Academic literature on the topic 'Fill-cut terrace'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fill-cut terrace.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fill-cut terrace"

1

Arbogast, Alan F., and William C. Johnson. "Climatic Implications of the Late Quaternary Alluvial Record of a Small Drainage Basin in the Central Great Plains." Quaternary Research 41, no. 3 (May 1994): 298–305. http://dx.doi.org/10.1006/qres.1994.1034.

Full text
Abstract:
AbstractFour late-Quaternary alluvial fills and terraces are recognized in Wolf Creek basin, a small (163 km2) drainage in the Kansas River system of the central Great Plains. Two terraces were created during the late Pleistocene: the T-4 is a fill-top terrace underlain by sand and gravel fill (Fill I), and the T-3 is a strath terrace cut on the Cretaceous Dakota Sandstone. Both Fill II (early Holocene) and Fill III (late Holocene) are exposed beneath the T-2, a Holocene fill-top terrace. The T-1 complex, consisting of one cut and three fill-top terraces, is underlain by Fills III and IV. A poorly developed floodplain (T-0) has formed within the past 1000 yr. As valleys in Wolf Creek basin filled during the early Holocene, an interval of soil formation occurred about 6800 yr B.P. Early Holocene fill has been found only in the basin's upper reaches, indicating that extensive erosion during the middle Holocene removed most early-Holocene fill from the middle and lower reaches of the basin. Valley filling between 5000 and 1000 yr B.P. was interrupted by soil formation about 1800, 1500, and 1200 yr B.P. As much as 6 m of entrenchment has occurred in the past 1000 yr. Holocene events in Wolf Creek basin correlate well with those in other localities in the central Great Plains, indicating that widespread changes in climate, along with adjustments driven by complex response, influenced fluvial activity.
APA, Harvard, Vancouver, ISO, and other styles
2

Norton, K. P., F. Schlunegger, and C. Litty. "On the potential for regolith control of fluvial terrace formation in semi-arid escarpments." Earth Surface Dynamics 4, no. 1 (February 2, 2016): 147–57. http://dx.doi.org/10.5194/esurf-4-147-2016.

Full text
Abstract:
Abstract. Cut–fill terraces occur throughout the western Andes, where they have been associated with pluvial episodes on the Altiplano. The mechanism relating increased rainfall to sedimentation is, however, not well understood. Here, we apply a hillslope sediment model and reported cosmogenic nuclide concentrations in terraces to examine terrace formation in semi-arid escarpment environments. We focus on the Pisco river system in western Peru in order to determine probable hillslope processes and sediment transport conditions during phases of terrace formation. Specifically, we model steady-state and transient hillslope responses to increased precipitation rates. The measured terrace distribution and sediment agree with the transient predictions, suggesting strong climatic control on the cut–fill sequences in western Peru primarily through large variations in sediment load. Our model suggests that the ultimate control for these terraces is the availability of sediment on the hillslopes, with hillslope stripping supplying large sediment loads early in wet periods. At the Pisco river, this is manifest as an approximately 4-fold increase in erosion rates during pluvial periods. We suggest that this mechanism may also control terrace occurrence other semi-arid escarpment settings.
APA, Harvard, Vancouver, ISO, and other styles
3

Norton, K. P., F. Schlunegger, and C. Litty. "On the potential for regolith control of fluvial terrace formation in semi-arid escarpments." Earth Surface Dynamics Discussions 3, no. 3 (August 20, 2015): 715–38. http://dx.doi.org/10.5194/esurfd-3-715-2015.

Full text
Abstract:
Abstract. Cut-fill terraces occur throughout the western Andes where they have been associated with pluvial episodes on the Altiplano. The mechanism relating increased rainfall to sedimentation is however not well understood. Here, we apply a hillslope sediment model and reported cosmogenic nuclide concentrations in terraces to examine terrace formation in semi-arid escarpment environments. We focus on the Rio Pisco system in western Peru in order to determine probable hillslope processes and sediment transport conditions during phases of terrace formation. Specifically, we model steady state and transient hillslope responses to increased precipitation rates. The measured terrace distribution and reconstructed sediment loads measured for the Rio Pisco agree with the transient model predictions, suggesting strong climatic control on the cut-fill sequences in western Peru primarily through large variations in sediment load. Our model suggests that the ultimate control for these terraces is the availability of sediment on the hillslopes with hillslope stripping supplying large sediment loads early in wet periods. At the Rio Pisco, this is manifest as an approximately 4 × increase in erosion rates during pluvial periods. We suggest that this mechanism may also control terrace occurrence in other semi-arid escarpment settings.
APA, Harvard, Vancouver, ISO, and other styles
4

Arauza, Hanna M., Alexander R. Simms, Leland C. Bement, Brian J. Carter, Travis Conley, Ammanuel Woldergauy, William C. Johnson, and Priyank Jaiswal. "Geomorphic and sedimentary responses of the Bull Creek Valley (Southern High Plains, USA) to Pleistocene and Holocene environmental change." Quaternary Research 85, no. 1 (January 2016): 118–32. http://dx.doi.org/10.1016/j.yqres.2015.11.006.

Full text
Abstract:
Fluvial geomorphology and stratigraphy often reflect past environmental and climate conditions. This study examines the response of Bull Creek, a small ephemeral creek in the Oklahoma panhandle, to environmental conditions through the late Pleistocene and Holocene. Fluvial terraces were mapped and their stratigraphy and sedimentology documented throughout the course of the main valley. Based on their elevations, terraces were broadly grouped into a late-Pleistocene fill terrace (T3) and two Holocene fill-cut terrace sets (T2 and T1). Terrace systems are marked by similar stratigraphies recording the general environmental conditions of the time. Sedimentary sequences preserved in terrace fills record the transition from a perennial fluvial system during the late glacial period and the Younger Dryas to a semiarid environment dominated by loess accumulation and punctuated by flood events during the middle to late Holocene. The highest rates of aeolian accumulation within the valley occurred during the early to middle Holocene. Our data provide significant new information regarding the late-Pleistocene and Holocene environmental history for this region, located between the well-studied Southern and Central High Plains of North America.
APA, Harvard, Vancouver, ISO, and other styles
5

Mizutani, Takeshi. "Laboratory experiment and digital simulation of multiple fill-cut terrace formation." Geomorphology 24, no. 4 (September 1998): 353–61. http://dx.doi.org/10.1016/s0169-555x(98)00027-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Srivastava, Pradeep, Jayant K. Tripathi, R. Islam, and Manoj K. Jaiswal. "Fashion and phases of late Pleistocene aggradation and incision in the Alaknanda River Valley, western Himalaya, India." Quaternary Research 70, no. 1 (July 2008): 68–80. http://dx.doi.org/10.1016/j.yqres.2008.03.009.

Full text
Abstract:
AbstractWe study the aggradation and incision of the Alaknanda River Valley during the late Pleistocene and Holocene. The morphostratigraphy in the river valley at Deoprayag shows the active riverbed, a cut terrace, and a fill terrace. The sedimentary fabric of the fill terrace comprises four lithofacies representing 1) riverbed accretion, 2) locally derived debris fan, 3) the deposits of waning floods and 4) palaeoflood records. The sedimentation style, coupled with geochemical analysis and Optically Stimulated Luminescence (OSL) dating, indicate that this terrace formed in a drier climate and the river valley aggraded in two phases during 21–18 ka and 13–9 ka. During these periods, sediment supply was relatively higher. Incision began after 10 ka in response to a strengthened monsoon and aided by increase of the tectonic gradient. The cut terrace formed at ~ 5 ka during a phase of stable climate and tectonic quiescence. The palaeoflood records suggest wetter climate 200–300 yr ago when the floods originated in the upper catchment of the Higher Himalaya and in the relatively drier climate ~ 1.2 ka when locally derived sediments from the Lesser Himalaya dominated flood deposits. Maximum and minimum limits of bedrock incision rate at Deoprayag are 2.3 mm/a and 1.4 mm/a.
APA, Harvard, Vancouver, ISO, and other styles
7

Woolfe, Ken J., and Richard G. Purdon. "Deposits of a rapidly eroding meandering river: Terrace cut and fill in the Taupo Volcanic Zone." New Zealand Journal of Geology and Geophysics 39, no. 2 (June 1996): 243–49. http://dx.doi.org/10.1080/00288306.1996.9514708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tofelde, Stefanie, Taylor F. Schildgen, Sara Savi, Heiko Pingel, Andrew D. Wickert, Bodo Bookhagen, Hella Wittmann, Ricardo N. Alonso, John Cottle, and Manfred R. Strecker. "100 kyr fluvial cut-and-fill terrace cycles since the Middle Pleistocene in the southern Central Andes, NW Argentina." Earth and Planetary Science Letters 473 (September 2017): 141–53. http://dx.doi.org/10.1016/j.epsl.2017.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Taillefer, François. "La morphologie des environs de Québec et la basse-vallée du Saint-Laurent." Cahiers de géographie du Québec 2, no. 4 (April 12, 2005): 177–91. http://dx.doi.org/10.7202/020087ar.

Full text
Abstract:
The morphology of the Québec region and the lower St. Lawrence valley is reappraised in this article divided in three parts. The physical landscape is described in part I ; the structural conditions are examined in part II and the morphological problems are presented in part III. The relief is the result of a succession of glacial episodes and submersion and emersion episodes which followed glaciation. The over deepening of the Limoilou depression and the opening of Calvaire lake and Cap Rouge depressions are the results of the glacier. To the submerged phase correspond the alluvial fill, especially thick in the Limoilou depression, and during the emersion phase, the St. Lawrence cut in soft schists the Ancienne Lorette and the lower terrace which would have been shaped after the over deepening of the Limoilou depression.
APA, Harvard, Vancouver, ISO, and other styles
10

Struik, L. C., P. Schiarizza, M. J. Orchard, F. Cordey, H. Sano, D. G. MacIntyre, H. Lapierre, and M. Tardy. "Imbricate architecture of the upper Paleozoic to Jurassic oceanic Cache Creek Terrane, central British Columbia." Canadian Journal of Earth Sciences 38, no. 4 (April 1, 2001): 495–514. http://dx.doi.org/10.1139/e00-117.

Full text
Abstract:
Upper Paleozoic to Lower Jurassic oceanic rocks of the Cache Creek Terrane near Fort St. James, in central British Columbia, form a stack of thrust sheets cut by steeply dipping strike-slip faults. Paleontologically dated upper Paleozoic strata include bioclastic shallow-water limestone and ribbon chert. Isotopically dated Permian rocks consist of tonalite sills and stocks and rhyolite flows intercalated with basalt flows. Paleontologically dated lower Mesozoic rocks include greywacke, sandstone, siltstone, argillite, ribbon chert, conglomerate, limestone, and basalt tuff. Trembleur Ultramafite unit of the Cache Creek Complex, in places part of an ophiolite suite, forms thrust sheets and klippen that overlie lower Mesozoic sedimentary rocks. Sedimentological, lithochemical, paleontological, petrological, and textural comparisons with other areas and established models demonstrate that Cache Creek Terrane is an accretionary complex, a structurally stacked assemblage of rocks that originated in diverse and disparate oceanic paleoenvironments. These environments include spreading ridge, oceanic plateau, atoll, trench fill, and possibly arc. Internal imbrication of the terrane is as young as Early Jurassic, as determined from fossil evidence, and the minimum age of obduction of the thrust stack westward onto Stikine Terrane is Middle Jurassic, as determined from dating of a crosscutting pluton. Triassic blueschist and eclogite of Cache Creek Terrane are interpreted to have been primarily uplifted to upper crustal levels during Triassic subduction. Cache Creek Terrane, as a remnant of that subduction process, and caught in the collision between Stikine and Quesnel terranes, marks the position of a lithosphere-scale suture zone, the Pinchi Suture.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Fill-cut terrace"

1

Hughes, Matthew William. "Late Quaternary Landscape Evolution and Environmental Change in Charwell Basin, South Island, New Zealand." Phd thesis, Lincoln University. Agriculture and Life Sciences Division, 2008. http://theses.lincoln.ac.nz/public/adt-NZLIU20080214.132530/.

Full text
Abstract:
Charwell Basin is a 6 km-wide structural depression situated at the boundary between the axial ranges and faulted and folded Marlborough Fault Zone of north-eastern South Island, New Zealand. The basin contains the piedmont reach of the Charwell River, and a series of late Quaternary loess-mantled alluvial terraces and terrace remnants that have been uplifted and translocated from their sediment source due to strike-slip motion along the Hope Fault which bounds the basin to its immediate north. The aim of this study was to provide an interdisciplinary, integrated and holistic analysis of late Quaternary landscape evolution and environmental change in Charwell Basin using terrain analysis, loess stratigraphy, soil chemistry and paleoecological data. The study contributes new understanding of New Zealand landscape and ecosystem responses to regional and global climatic change extending to Marine Isotope Stage (MIS) 6, and shows that climatically-forced shifts in biogeomorphic processes play a significant role in lowland landscape evolution. Morphometric analysis of alluvial terraces and terrace remnants of increasing age demonstrated geomorphic evolution through time, with a decrease in extent of original planar terrace tread morphology and an increase in frequency of steeper slopes and convexo-concave land elements. Paleotopographic analysis of a >150 ka terrace mantled by up to three loess sheets revealed multiple episodes of alluvial aggradation and degradation and, subsequent to river abandonment, gully incision prior to and coeval with loess accumulation. Spatial heterogeneity in loess sheet preservation showed a complex history of loess accumulation and erosion. A critical profile curvature range of -0.005 to -0.014 (d2z/dx2, m-1) for loess erosion derived from a model parameterised in different ways successfully predicted loess occurrence on adjacent slope elements, but incorrectly predicted loess occurrence on an older terrace remnant from which all loess has been eroded. Future analyses incorporating planform curvature, regolith erosivity and other landform parameters may improve identification of thresholds controlling loess occurrence in Charwell Basin and in other South Island landscapes. A loess chronostratigraphic framework was developed for, and pedogenic phases identified in, the three loess sheets mantling the >150 ka terrace. Except for one age, infrared-stimulated luminescence dates from both an upbuilding interfluve loess exposure and colluvial gully infill underestimated loess age with respect to the widespread Kawakawa/Oruanui Tephra (KOT; 27,097 ± 957 cal. yr BP), highlighting the need for improvements in the methodology. Onset of loess sheet 1 accumulation started at ca. 50 ka, with a break at ca. 27 ka corresponding to the extended Last Glacial Maximum (eLGM) interstadial identified elsewhere in New Zealand. Loess accumulation through MIS 3 indicates a regional loess flux, and that glaciation was not a necessary condition for loess generation in South Island. Loess accumulation and local alluvial aggradation are decoupled: the youngest aggradation event only covers ~12 kyr of the period of loess sheet 1 accumulation. Older local aggradation episodes could not be the source because their associated terraces are mantled by loess sheet 1. In the absence of numerical ages, the timing of L2 and L3 accumulation is inferred on the basis of an offshore clastic sediment record. The upbuilding phase of loess sheet 2 occurred in late MIS 5a/MIS 4, and loess sheet 3 accumulated in two phases in MIS 5b and late MIS 6. Biogenic silica data were used to reconstruct broad shifts in vegetation and changes in gully soil saturation status. During interglacial/interstadial periods (MIS 1, early MIS 3, MIS 5) Nothofagus¬-dominated forest covered the area in association with Microlaena spp grasses. Lowering of treeline altitude during glacial/stadial periods (MIS 2, MIS 3, MIS 5b, late MIS 6) led to reduction in forest cover and a mosaic of shrubs and Chionochloa spp, Festuca spp and Poa spp tussock grasses. Comparison of interfluve and gully records showed spatial heterogeneity in vegetation cover possibly related to environmental gradients of exposure or soil moisture. A post-KOT peak in gully tree phytoliths corresponds to the eLGM interstadial, and a shift to grass-dominated vegetation occurred during the LGM sensu stricto. Diatoms indicated the site became considerably wetter from ca. 36 ka, with peak wetness at ca. 30, 25 and 21 ka, possibly due to reduced evapotranspiration and/or increased precipitation from a combination of strengthened westerly winds and increased cloudiness, or strengthened southerly flow and increased precipitation. Human influence after ca. 750 yr BP led to re-establishment of grassland in the area, which deposited phytoliths mixed to 30 cm depth in the soil. A coupled gully colluvial infilling/vegetation record showed that sediment flux during the late Pleistocene was ~0.0019 m3 m-1 yr-1 under a shrubland/grassland mosaic, and Holocene sediment flux was ~0.0034 m3 m-1 yr-1 under forest. This increase of 60% through the last glacial-interglacial transition resulted from increased bioturbation and down-slope soil transport via root growth and treethrow, which formed a biomantle as evidenced by slope redistribution of the KOT. These results contrast with sediment transport rates and processes hypothesised to occur contemporaneously in adjacent mountain catchments. This suggests that intraregional biogeomorphic processes can differ significantly depending on topography and geological substrate, with different landscapes responding in unique ways to the same climate shifts. Analysis of Quaternary terrestrial landscape evolution in non-glaciated mountainous and lowland areas must therefore consider spatial and temporal heterogeneity in sediment fluxes and underlying transport processes.
APA, Harvard, Vancouver, ISO, and other styles
2

Hughes, Matthew W. "Late Quaternary landscape evolution and environmental change in Charwell Basin, South Island, New Zealand." Lincoln University, 2008. http://hdl.handle.net/10182/305.

Full text
Abstract:
Charwell Basin is a 6 km-wide structural depression situated at the boundary between the axial ranges and faulted and folded Marlborough Fault Zone of north-eastern South Island, New Zealand. The basin contains the piedmont reach of the Charwell River, and a series of late Quaternary loess-mantled alluvial terraces and terrace remnants that have been uplifted and translocated from their sediment source due to strike-slip motion along the Hope Fault which bounds the basin to its immediate north. The aim of this study was to provide an interdisciplinary, integrated and holistic analysis of late Quaternary landscape evolution and environmental change in Charwell Basin using terrain analysis, loess stratigraphy, soil chemistry and paleoecological data. The study contributes new understanding of New Zealand landscape and ecosystem responses to regional and global climatic change extending to Marine Isotope Stage (MIS) 6, and shows that climatically-forced shifts in biogeomorphic processes play a significant role in lowland landscape evolution. Morphometric analysis of alluvial terraces and terrace remnants of increasing age demonstrated geomorphic evolution through time, with a decrease in extent of original planar terrace tread morphology and an increase in frequency of steeper slopes and convexo-concave land elements. Paleotopographic analysis of a >150 ka terrace mantled by up to three loess sheets revealed multiple episodes of alluvial aggradation and degradation and, subsequent to river abandonment, gully incision prior to and coeval with loess accumulation. Spatial heterogeneity in loess sheet preservation showed a complex history of loess accumulation and erosion. A critical profile curvature range of -0.005 to -0.014 (d²z/dx², m⁻¹) for loess erosion derived from a model parameterised in different ways successfully predicted loess occurrence on adjacent slope elements, but incorrectly predicted loess occurrence on an older terrace remnant from which all loess has been eroded. Future analyses incorporating planform curvature, regolith erosivity and other landform parameters may improve identification of thresholds controlling loess occurrence in Charwell Basin and in other South Island landscapes. A loess chronostratigraphic framework was developed for, and pedogenic phases identified in, the three loess sheets mantling the >150 ka terrace. Except for one age, infrared-stimulated luminescence dates from both an upbuilding interfluve loess exposure and colluvial gully infill underestimated loess age with respect to the widespread Kawakawa/Oruanui Tephra (KOT; 27,097 ± 957 cal. yr BP), highlighting the need for improvements in the methodology. Onset of loess sheet 1 accumulation started at ca. 50 ka, with a break at ca. 27 ka corresponding to the extended Last Glacial Maximum (eLGM) interstadial identified elsewhere in New Zealand. Loess accumulation through MIS 3 indicates a regional loess flux, and that glaciation was not a necessary condition for loess generation in South Island. Loess accumulation and local alluvial aggradation are decoupled: the youngest aggradation event only covers ~12 kyr of the period of loess sheet 1 accumulation. Older local aggradation episodes could not be the source because their associated terraces are mantled by loess sheet 1. In the absence of numerical ages, the timing of L2 and L3 accumulation is inferred on the basis of an offshore clastic sediment record. The upbuilding phase of loess sheet 2 occurred in late MIS 5a/MIS 4, and loess sheet 3 accumulated in two phases in MIS 5b and late MIS 6. Biogenic silica data were used to reconstruct broad shifts in vegetation and changes in gully soil saturation status. During interglacial/interstadial periods (MIS 1, early MIS 3, MIS 5) Nothofagus-dominated forest covered the area in association with Microlaena spp grasses. Lowering of treeline altitude during glacial/stadial periods (MIS 2, MIS 3, MIS 5b, late MIS 6) led to reduction in forest cover and a mosaic of shrubs and Chionochloa spp, Festuca spp and Poa spp tussock grasses. Comparison of interfluve and gully records showed spatial heterogeneity in vegetation cover possibly related to environmental gradients of exposure or soil moisture. A post-KOT peak in gully tree phytoliths corresponds to the eLGM interstadial, and a shift to grass-dominated vegetation occurred during the LGM sensu stricto. Diatoms indicated the site became considerably wetter from ca. 36 ka, with peak wetness at ca. 30, 25 and 21 ka, possibly due to reduced evapotranspiration and/or increased precipitation from a combination of strengthened westerly winds and increased cloudiness, or strengthened southerly flow and increased precipitation. Human influence after ca. 750 yr BP led to re-establishment of grassland in the area, which deposited phytoliths mixed to 30 cm depth in the soil. A coupled gully colluvial infilling/vegetation record showed that sediment flux during the late Pleistocene was ~0.0019 m³ m⁻¹ yr⁻¹ under a shrubland/grassland mosaic, and Holocene sediment flux was ~0.0034 m³ m⁻¹ yr⁻¹ under forest. This increase of 60% through the last glacial-interglacial transition resulted from increased bioturbation and down-slope soil transport via root growth and treethrow, which formed a biomantle as evidenced by slope redistribution of the KOT. These results contrast with sediment transport rates and processes hypothesised to occur contemporaneously in adjacent mountain catchments. This suggests that intraregional biogeomorphic processes can differ significantly depending on topography and geological substrate, with different landscapes responding in unique ways to the same climate shifts. Analysis of Quaternary terrestrial landscape evolution in non-glaciated mountainous and lowland areas must therefore consider spatial and temporal heterogeneity in sediment fluxes and underlying transport processes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography