Academic literature on the topic 'Filter media'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Filter media.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Filter media"
Bharadwaj, R., A. Patel, S. Chokdeepanich, and G. G. Chase. "Oriented Fiber Filter Media." Journal of Engineered Fibers and Fabrics 3, no. 2 (June 2008): 155892500800300. http://dx.doi.org/10.1177/155892500800300210.
Full textSutherland, Ken. "Filter media guidelines: Selecting the right filter media." Filtration + Separation 48, no. 3 (May 2011): 21–24. http://dx.doi.org/10.1016/s0015-1882(11)70117-3.
Full textMariappan Kadarkarainadar, Marichelvam, and Geetha Mariappan. "Investigation of Fiber-Based Bag Filter Coated with Metal Oxides for Dust Adsorption." Fibers 11, no. 1 (January 13, 2023): 10. http://dx.doi.org/10.3390/fib11010010.
Full textLiu, Jing Xian, De Qiang Chang, Yue Xie, Ning Mao, and Xi Sun. "Research on Fine Particles Capture of Baghouse Filter Media." Applied Mechanics and Materials 300-301 (February 2013): 1293–97. http://dx.doi.org/10.4028/www.scientific.net/amm.300-301.1293.
Full textBoni, André, and Michael Clark. "Filter media: Improving filter media to achieve cleaner air." Filtration & Separation 45, no. 9 (November 2008): 20–23. http://dx.doi.org/10.1016/s0015-1882(08)70367-7.
Full textVaughn, Edward, and Gayetri Ramachandran. "Fiberglass Vs. Synthetic Air Filtration Media." International Nonwovens Journal os-11, no. 3 (September 2002): 1558925002OS—01. http://dx.doi.org/10.1177/1558925002os-01100309.
Full textPoudel, Aashish. "Anthracite as filter Media in Filtration Process." Journal of Advanced College of Engineering and Management 6 (July 6, 2021): 1–7. http://dx.doi.org/10.3126/jacem.v6i0.38272.
Full textLi, Huan, John D. Wanjura, William B. Faulkner, and Ronald E. Lacey. "Evaluation of Filter Media Options for High Volume PM2.5 Sampling." Applied Engineering in Agriculture 35, no. 2 (2019): 205–9. http://dx.doi.org/10.13031/aea.13010.
Full textLiao, Z., and H. Ødegaard. "Coarse media filtration for enhanced primary treatment of municipal wastewater." Water Science and Technology 46, no. 4-5 (August 1, 2002): 19–26. http://dx.doi.org/10.2166/wst.2002.0542.
Full textde Barros, Priscila Martins, Eduardo Hiromitsu Tanabe, and Mônica Lopes Aguiar. "Characterization and Efficiency Evaluation of Regenerated Filter Media." Materials Science Forum 727-728 (August 2012): 1643–47. http://dx.doi.org/10.4028/www.scientific.net/msf.727-728.1643.
Full textDissertations / Theses on the topic "Filter media"
Srinivasan, Priyavardhana. "NANOFIBER INCORPORATED GLASS FIBER FILTER MEDIA." University of Akron / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=akron1124903310.
Full textRaghavan, Bharath Kumar. "Nanofiber Filter Media for Air Filtration." University of Akron / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=akron1279744866.
Full textBrika, Bashir. "Investigation of geometric properties of media particles for floating media filter." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5161.
Full textENGLISH ABSTRACT: In a floating medium filter, polymeric beads with a density less than that of water form a floating bed which removes suspended material. Polyolefinic beads (polypropylene and polyethylene) are commonly used as filter media in this application. The geometric properties of the beads, and to a lesser extent the surface properties, strongly influence the performance of the filter. In the case of water treatment, the primary performance requirement is the production of a filtrate with turbidity ≤ 1.0 NTU. The influence of geometric properties on the performance of existing upflow filtration systems has not been extensively researched. The aim of this thesis was therefore to investigate the effects of floating medium granule size and shape on the performance of the floating medium filter (FMF). Towards this goal a pilot plant consisting of a dosing and flocculation unit and a clear PVC column with an inner diameter of 0.3 m and height of 2.8 m was designed and constructed, allowing the effect of media type, bed depth and filtration conditions to be investigated. Artificial feed water for use during the experimental work was made up by dissolving 250 mg/L of bentonite in tap water (≈ 60 NTU). Four median grain sizes (d50 = 2.28, 3.03, 3.30, and 4.07 mm) of polypropylene plastic granules were used. Two media shapes (cubic and disc) were evaluated. The effect of filtration rising velocity, medium depth, and coagulant chemical dosage were investigated using a complete 23 full factorial experimental design. Filter performance was evaluated in terms of filtrate turbidity and headloss development. The direction of filtration was upward in all the experiments. It was found that optimal conditions for turbidity removal were low filtration rate (36.8 L/m2· min), longer media depth (0.6 m) and optimum coagulant dose (23 mg/L). At these conditions the best medium was the one with d50 = 2.28 mm, for which a minimum turbidity of 0.4 NTU was achieved, and which was able to provide 624 L of filtrate of ˂ 1.0 NTU using a bed of 0.014 m3. For this medium headloss was 109 mm H2O at breakthrough, while the other three media showed a headloss of 42 mm H2O at breakthrough. Visual observation indicated that removal of solids took place primarily in the first 0.3 m of the floating bed in the case of the smallest medium, but that solids removal took place over the full depth of the bed for the other three media. It was found that bed depth had the strongest influence on performance for a given medium type. Experimental observation showed that coagulant dosage played an important role in floc size. A higher coagulant dosage (23 mg/L) resulted in a larger floc size which gave better performance. A lower velocity gradient was favourable for the formation of larger flocs. Some effect of media shape was noted, although it appeared that media size was dominant. It is concluded that FMF show promise for application in the water treatment. FMF, however, can be applied successfully as pre-filtration unit for treatment of high turbid water. Proper medium selection in conjunction with operating conditions can enhance performance of the filter. Smaller medium would give better turbidity removal but high headloss development and more frequent backwashing becomes necessary than with larger medium.
AFRIKAANSE OPSOMMING: In ʼn dryfmediumfilter vorm polimeriese korrels met ʼn laer digtheid as dié van water ʼn dryfbedding wat swewende materiaal verwyder. Poli-olefiniese korrels (polipropileen en poliëtileen) word algemeen in hierdie toepassing as filtermedia aangewend. Die geometriese kenmerke, en in ʼn mindere mate die oppervlakkenmerke, van die korrels het ʼn groot invloed op die funksionering van die filter. In geval van waterbehandeling is die hooffunksioneringsvereiste die produksie van ʼn filtraat met ʼn troebelheid van ≤ 1.0 NTU (“nephelometric turbidity units”). Die invloed van die geometriese kenmerke van filtermedia op die funksionering van bestaande stroomop-filtreerstelsels is nog nie omvattend nagevors nie. Die doel van hierdie tesis is dus om ondersoek in te stel na die uitwerking van die korrelgrootte en -vorm van ʼn dryfmedium op die funksionering van die dryfmediumfilter (DMF). Hiervoor is ʼn proefaanleg met ʼn doseer- en uitvlokkingseenheid sowel as ʼn deursigtige pilaar van polivinielchloried (PVC) met ʼn binnedeursnee van 0.3 m en ʼn hoogte van 2.8 m ontwerp en gebou, met behulp waarvan verskillende mediumtipes, beddingdieptes en filtreeromstandighede ondersoek kon word. ʼn Kunsmatige watertoevoer vir die proefneming is vervaardig deur 250 mg/L bentoniet in kraanwater op te los (≈ 60 NTU). Polipropileenplastiekkorrels met vier verskillende deursneë (d50 = 2.28; 3.03; 3.30 en 4.07 mm) is gebruik, en twee mediumvorms (kubus- en skyfvormig) is beoordeel. Die uitwerking van filtrasiestygsnelheid, mediumdiepte en die dosis koaguleermiddel is met behulp van ʼn volledige 23-faktoriaalontwerp ondersoek. Filterfunksionering is aan die hand van filtraattroebelheid en verlies aan drukhoogte beoordeel. Alle proefnemings is teen ʼn opwaartse filtrasierigting uitgevoer. Daar is bevind dat die beste omstandighede vir die verwydering van troebelheid ʼn lae filtrasiekoers (36.8 L/m2 per minuut), ʼn groter mediumdiepte (0.6 m) en ʼn optimale dosis koaguleermiddel (23 mg/L) is. In hierdie omstandighede was die beste medium die een met ʼn d50 van 2.28 mm, waarvoor ʼn minimum troebelheid van 0.4 NTU verkry is, en wat 624 L filtraat van 1.0 NTU met behulp van ʼn bedding van 0.014 m3 kon lewer. By deurbraak het hierdie medium egter ʼn drukhoogteverlies van 109 mm H2O getoon, teenoor die ander drie media se 42 mm H2O op dieselfde punt. Visuele waarneming dui daarop dat, met die kleinste medium, vaste stowwe hoofsaaklik oor die eerste 0.3 m van die dryfbedding verwyder is, teenoor die volle diepte van die bedding vir die ander drie media. Beddingdiepte blyk dus die grootste invloed te hê op funksionering wat enige bepaalde mediumtipe betref. Proefwaarneming toon dat die dosis koaguleermiddel ʼn belangrike rol in vlokgrootte speel. ʼn Hoër dosis koaguleermiddel (23 mg/L) het ʼn groter vlokgrootte en dus beter funksionering tot gevolg. ʼn Laer stygsnelheid blyk ook die beste te wees vir die vorming van groter vlokke. Hoewel mediumvorm oënskynlik ʼn mate van ʼn rol speel, is mediumgrootte eerder die dominante faktor. Volgens die studie blyk DMF belowend vir aanwending in waterbehandeling te wees, veral as voorfiltreereenheid vir die behandeling van baie troebel water. Behoorlike mediumkeuse saam met die regte bedryfsomstandighede kan die funksionering van die filter verder verbeter. Kleiner media sal troebelheid beter verwyder, maar het ʼn groot verlies aan drukhoogte tot gevolg, en sal dus meer gereelde terugspoeling as groter media verg.
Rautenbach, Jeremy Brian. "Improving production yields in bio-pharmaceutical filter media." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111937.
Full textThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, in conjunction with the Leaders for Global Operations Program at MIT, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 89-91).
This thesis presents methods to identify sources of variation in rolled goods manufacturing by defining the critical input process parameters, and the application of statistical process control. Sources of variation are prioritized according to a process control hierarchy, and reduced or eliminated through iterative cycles of rapid experimentation. This work emphasizes the value of team work, breaking down the organizational barriers between departments, knowledge sharing and the importance of a scientific approach to problem solving. FilterCo manufactures and assembles filter media catering to the ultrafiltration market growing at ~12% over the next five years. In a high growth scenario, production yield variability presents on-time delivery complications while below target yields drive significant scrap value. As FilterCo seeks to improve product lead time for its customers, while reducing WIP inventory, it must seek to maximize OEE with respect to product yield, equipment performance and availability. The variation identification, reduction and process control methodologies presented in this thesis are demonstrated to advance the goal of reducing production yield variation. The impact of the work has been verified on three filter media grades and have shown ~40% reduction in production yield variation, and rolled throughput yield improvements of ~30%. These improvements on the three membrane grades alone have resulted in an annualized saving equivalent to 60% of the total 2015 scrapped membrane value.
by Jeremy Brian Rautenbach.
S.M.
M.B.A.
Dharmanolla, Sailaja. "A Computer Program for Filter Media Design Optimization." University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1184095014.
Full textArouni, Hamidreza. "Nonwoven coalescing fuel-water filter media for diesel engines." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/18692/.
Full textHosseini, Seyed Alireza. "MODELING PARTICLE FILTRATION AND CAKING IN FIBROUS FILTER MEDIA." VCU Scholars Compass, 2011. http://scholarscompass.vcu.edu/etd/2530.
Full textAndersen, Erin R. "Thallium Removal from Drinking Water Using Pyrolusite Filter Media." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7399.
Full textMoorthy, Kavitha. "EFFECT OF SURFACE ENERGY OF FIBERS ON COALESCENCE FILTRATION." University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1185554340.
Full textCescon, Anna. "Assessment of alternative filter media in single and dual media configuration for drinking water treatment." Thesis, Glasgow Caledonian University, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.743902.
Full textBooks on the topic "Filter media"
Wahidin, Samsul. Filter komunikasi media elektronika. [Banjarmasin]: Komisi Penyiaran Indonesia Daerah Kalimantan Selatan, 2006.
Find full textPurchas, Derek B. Handbook of filter media. Oxford: Elsevier Advanced Technology, 1996.
Find full textPurchas, Derek B. Handbook of filter media. 2nd ed. Oxford: Elsevier Advanced Technology, 2002.
Find full textHandbook of nonwoven filter media. Oxford: Butterworth-Heinemann, 2007.
Find full textDeshpande, Ravindra. Growing markets for nonwoven filter media. Norwalk, CT: Business Communications Co., 2002.
Find full textNo filter. New York: Bloomsbury Publishing, 2018.
Find full textJärvinen, Kimmo. Development of filter media treatments for liquid filtration. Lappeenranta: Lappeenranta University of Technology, 2005.
Find full textAtanasov, Assoc Prof Ljuben, ed. The Reading – Anti-manipulating Filter: Четенето – антиманипулативен филтър. Sofia, Bulgaria: Gaberoff, 2000.
Find full textKnocke, William R. Removal of soluble manganese from water by oxide-coated filter media. Denver, CO: AWWA Research Foundation and the American Water Works Association, 1990.
Find full textPihlajamäki, Arto. Electrochemical characterisation of filter media properties and their exploitation in enhanced filtration. Lappeenranta, Finland: Lappeenranta University of Technology, 1998.
Find full textBook chapters on the topic "Filter media"
Dietrich, Hans. "Filter Media." In Dust Collection with Bag Filters and Envelope Filters, 55–179. Wiesbaden: Vieweg+Teubner Verlag, 1988. http://dx.doi.org/10.1007/978-3-663-07900-2_2.
Full textBartussek, Jörg. "From Newspaper to News Filter." In Media Management, 43–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-24786-9_5.
Full textOstreicher, Eugene A., Todd E. Arnold, and Robert S. Conway. "Charge-Modified Filter Media." In Filtration and Purification in the Biopharmaceutical Industry, 21–40. Third edition. | Boca Raton, Florida : CRC Press, 2019. | Series: Drugs and the pharmaceutical sciences: CRC Press, 2019. http://dx.doi.org/10.1201/9781315164953-2.
Full textDorme, Christian, and Mathias Fink. "Matched Filter Imaging Through Inhomogeneous Media." In Acoustical Imaging, 1–8. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4419-8772-3_1.
Full textTarleton, E. S., and R. J. Wakeman. "Filter media." In Solid/Liquid Separation, 78–125. Elsevier, 2007. http://dx.doi.org/10.1016/b978-185617421-3/50002-x.
Full text"FILTER MEDIA." In Water Treatment Unit Processes, 455–66. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 1997. http://dx.doi.org/10.1142/9781848160798_0030.
Full textSutherland, Ken. "Filter Media." In Filters and Filtration Handbook, 41–95. Elsevier, 2008. http://dx.doi.org/10.1016/b978-1-85617-464-0.00002-x.
Full textSparks, Trevor, and George Chase. "Filter Media." In Filters and Filtration Handbook, 55–115. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-08-099396-6.00002-2.
Full text"Filter Media." In Solid-Liquid Filtration and Separation Technology, 107–52. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008. http://dx.doi.org/10.1002/9783527614974.ch04.
Full textRushton, Albert, and P. V. R. Griffiths. "Filter Media." In Filtration, 163–99. Routledge, 2017. http://dx.doi.org/10.1201/9780203756119-3.
Full textConference papers on the topic "Filter media"
Alderman, Steven, Michael Parsons, Kristina Hogancamp, O. Perry Norton, and Charles Waggoner. "Evaluation of the Effects of Media Velocity on HEPA Filter Performance." In The 11th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2007. http://dx.doi.org/10.1115/icem2007-7075.
Full textCermak-Sassenrath, Daniel, Clinton Watkins, and Ben Kenobi. "Media filter access." In The 9th Australasian Conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2513002.2513028.
Full textGalberd, Zachary, and Eric Appelbaum. "Filter Media Options in Renewable Fuels and Edible Oils." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/gdwg6339.
Full textWang, Lihong, Andreas H. Hielscher, Steven L. Jacques, Dawn V. Stephens, and Frank K. Tittel. "Imaging of Turbid Media with a Spatial Filter." In Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/aoipm.1994.dcwi.288.
Full textHaselbach, L. M., J. R. Rath, and B. Werner. "Extended Performance of Media Filter Drains: Existing Media." In International Low Impact Development 2015. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479025.031.
Full textHaselbach, Liv, Justin Rath, and Maxwell Freimund. "Extended Performance of Media Filter Drains: New Media." In International Symposium on Systematic Approaches to Environmental Sustainability in Transportation. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479285.004.
Full textWaggoner, Charles A., and Michael S. Parsons. "Factors Influencing the Performance and Lifetime of Fibrous Glass and Metal Media HEPA Filters." In ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2009. http://dx.doi.org/10.1115/icem2009-16285.
Full textParsons, Michael, Kristina Hogancamp, Steven Alderman, and Charles Waggoner. "HEPA Filter Performance Under Adverse Conditions." In The 11th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2007. http://dx.doi.org/10.1115/icem2007-7074.
Full textAlvin, M. A. "Assessment of Ceramic and Metal Media Filters in Advanced Power Systems." In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0574.
Full textGahr, Thomas C. "Corrugated Flute Filter Media Packaging Reduces Combustion Turbine Intake Air Filter System Size by 40%." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53558.
Full textReports on the topic "Filter media"
Thompson, Robert C., Harry S. Miley, and Richard J. Arthur. Filter Media Recommendation Review. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/890735.
Full textMD Hoover, AF Fencl, and GJ Vargo. Independent Evaluation of Air Filter Media from Chornobyl. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/15179.
Full textHoover, Mark D., Alice F. Fencl, and George J. Vargo. Independent Evaluaton of Air Filter Media From Chornobyl. Office of Scientific and Technical Information (OSTI), September 1999. http://dx.doi.org/10.2172/965239.
Full textM D ANDERSON CANCER CENTER HOUSTON TX. Evaluation of Elastomeric Polymer Filter Media. Volume II: Appendices. Fort Belvoir, VA: Defense Technical Information Center, December 1995. http://dx.doi.org/10.21236/ada386769.
Full textPoirier, M., D. Herman, and R. Bhave. EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1024873.
Full textHaslam, Jeff J. Prototype Ceramic HEPA Filter Testing and Filter Media Research and Development for Nuclear Facility Ventilation. Office of Scientific and Technical Information (OSTI), April 2019. http://dx.doi.org/10.2172/1544515.
Full textHaslam, J. J. Prototype Ceramic HEPA Filter Testing and Filter Media Research and Development for Nuclear Facility Ventilation. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1566030.
Full textHaslam, J. J. Prototype Ceramic High Efficiency Particulate Air Filter Testing and Filter Media Development for Nuclear Facility Ventilation. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1490936.
Full textFowley, M. EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER, PHASE 2. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1049528.
Full textQuaderer, Jamie, Michael J. Richards, Larry Sierpien, and Frank Margrif. Lab Test of Prototype HMMWV Filter Elements Constructed with Spunbond Polyester Media. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada396804.
Full text