes de fuga possuem um modelamento muitas vezes questionável e impreciso. Deste modo, de forma a obter uma idéia clara das fugas envolvidas, duzentos transistores NMOS unitários (0,8?m/10?m) foram colocados em paralelo para medir a fuga nas junções em função da temperatura e tensão reversa de polarização. Os dados obtidos de dez amostras de um mesmo lote mostraram um comportamento dentro do esperado. A média medida das correntes de fuga de um transistor unitário para as temperaturas de 27°C e 85°C foram respectivamente 46fA e 3,4pA. Dois filtros foram projetados para obter uma maior flexibilidade nos testes. Ambos os filtros se utilizam de uma fonte de corrente proporcional à temperatura (PTAT) única de valor típico medido igual a 5,65nA como polarização. Cada filtro se utiliza de um OP-AMP para impor o modo-comum e um divisor de corrente de Bult, obtendo-se uma corrente da ordem de pA para polarizar o filtro propriamente dito. O primeiro filtro usa a própria corrente de PTAT para polarização do nó de entrada que define a freqüência de corte. Com isto, é possível uma compensação de primeira ordem para sua variação com temperatura. O segundo filtro possui uma entrada de corrente independente, de forma que a mesma pode ser alterada externamente, possibilitando verificar a variação da freqüência de corte em função da polarização. A verificação funcional dos sub-circuitos que constituem o filtro, assim como todo o sistema, foi realizada utilizando-se simuladores SMASH/PSPICE/Cadence com modelos Bsim3v3, considerando-se a variação dos parâmetros de processo e intervalo de temperatura de 0ºC à 100ºC. O layout do circuito foi realizado através do programa Cadence, e possui uma área efetiva de 0,263mm2 para os dois filtros. A fabricação foi feita na foundry da AMS, usando-se tecnologia CMOS 0,35?m. A caracterização experimental envolveu análise da freqüência de corte, fugas em junções, resposta a um sinal de ECG, consumo e, comportamento com relação à tensão de alimentação. Resultados experimentais para a freqüência de corte do primeiro filtro, em dez amostras, resultaram em uma média de 2,38Hz e desvio padrão de 0,32Hz. A corrente de referência PTAT apresentou uma média de 6,90nA e um desvio padrão de 1,04nA. O comportamento PTAT da mesma pôde ser observado experimentalmente (de forma indireta) na faixa de 27°C à 85°C. A freqüência de corte em função da corrente de polarização foi analisada usando-se o segundo filtro, que confirmou a dependência linear por quase uma década de variação da corrente de entrada. Também, as respostas aos padrões de sinal de ECG de baixa e alta amplitude foram analisadas com sucesso no primeiro filtro. O trabalho teve seus objetivos alcançados, realizando etapas de especificação, projeto, layout e caracterização. Os resultados experimentais obtidos estão dentro do esperado, validando a arquitetura proposta de um filtro passa-altas, totalmente integrado, com freqüência de corte em sub-hertz
Abstract: This work aims the study of a new topology for integrated filters with cut-off frequencies around sub-hertz, oriented to biomedical applications, having requisites as low consumption and low voltage operation. Due to its application also in implantable systems, the circuit must operate with supply voltage varying from 0.9V to 1.6V. For applications involving implantable circuits, temperature variations are not critical, although this circuit was designed for an operation from 0ºC to 100ºC. This study conducts analyses, design, simulation, fabrication and experimental characterization of the filter, being tested with an electrocardiogram signal (ECG). The proposed filter is a gm-C type and uses the control of the impedance seen from the source of a NMOS transistor to adjust the cut-off frequency. Comparatively to other topologies, it has advantages as simple cut-off frequency control and its easiness to impose a common-mode voltage. As drawbacks, one of the most significant is in the fact of having significant distortions with high amplitude signals (tipically above some tens of milli-volts). In most biomedical applications, or even signals with a seismic origin, for example, where both have very low frequency components, their amplitudes are low in magnitude. The main tested parameter in the circuit was the cut-off frequency and its adjustment with the biasing current. Besides, as a test for the circuit capability of processing a signal without distortion, while imposing it a common-mode, it was used a standard from an European norm called CENELEC (European Committee for Electrotechnical Standardization) for the ECG signal. In the development were used design techniques for low power circuits, as well as the use of the compact model ACM (Advanced Compact Model) for dimensioning and hand calculations, getting simple expression for the cut-off frequency. Important factors for this kind of project as leakage current and channel inversion level were considered, also the influence of stray capacitances. The leakage current has a doubtful and imprecise modeling. Herewith, as a way to get a better idea of leakage values involved, two hundred unity NMOS transistors (0,8?m/10?m) were placed in parallel in order to measure the junction leakages as a function of temperature and reverse voltage biasing. The obtained data for ten samples of a single batch showed a behavior as expected. The mean value for the leakage currents of a unity transistor for temperatures between 27ºC and 85ºC were repectivelly, 46fA and 3.4pA. Two filters were designed to obtain a larger flexibility during the tests. Both filters use a unique PTAT current source with measured typical value equal to 5,65nA as biasing. Each filter uses an OP-AMP to impose a common-mode voltage and a Bult current divider, getting a current with a magnitude of pA to bias the filter itself. The first filter uses the proportional to temperature (PTAT) current directly from source to bias the input branch that defines the cut-off frequency. The second filter has and independent input, so that it can be changed externally, allowing to verify the cut-off frequency as a function of biasing current. The functional verification of the sub-circuits that build-up the filter, as the whole system, was performed using simulators SMASH/PSPICE/Cadence with Bsim3v3 models, considering the process parameters variations and temperature interval from 0ºC to 100ºC. The circuit layout was developed through Cadence program, and has an effective area of 0,263mm2 for both filters. The fabrication was done on AMS foundry, using the CMOS 0.35?m technology. The experimental characterization considered cut-off frequency analysis, junction leakages, response to an ECG signal, consumption and, behavior with respect to supply voltage. Experimental results for cut-off frequency of the first filter, on ten samples, resulted in a mean value of 2.38Hz with a standard deviation of 0.32Hz. The PTAT current presented a mean value of 6.90nA with 1.04nA of standard deviaton. The PTAT behavior of this current could be experimentally observed on range of 27ºC to 85ºC. The cut-off frequency as a function of biasing current was analyzed using the second filter, which confirmed the linear dependency for almost a decade of input current variation. Also, the responses to ECG standard signals of low and high amplitudes were analyzed successfully on the first filter. This work has achieved its purpose, making specifications stages, design, layout and characterization. The experimental results obtained are within expected, validating the proposed architecture of a high-pass filter, fully integrated, with cut-off frequency in sub-hertz
Mestrado
Eletrônica, Microeletrônica e Optoeletrônica
Mestre em Engenharia Elétrica
Books on the topic "Filtre Gm-C"
Litovski, Vančo. Gm-C Filter Synthesis for Modern RF Systems. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6561-5.
Full textpylarinos, Louie. A low-voltage low-power programmable gm-C filter using dynamic gate biasing. Ottawa: National Library of Canada, 2003.
Find full textVančo Litovski. Gm-C Filter Synthesis for Modern RF Systems. Springer, 2022.
Find full textLitovski, Vančo. Gm-C Filter Synthesis for Modern RF Systems. Springer Singapore Pte. Limited, 2021.
Find full textLo, Tien-Yu, and Chung-Chih (Frank) Hung. 1V CMOS Gm-C Filters: Design and Applications. Springer, 2009.
Find full textLo, Tien-Yu, and Chung-Chih (Frank) Hung. 1V CMOS Gm-C Filters: Design and Applications. Springer Netherlands, 2010.
Find full textBook chapters on the topic "Filtre Gm-C"
Kardontchik, Jaime E. "Tuning of GM-C Filters." In Introduction to the Design of Transconductor-Capacitor Filters, 219–33. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3630-7_13.
Full textLitovski, Vančo. "Gm-C Filter Synthesis Based on LC Prototypes." In Electronic Filters, 349–64. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9852-1_17.
Full textKardontchik, Jaime E. "Design of a GM-C Filter." In Introduction to the Design of Transconductor-Capacitor Filters, 177–218. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3630-7_12.
Full textSaari, Ville, Jussi Ryynänen, and Saska Lindfors. "Experimental CMOS Gm-C Filter Circuits." In Continuous-Time Low-Pass Filters for Integrated Wideband Radio Receivers, 143–79. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-3366-8_7.
Full textLitovski, Vančo. "The Design of Gm-C Filters." In Lecture Notes in Electrical Engineering, 1–6. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6561-5_1.
Full textKardontchik, Jaime E. "Design of the Gm-C Integrator." In Introduction to the Design of Transconductor-Capacitor Filters, 145–76. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3630-7_11.
Full textLitovski, Vančo. "Element Values of Cascaded Gm-C and Two-Phase Gm-C Filters." In Lecture Notes in Electrical Engineering, 151–288. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6561-5_8.
Full textLeitão, Pedro M. Vicente, and Helena Fino. "Robust Optimization-Based High Frequency Gm-C Filter Design." In Technological Innovation for Value Creation, 465–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28255-3_51.
Full textLauwers, Erik, and Georges Gielen. "Systematic design of high-frequency gm-C filters." In Analog Circuit Design, 21–45. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47951-6_2.
Full textDehaene, Wim. "Specific Aspects of high frequency Gm-C filters." In Analog Circuit Design, 269–85. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-3047-0_12.
Full textConference papers on the topic "Filtre Gm-C"
Binti Hashim, Noor Zuwainah, and Sudhanshu S. Jamuar. "Gm-C based band pass filter." In 2014 2nd International Conference on Electronic Design (ICED). IEEE, 2014. http://dx.doi.org/10.1109/iced.2014.7015823.
Full textJin, Guanglei, Hao Chen, Chuan Gao, Yunpeng Zhang, Haruo Kobayashi, Nobukazu Takai, Kiichi Niitsu, and Khayrollah Hadidi. "Digitally-controlled Gm-C bandpass filter." In APCCAS 2012-2012 IEEE Asia Pacific Conference on Circuits and Systems. IEEE, 2012. http://dx.doi.org/10.1109/apccas.2012.6419089.
Full textHuang, Hong-Yi, Kun-Yuan Chen, Jia-Hao Xie, Ming-Ta Lee, Hao-Chiao Hong, and Kuo-Hsing Cheng. "Gm-C filter with automatic calibration scheme." In 2016 IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS). IEEE, 2016. http://dx.doi.org/10.1109/ddecs.2016.7482471.
Full textKim, Young-Ho, and Hyun-kyu Yu. "Automatic Tuning Circuit for Gm-C Filters." In 2005 12th IEEE International Conference on Electronics, Circuits and Systems (ICECS 2005). IEEE, 2005. http://dx.doi.org/10.1109/icecs.2005.4633479.
Full textSanchez-Lopez, Carlos, and Esteban Tlelo-Cuautle. "Symbolic Noise Analysis in Gm-C Filters." In Electronics, Robotics and Automotive Mechanics Conference (CERMA'06). IEEE, 2006. http://dx.doi.org/10.1109/cerma.2006.88.
Full textCojan, Nicolae, and Arcadie Cracan. "Novel implementation of OBT for a Gm-C filter." In 2011 10th International Symposium on Signals, Circuits and Systems (ISSCS). IEEE, 2011. http://dx.doi.org/10.1109/isscs.2011.5978693.
Full textN, Soubhagyaseetha, and D. V. Kamath. "Gm-C Fractional Bessel Filter Of Order ($1+\alpha$)." In 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT). IEEE, 2019. http://dx.doi.org/10.1109/icssit46314.2019.8987970.
Full textWeng, Jun-Hong, and Ching-Yuan Yang. "An Active Gm-C Filter Using a Linear Transconductance." In 2007 IEEE Conference on Electron Devices and Solid-State Circuits. IEEE, 2007. http://dx.doi.org/10.1109/edssc.2007.4450273.
Full textGao, Zhiqiang, Jinxiang Wang, Fengchang Lai, Mingyan Yu, and Zhongzhao Zhang. "Wideband reconfigurable CMOS Gm-C filter For wireless applications." In 2009 16th IEEE International Conference on Electronics, Circuits and Systems - (ICECS 2009). IEEE, 2009. http://dx.doi.org/10.1109/icecs.2009.5410969.
Full textLee, J. "Linear Bi-CMOS transconductor for gm-C filter applications." In IEE Seminar Low Power IC Design. IEE, 2001. http://dx.doi.org/10.1049/ic:20010015.
Full textReports on the topic "Filtre Gm-C"
Chandrasekaran, Girish. Design of a Second-order Filter Using the gm-C Technique. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7114.
Full text