Academic literature on the topic 'Films nanocomposite'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Films nanocomposite.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Films nanocomposite"
Wang, Wei, Zhen Li, and Li Li. "Preparation and Characterization of Fe3O4/Poly (2-Hydroxyethyl Methacrylate) Magnetic Nanocomposite Films." Key Engineering Materials 396-398 (October 2008): 465–68. http://dx.doi.org/10.4028/www.scientific.net/kem.396-398.465.
Full textKumari, Sangeeta, Raj Pal Singh, Nayaku N. Chavan, Shivendra V. Sahi, and Nilesh Sharma. "Characterization of a Novel Nanocomposite Film Based on Functionalized Chitosan–Pt–Fe3O4 Hybrid Nanoparticles." Nanomaterials 11, no. 5 (May 13, 2021): 1275. http://dx.doi.org/10.3390/nano11051275.
Full textAlakrach, Abdulkader M., Awad A. Al-Rashdi, Mohamed Khalid Al-Omar, Taha M. Jassam, Sam Sung Ting, Omar S. Dahham, and Nik Noriman Zulkepli. "Physical and Barrier Properties of Polylactic Acid/Halloysite Nanotubes-Titanium Dioxide Nanocomposites." Materials Science Forum 1021 (February 2021): 280–89. http://dx.doi.org/10.4028/www.scientific.net/msf.1021.280.
Full textAl-Asbahi, Bandar Ali, Mohammad Hafizuddin Haji Jumali, and Rashad Al-Gaashani. "Efficient Charge Transfer Mechanism in Polyfluorene/ZnO Nanocomposite Thin Films." Journal of Nanomaterials 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/608572.
Full textSuppiah, K., Teh Pei Leng, S. Husseinsyah, R. Rahman, and Yeoh Chow Keat. "The Mechanical Properties of Carboxymethyl Cellulose (CMC) Filled Halloysite Nanotube (HNT) Bio-Nanocomposite Films: Effect of Sodium Dodecyl Sulfate (SDS)." Solid State Phenomena 280 (August 2018): 335–39. http://dx.doi.org/10.4028/www.scientific.net/ssp.280.335.
Full textSapkota, Bedanga, Md Tanvir Hasan, Alix Martin, Rifat Mahbub, Jeffrey E. Shield, and Vijaya Rangari. "Fabrication and magnetoelectric investigation of flexible PVDF-TrFE/cobalt ferrite nanocomposite films." Materials Research Express 9, no. 4 (April 1, 2022): 046302. http://dx.doi.org/10.1088/2053-1591/ac6151.
Full textLin, Bao Ping, Hong Jian Liu, Yue Ming Sun, and Chun Wei Yuan. "Preparation and Characterization of Polyimide/BaTiO3 Nanocomposite Films with Lower Infrared Emissivity." Key Engineering Materials 326-328 (December 2006): 1749–52. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.1749.
Full textJokar, Maryam, Russly Abdul Rahman, and Luqman Chuah Abdullah. "Physical and Antimicrobial Characterization of Self Assembled Silver Nanoparticle/Chitosan onto Low Density Polyethylene Film as Active Packaging Polymer." Journal of Nano Research 27 (March 2014): 53–64. http://dx.doi.org/10.4028/www.scientific.net/jnanor.27.53.
Full textArshad, Adillah Nurashikin, Rozana Mohd Dahan, Mohamad Hafiz Mohd Wahid, Zulkefle Habibah, Nyl Ismail Lyly, Muhamad Naiman Sarip, and Rusop Mahmood Mohamad. "The Study of the Surface Morphology of PVDF/MgO Nanocomposites Thin Films." Advanced Materials Research 626 (December 2012): 311–16. http://dx.doi.org/10.4028/www.scientific.net/amr.626.311.
Full textAbdul Ghani, Siti Waqina, Aznizam Abu Bakar, and Sani Amril Samsudin. "Mechanical Properties of Chitosan Modified Montmorillonite Filled Tapioca Starch Nanocomposite Films." Advanced Materials Research 686 (April 2013): 145–54. http://dx.doi.org/10.4028/www.scientific.net/amr.686.145.
Full textDissertations / Theses on the topic "Films nanocomposite"
Sababi, Majid. "Nanocomposite films for corrosion protection." Doctoral thesis, KTH, Yt- och korrosionsvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-132240.
Full textQC 20131024
Kurt, Mustafa Şükrü. "Nanocomposite magnetic films assembled from nanoparticles." Thesis, University of Leicester, 2016. http://hdl.handle.net/2381/38122.
Full textJareño, Cerulla Júlia. "Transient liquid assisted growth of superconducting nanocomposite films." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670580.
Full textLos materiales superconductores de alta temperatura tienen propiedades únicas, que han sido objeto de investigación des de hace muchos años, especialmente las propiedades relacionadas con la conductividad sin resistencia a temperaturas relativamente altas o bajo campos magnéticos. Existe un gran esfuerzo a nivel internacional para optimizar las propiedades de estos materiales y desarrollar metodologías para su crecimiento que sean compatibles con la producción a gran escala y bajo coste. En este contexto, los resultados incluidos en esta tesis son un importante paso adelante ya que demuestran por primera vez la posibilidad de utilizar la mejora de propiedades superconductoras conseguida con tecnología de nanocompuestos combinada con una metodología de crecimiento basada en la deposición de soluciones químicas e intermedios líquidos que presenta un bajo coste y alto rendimiento. El crecimiento de YBa2Cu3O(7-x) se ha hecho mediante una nueva metodología llamada “crecimiento asistido por líquido transitorio” (TLAG por sus siglas en inglés), la cual combina el bajo coste de la deposición de soluciones químicas con la presencia de un líquido transitorio que da velocidades de crecimiento ultra-rápidas. Hemos conseguido combinar este crecimiento a través de fases líquidas con la presencia de nanopartículas a través del estudio de la nucleación, la microestructura y la disposición de los defectos en nuestras capas delgadas. Para los estudios de capas nanocompuestas hemos elegido nanopartículas de BaZrO3, BaHfO3 y LaF3, estabilizadas en medios alcohólicos. Los resultados están divididos según las diferentes rutas de crecimiento. En la ruta de temperatura, varios parámetros han sido optimizados con el objetivo de conseguir capas nanocompuestas epitaxiales, tales como la rampa de calentamiento y el grosor de capas tampón de YBCO sintetizadas a través de PLD. También presentamos resultados con diferentes estequiometrias de la fase líquida, elucidando la importancia de controlar la sobresaturación para conseguir capas epitaxiales. La densidad de corriente crítica a 77K es 1MA/cm2. Hemos demostrado que introducir nanopartículas al crecimiento de YBCO a través de TLAG crea una estructura de defectos con un gran potencial para mejorar la fixación de vórtices bajo campos magnéticos. Hemos investigado el crecimiento de capas nanocompuestas de YBCO a través de la ruta de PO2 con cantidades de BaZrO3 o BaHfO3 entre el 6% y el 32%. Hemos descrito el uso de una capa delgada precursora sin nanopartículas con tal de conseguir una buena reproductibilidad y capas nanocompuestas completamente orientadas en el eje c en el caso de nanocompuestos con el 6% y el 12% de nanopartículas. Hemos demostrado una Jc de 2.2MA/cm2 a 77K, lo cual es un resultado muy prometedor que nos ha llevado a evaluar la Jc respeto campos magnéticos aplicados. Hemos podido demostrar como las propiedades de las capas nanocompuestas bajo campos magnéticos son mejores que en las muestras estándar, característica necesaria para aplicaciones de las cintas recubiertas superconductoras bajo altos campos magnéticos. Esta disertación también incluye un estudio preliminar sobre el crecimiento de capas gruesas de YBCO (1um) y sobre la compatibilidad de capas tampón con TLAG. Hemos podido demostrar la completa eliminación del carbonato de bario en capas de 1um de grosor. Hemos utilizado el método de CSD para crecer capas de Ba2342, Nd2CuO4, y LaMnO3 (LMO), la reactividad de las cuales ha sido evaluada durante el crecimiento con fases líquidas. El material más prometedor ha sido LMO, y por lo tanto hemos usado sustratos metálicos comerciales con LMO como última capa de su arquitectura. Hemos conseguido el crecimiento epitaxial de capas YBCO con buena temperatura crítica encima de estas capas, demostrando que la metodología TLAG es compatible con la arquitectura comercial de capas recubiertas superconductoras.
High temperature superconducting materials have unique properties which have been under investigation for many years, mainly involved with their zero resistance properties at high temperatures or at high magnetic fields. Currently, one of the main interest in the superconducting community is to demonstrate the applicability of these materials, in order to achieve the widespread use of their applications. As such, there is a big international effort on optimizing performances and developing growth methodologies compatible with big-scale production at low cost. In this context, the results presented in this thesis are an important step forward, reporting for the first time the possibility to use the increased superconducting properties of nanocomposite technology together with a low-cost and high throughput liquid-based methodology based on chemical solution deposition. The growth of YBa2Cu3O(7-x) } is performed by the newly reported method of transient liquid assisted growth (TLAG), which combines the inexpensive chemical solution deposition with the presence of a transient liquid that provides ultra-high growth rates. We have been successful in combining this liquid-based growth with the presence of nanoparticles through the understanding of nucleation, microstructure and defect landscape of our films. We have chosen BaZrO3, BaHfO3 and LaF3 pre-formed nanoparticles stabilized in alcoholic media for these studies. The results are divided by the different processing routes, presenting the efforts on optimizing the nucleation, growth and superconducting properties of nanocomposites in two chapters. The two different paths consist of the temperature route (heating at constant PO2), and PO2-route (heating at very low PO2 and then increasing PO2 to reach growth conditions). In the T-route, several parameters were optimized in order to achieve epitaxial nanocomposite films, such as heating ramp and the thickness of a PLD-YBCO buffer layer. Also different liquid stoichiometries were tested, revealing the importance of supersaturation control to achieve epitaxy. Jc is 1MA/cm2, and we demonstrated that introducing pre-formed nanoparticles to TLAG-YBCO creates a defect structure with a lot of potential towards improved vortex pinning. The growth of YBCO nanocomposites through the PO2-route with BaZrO3 and BaHfO3 molar percentages ranging from 6% to 32% was studied through XRD techniques which allow the quantification of different YBCO crystalline orientations. Introduction of a seed layer accomplished a better reproducibility and fully c-axis oriented epitaxial films for 6% and 12% nanocomposites. We demonstrated Jc self-field up to 2.2MA/cm2 at 77K, a very promising result, which led to the evaluation of Jc under applied magnetic fields through dc-SQUID and electrical transport measurements. Thus, we could show the increased performance of nanocomposites with magnetic field in comparison with pristine samples, necessary for high magnetic field applications of coated conductors. This dissertation also includes a preliminary study on the growth of YBCO thick films (1um) and buffer layer compatibility with TLAG. We demonstrated the successful elimination of barium carbonate in films up to 1um thick and fully epitaxial YBCO layers could be processed by the PO2-route. CSD methodologies were used to grow thin films of Ba2342, Nd2CuO4, LaMnO3 and La0.8Sr0.2MnO3, in order to evaluate the reactivity of the transient liquid with these materials as well as the nucleation of YBCO on top. LaMnO_3 (LMO) was found to be a very promising material and was further investigated by using PLD-grown LMO and SuNAM commercial tape with LMO as the last layer of their architecture. We achieved epitaxial YBCO films with good Tc on top of these buffers layers, demonstrating that TLAG is compatible with commercial coated conductors architecture.
Dalacu, Dan. "Ellipsometric characterization of gold/dielectric nanocomposite films." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ60932.pdf.
Full textNiu, Feng. "Functional nanocomposite thin-films by co-sputtering." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390504.
Full textHinchcliffe, Claire. "Processing and properties of nanocomposite dielectric films." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437011.
Full textTeixeira, Roberto F. A. "Multi-layered nanocomposite polymer latexes and films." Thesis, University of Warwick, 2011. http://wrap.warwick.ac.uk/45871/.
Full textAlzaid, Meshal Mufleh. "Flexible Nanocomposite Thin Films for Electronic Devices." Diss., North Dakota State University, 2019. https://hdl.handle.net/10365/29393.
Full textBerndt, Markus. "Phase separation in carbon:transition metal nanocomposite thin films." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-26643.
Full textDie Strukturentwicklung in Kohlenstoff-Übergangsmetall-Nanokompositschichten wird in zwei Bereichen untersucht: (i) im oberflächendiffusionsgesteuerten Bereich während des Schichtwachstums und (ii) im bulkdiffusionsdominierten Bereich während des nachträglichen Temperns. C:V, C:Co und C:Cu Nanokompositschichten wurden durch Ionenstrahl Co-Sputtern hergestellt. Der Einfluss des Metalltyps, des Metallgehalts (15-40 at.%), der Substrattemperatur (RT-500°C) und der Temperatur beim Tempern (300-700°C) auf die Struktur und Morphologie des Komposits wird mittels elastischer Rückstoßteilchen-Analyse, Röntgenbeugung, Transmissionselektronenmikroskopie und Ramanspektroskopie untersucht. Vanadium (Kupfer) ist im gesamten Temperaturbereich der Studie in karbidischem (metallischen) Zustand. Im Gegensatz dazu befindet sich Kobalt bis zu einer Temperatur von 300°C in karbidischem Zustand und wird bei höheren Abscheidetemperaturen metallisch. Die Nanopartikel in C:V Filmen besitzen eine runde Form im Temperaturbereich von RT bis 500°C wohingegen bei den C:Co und C:Cu Filmen ein Übergang von runden zu länglichen Partikeln bei etwa 300°C zu beobachten ist. Der Vergleich der Ramanspektroskopieresultate der Kohlenstoffreferenzproben und der Nanokompositschichten zeigt, dass die Anwesenheit des Metalls während des Schichtwachstums die Bildung von sechsatomigen Kohlenstoffringclustern bei Temperaturen so niedrig wie Raumtemperatur deutlich fördert. Die Erhöhung tritt unabhängig von der Partikelgröße, -form und phase und unabhängig vom Metallgehalt auf, und betrifft eher Prozesse, die auf der Oberfläche der Nanopartikel während des Schichtwachstums stattfinden als im Bulk. Der Grad der Erhöhung hängt vom Metalltyp und -gehalt ab. Nachträgliches Tempern der C:Co und C:Cu Filme bei 700°C führt zur Segregation des Metalls an der Schichtoberfläche während in den C:V Filmen keine Veränderungen durch das Tempern auftreten. Des weiteren kommt es in den C:Co Filmen zur Graphitisierung des Kohlenstoffs durch einen „Lösungs-Diffusions-Ablagerungs“ Mechanismus ähnlich der metallvermittelten Kristallisierung in amorphem Silizium und Germanium. In den C:V, C:Cu und Kohlenstoffreferenzfilmen findet keine Graphitisierung während des Temperns statt
Berndt, M. "Phase separation in carbon:transition metal nanocomposite thin films." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-61113.
Full textBooks on the topic "Films nanocomposite"
Nanocomposite coatings and nanocomposite materials. Stafa-Zuerich: Trans Tech Publications, 2009.
Find full textGero, Decher, and Schlenoff Joseph B, eds. Multilayer thin films: Sequential assembly of nanocomposite materials. Weinheim: Wiley-VCH, 2003.
Find full textSam, Zhang, and Ali Nasar, eds. Nanocomposite thin films and coatings: Processing, properties and performance. London: Imperial College Press, 2007.
Find full textKazuhisa, Miyoshi, and NASA Glenn Research Center, eds. Sliding wear and fretting wear of DLC-based, functionally graded nanocomposite coatings. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Find full textMele, Paolo, Tamio Endo, Shunichi Arisawa, Chaoyang Li, and Tetsuo Tsuchiya, eds. Oxide Thin Films, Multilayers, and Nanocomposites. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14478-8.
Full text1954-, Nalwa Hari Singh, ed. Handbook of organic-inorganic hybrid materials and nanocomposites. Stevenson Ranch, Calif: American Scientific Publishers, 2003.
Find full textBiological and biomedical coatings: Processing and characterization. Boca Raton: Taylor & Francis, 2011.
Find full textZnO bao mo zhi bei ji qi guang, dian xing neng yan jiu. Shanghai Shi: Shanghai da xue chu ban she, 2010.
Find full textZhang, Sam, and Nasar Ali. Nanocomposite Thin Films and Coatings. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2007. http://dx.doi.org/10.1142/p502.
Full text(Editor), Gero Decher, and Joe Schlenoff (Editor), eds. Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials. John Wiley & Sons, 2008.
Find full textBook chapters on the topic "Films nanocomposite"
Becker-Willinger, Carsten. "Nanocomposite Films." In Sol-Gel Nanocomposites, 109–30. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1209-4_5.
Full textNasirpouri, Farzad. "Electrodeposited Nanocomposite Films." In Electrodeposition of Nanostructured Materials, 289–310. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44920-3_7.
Full textQing, Yongquan, and Changsheng Liu. "Multifunctional Superhydrophobic Nanocomposite Surface." In Functional Thin Films Technology, 199–223. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003088080-8.
Full textJian, Rui, Joey Mead, Carol Barry, and Claire Lepont. "Polymer Nanocomposites and Multilayer Nanocomposite Films by Coextrusion." In Processing of Polymer Nanocomposites, 201–34. München: Carl Hanser Verlag GmbH & Co. KG, 2019. http://dx.doi.org/10.3139/9781569906361.007.
Full textJian, Rui, Joey Mead, Carol Barry, and Claire Lepont. "Polymer Nanocomposites and Multilayer Nanocomposite Films by Coextrusion." In Processing of Polymer Nanocomposites, 201–34. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2019. http://dx.doi.org/10.1007/978-1-56990-636-1_7.
Full textAlsayed, Ahlam F. M., and Muhammad Aqeel Ashraf. "Synthesis of Polymer Nanocomposite Films." In Handbook of Polymer and Ceramic Nanotechnology, 1–20. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10614-0_9-1.
Full textKanki, Teruo, and Hidekazu Tanaka. "Self-assembled Nanocomposite Oxide Films." In Correlated Functional Oxides, 139–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43779-8_6.
Full textAlsayed, Ahlam F. M., and Muhammad Aqeel Ashraf. "Synthesis of Polymer Nanocomposite Films." In Handbook of Polymer and Ceramic Nanotechnology, 157–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-40513-7_9.
Full textHe, J., M. Ice, and E. J. Lavernia. "Synthesis and Characterization of Nanocomposite Coatings." In Nanostructured Films and Coatings, 131–48. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4052-2_11.
Full textKULISCH, WILHELM. "NANOCOMPOSITE THIN FILMS FOR BIOMEDICAL APPLICATIONS." In Functional Properties of Nanostructured Materials, 493–504. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4594-8_49.
Full textConference papers on the topic "Films nanocomposite"
Sigamani, Nirmal Shankar, Zoubeida Ounaies, and Henry Sodano. "Synthesis and Characterization of PVDF-Based SWNT/GO Hybrid Films." In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-8021.
Full textFEDOROVICH, R. D., O. E. KIYAYEV, A. G. NAUMOVETS, and P. M. TOMCHUK. "ELECTRONIC PROCESSES IN NANOCOMPOSITE FILMS." In Reviews and Short Notes to NANOMEETING-2001. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810076_0048.
Full textMane, Anil U., and Jeffrey W. Elam. "Nanocomposite coatings by ALD: in-situ growth investigation and applications (Conference Presentation)." In Nanostructured Thin Films IX, edited by Tom G. Mackay, Akhlesh Lakhtakia, and Motofumi Suzuki. SPIE, 2016. http://dx.doi.org/10.1117/12.2237810.
Full textLi, Hua, and Gang Li. "Computational Analysis of Strain Effects on Electrical Transport Properties of Crystalline Nanocomposite Thin Films." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64641.
Full textBallesteros, J. M., C. N. Afonso, J. Solis, and R. Serna. "Laser Synthesis of Nanocomposite Cu:Al2O3 thin Films for Nonlinear Optical Switching." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cwf54.
Full textLozovski, V., M. Razumova, and T. Vasiliev. "Light absorption of nanocomposite thin films." In 2016 IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2016. http://dx.doi.org/10.1109/elnano.2016.7493025.
Full textLancok, A., J. Kohout, M. Miglierini, F. Fendrych, M. Klementová, J. Lancok, Jirí Tucek, and Marcel Miglierini. "Study of Fe-Co Nanocomposite Films." In MOSSBAUER SPECTROSCOPY IN MATERIALS SCIENCE—2010. AIP, 2010. http://dx.doi.org/10.1063/1.3473903.
Full textKuznetsova, Iren E., Boris D. Zaitsev, Nikolai M. Ushakov, Igor D. Kosobudskii, and Aleksander M. Shikhabudinov. "Acoustical characteristics of polymeric nanocomposite films." In International Congress on Ultrasonics. Vienna University of Technology, 2007. http://dx.doi.org/10.3728/icultrasonics.2007.vienna.1340_kuznetsova.
Full textGarahan, Anna, Laurent Pilon, Juan Yin, and Indu Saxena. "Optical Properties of Nanocomposite Thin-Films." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13309.
Full textKhodaparast, Payam, and Zoubeida Ounaies. "Preparation of TiO2 Polymer Nanodielectrics via a Solvent-Based Technique." In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3883.
Full textReports on the topic "Films nanocomposite"
Goeke, Ronald S., Paul Gabriel Kotula, Somuri V. Prasad, and Thomas W. Scharf. Synthesis of MoS2-Au nanocomposite films by sputter deposition. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1055586.
Full textPotter, Jr, and Barrett G. Optoelectronic Nanocomposite Materials for Thin Film Photovoltaics. Fort Belvoir, VA: Defense Technical Information Center, June 2012. http://dx.doi.org/10.21236/ada562250.
Full textPark, Chan E. Nanocomposite Gate Dielectrics With Nanoparticles for Organic Thin Film Transistors. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada473096.
Full textBarnes, Eftihia, Jennifer Jefcoat, Erik Alberts, Hannah Peel, L. Mimum, J, Buchanan, Xin Guan, et al. Synthesis and characterization of biological nanomaterial/poly(vinylidene fluoride) composites. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42132.
Full textMarinov, Yordan G., and Georgi B. Hadjichristov. Electro-optical Characteristics of Thin Films of Aerosil-7CB Nematic Gel Nanocomposites Doped with Photoresponsive Liquid Crystalline Azo - compounds. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, October 2020. http://dx.doi.org/10.7546/crabs.2020.10.05.
Full text