Academic literature on the topic 'FIELD EMISSION OF CNT'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'FIELD EMISSION OF CNT.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "FIELD EMISSION OF CNT"
Liao, Qin Liang, Yue Zhang, Yun Hua Huang, Jun Jie Qi, and Zheng Zhang. "Investigation on the Plasma-Induced Electron Emission Properties of ZnO Nanorod and Carbon Nanotube Arrays." Materials Science Forum 654-656 (June 2010): 1150–53. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.1150.
Full textLiu, Xingzhen, Weijin Qian, Yawei Chen, Mingliang Dong, Taxue Yu, Weijun Huang, and Changkun Dong. "Construction of CNT-MgO-Ag-BaO Nanocomposite with Enhanced Field Emission and Hydrogen Sensing Performances." Nanomaterials 13, no. 5 (February 27, 2023): 885. http://dx.doi.org/10.3390/nano13050885.
Full textHe, Hao, Chao Yuan, Er Jun Liang, and Shun Fang Li. "Field Emission of Gallium-Doped Carbon Nanotubes." Advanced Materials Research 535-537 (June 2012): 61–66. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.61.
Full textStępińska, Izabela, Elżbieta Czerwosz, Mirosław Kozłowski, Halina Wronka, and Piotr Dłużewski. "Studies of field emission process influence on changes in CNT films with different CNT superficial density." Materials Science-Poland 36, no. 1 (May 18, 2018): 27–33. http://dx.doi.org/10.1515/msp-2018-0001.
Full textWang, M. S., Jan Yong Wang, C. H. Jin, Qing Chen, and Lian Mao Peng. "Observations of Carbon Nanotube Field Emission Failure in the Transmission Electron Microscope." Materials Science Forum 475-479 (January 2005): 4071–76. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.4071.
Full textFairchild, Steven B., Chelsea E. Amanatides, Thiago A. de Assis, Paul T. Murray, Dmitri Tsentalovich, Jeffrey L. Ellis, Salvador Portillo, et al. "Field emission cathodes made from knitted carbon nanotube fiber fabrics." Journal of Applied Physics 133, no. 9 (March 7, 2023): 094302. http://dx.doi.org/10.1063/5.0123120.
Full textLi, Hui, Xiao Gang Zhou, Chao Yuan, and Gen Sheng Dou. "Experimental Preparation and Properties of Modified CNT Field Emitters for the Field Emission Display Panel." Advanced Materials Research 148-149 (October 2010): 1327–30. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.1327.
Full textWu, Chao, and Xiao Feng Jin. "Optimization Design and Fabrication of Annular Field Emitter for Field Emission Display Panel." Key Engineering Materials 467-469 (February 2011): 1520–23. http://dx.doi.org/10.4028/www.scientific.net/kem.467-469.1520.
Full textLim, Yu Dian, Liangxing Hu, Xin Xia, Zishan Ali, Shaomeng Wang, Beng Kang Tay, Sheel Aditya, and Jianmin Miao. "Field emission properties of SiO2-wrapped CNT field emitter." Nanotechnology 29, no. 1 (November 29, 2017): 015202. http://dx.doi.org/10.1088/1361-6528/aa96ed.
Full textWu, Chao, Wen Sheng Xing, and Yu Kui Li. "Field Emission Characteristics of FED with Carbon Nanotube Field Emitters Using Improved Cathode Electrode." Advanced Materials Research 148-149 (October 2010): 1315–18. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.1315.
Full textDissertations / Theses on the topic "FIELD EMISSION OF CNT"
Parmee, Richard. "X-ray generation by field emission." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284924.
Full textChristy, Larry A. "Field Emission Properties of Carbon Nanotube Fibers and Sheets for a High Current Electron Source." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1406819279.
Full textNavitski, Aliaksandr [Verfasser]. "Scanning field emission investigations of structured CNT and MNW cathodes, niobium surfaces and photocathodes / Aliaksandr Navitski." Wuppertal : Universitätsbibliothek Wuppertal, 2010. http://d-nb.info/1009494678/34.
Full textAhmed, Muhammad Shafiq. "Characterization of carbon nanotubes grown by chemical vapour deposition." Thesis, UOIT, 2009. http://hdl.handle.net/10155/26.
Full textFrench, Paul Jacob. "High-sensitivity field emission magnetometers and other applications of field emission technologies." Thesis, University College London (University of London), 2008. http://discovery.ucl.ac.uk/1443981/.
Full textHong, Ching-yin 1973. "Intelligent field emission arrays." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17037.
Full textIncludes bibliographical references (p. 289-301).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Field emission arrays (FEAs) have been studied extensively as potential electron sources for a number of vacuum microelectronic device applications. For most applications, temporal current stability and spatial current uniformity are major concerns. Using the kinetic model of electron emission, field emission can be described as two sequential processes- the flux of electrons to the tip surface followed by the transmission of the electrons through the surface barrier. Either of these processes could be the determinant of the emission current. Unstable emission current is usually due to absorption/desorption of gas molecules on the tip surface (barrier height variation) and non-uniform emission is usually due to tip radius variation (barrier width change). These problems could be solved if the emission current is determined by the electron supply to the surface instead of the electron transmission through the surface barrier. In this thesis, we used the inversion layer of a MOSFET to control the electron supply. It results in additional benefits of low turn-on voltage and low voltage swing to turn the device on and off. A novel CMP-based process for fabricating integrated LD-MOSFET/FEA is presented. We obtained FEA devices with an extraction gate aperture of 1.3 [mu]m and emitter height of 1 [mu]m. We present a comprehensive study of field emitter arrays with or without MOSFET. The silicon field emitter shows turn-on voltage of [approximately]24 V with field enhancement factor (b[sub]FN) of [approximately]370. We demonstrated that the LD-MOSFET provides excellent control of emission current. The threshold voltage of the LD-MOSFET is [approximately]0.5V. The integrated device can be switched ON and OFF using a MOSFET gate voltage swing of 0.5V. This results in an ON/OFF current ratio of 1000:1. The current fluctuation is significantly reduced when the MOSFET is integrated with the FEA device and the device is operated in the MOSFET control regime. The emission current of the integrated LD-MOSFET/FEA remains stable regardless the gas and vacuum condition. The saturation current level of the integrated devices in the MOSFET controlled region is also the same regardless the emitter array size or the FEA's position on the wafer. We also present a comprehensive study of three-dimensional oxidation in silicon emitter tip
(cont.) formation. Stress plays an important role in the oxidation mechanism. A new sharp emitter tip formation mechanism is proposed: rather than a continuous oxidation process, an emitter neck breaking stage occurs before the sharp emitter tip is formed. Stress from volume difference of silicon and silicon dioxide is the main cause for the emitter neck breaking. Initial formation of microcracks around the neck occurs at high temperature due to volume difference stress, oxide grows into the cracks right after crack formation, and a sharp emitter tip is then formed by further oxidation.
by Ching-yin Hong.
Ph.D.
Ding, Meng 1972. "Field emission from silicon." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8645.
Full textIncludes bibliographical references (p. 259-275).
A field emitter serves as a cold source of electrons. It has practical applications in various fields such as field emission flat panel displays, multiple electron-beam lithography, ion propulsion/micro-thrusters, radio frequency source, information storage technology, and electronic cooling. Silicon is an attractive material for building electron field emitters. To understand the physics of electron field emission from silicon and to push technologies of making quality field emitter arrays present both opportunities and challenges. This work focuses on an experimental study of electron field emission phenomena from silicon field emitter arrays. We demonstrate electron field emission from both the conduction band and the valence band of silicon simultaneously. A two-band field emission model is presented to explain the experimental data. Theoretical predictions for valence band emission were made in the past; however there was no direct observation until now. Experimental evidence of current saturation in field emission existed in the literature. We also report the observation of current saturation in n-type silicon field emitter arrays. A simple model is presented to account for the results. We report successfully fabricating 1/,m gate-aperture silicon field emitter arrays with a turn-on voltage as low as 14 V. The gate leakage current is observed to be less than 0.01% of the total emission current. Devices show excellent emission uniformity for different sized arrays. The low turn-on voltage is attributed to the small emitter tip radius. It was achieved by isotropic etching of silicon and low temperature oxidation sharpening of the emitter tips.
(cont.) Field emitters with a tip radius of about 10nm can be routinely obtained. Optimization of the oxidation sharpening process further reduced the tip radius to be around lnm. The results were confirmed by Transmission Electron Microscopy (TEM). Device characterization showed agreement with Fowler-Nordheim theory. Analytical and numerical models were introduced to account for the experimental results. We also demonstrate the successful fabrication of the high aspect ratio silicon tip field emitter arrays. Silicon emitters as high as 5-6[mu]m with an aspect ratio larger than 10:1 was achieved in our facilities. Furthermore we have also successfully fabricated and tested the fully gated high aspect ratio field emitter arrays. The experimental current-voltage data agree well with the Fowler-Nordheim theory. A Maxwell Stress Microscope, which is capable of imaging sample topography and the surface potential simultaneously is set up and tested for the purpose of further study of the properties of the surfaces of the silicon field emitters.
by Meng Ding.
Ph.D.
Poa, Chun Hwa Patrick. "Electron field emission from carbons and their emission mechanism." Thesis, University of Surrey, 2002. http://epubs.surrey.ac.uk/842670/.
Full textLaou, Philips. "Field emission devices on silicon." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0001/NQ44486.pdf.
Full textBoswell, Emily. "Field emission from porous silicon." Thesis, University of Oxford, 1997. http://ora.ox.ac.uk/objects/uuid:a4344196-7fc2-4713-b47b-85920b137759.
Full textBooks on the topic "FIELD EMISSION OF CNT"
Egorov, Nikolay, and Evgeny Sheshin. Field Emission Electronics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56561-3.
Full textGomer, Robert. Field emission and field ionization. New York: American Institute of Physics, 1993.
Find full textGomer, R. Field emission and field ionization. New York: American Institute of Physics, 1993.
Find full textBhattacharya, Sitangshu, and Kamakhya Prasad Ghatak. Fowler-Nordheim Field Emission. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20493-7.
Full textMesi︠a︡t︠s︡, G. A. Explosive electron emission. Ekaterinburg: URO-Press, 1998.
Find full textBrodusch, Nicolas, Hendrix Demers, and Raynald Gauvin. Field Emission Scanning Electron Microscopy. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-4433-5.
Full textBrodie, Ivor, and Paul Schwoebel, eds. Field Emission in Vacuum Microelectronics. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/b139052.
Full textField emission in vacuum microelectronics. New York: Kluwer Academic/Plenum Publishers, 2003.
Find full textFursey, George. Field emission in vacuum microelectronics. New York, NY: Kluwer Academic/Plenum Publishers, 2004.
Find full textFleck, Roland A., and Bruno M. Humbel. Biological Field Emission Scanning Electron Microscopy. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781118663233.
Full textBook chapters on the topic "FIELD EMISSION OF CNT"
Ohkawa, Yasushi. "CNT Field-Emission Cathode for Space Applications." In Nanostructured Carbon Electron Emitters and Their Applications, 315–30. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003141990-15.
Full textGlauvitz, Nathan E., Ronald A. Coutu, Peter J. Collins, and LaVern A. Starman. "Etching Silicon Dioxide for CNT Field Emission Device." In MEMS and Nanotechnology, Volume 6, 93–99. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4436-7_14.
Full textSaito, Yahachi. "Emission of C+20 by Field Evaporation from CNT." In Nanostructured Carbon Electron Emitters and Their Applications, 343–50. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003141990-17.
Full textSinha, N., D. Roy Mahapatra, R. V. N. Melnik, and J. T. W. Yeow. "Computational Implementation of a New Multiphysics Model for Field Emission from CNT Thin Films." In Computational Science – ICCS 2008, 197–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-69387-1_22.
Full textAsaka, Koji, and Yahachi Saito. "Growth of Long Linear Carbon Chains after Serious Field Emission from a CNT Film." In Nanostructured Carbon Electron Emitters and Their Applications, 331–42. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003141990-16.
Full textHiramatsu, Mineo, and Masaru Hori. "Field Emission." In Carbon Nanowalls, 117–29. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99718-5_6.
Full textSaito, Yahachi. "Preparation of CNT Emitters." In Carbon Nanotube and Related Field Emitters, 15–21. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630615.ch2.
Full textTonegawa, Takeshi, Masateru Taniguchi, and Shigeo Itoh. "Transparent-Like CNT-FED." In Carbon Nanotube and Related Field Emitters, 333–41. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630615.ch21.
Full textNakayama, Yoshikazu. "Surface Coating of CNT Emitters." In Carbon Nanotube and Related Field Emitters, 163–75. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630615.ch12.
Full textMann, Mark, William Ireland Milne, and Kenneth Boh Khin Teo. "Preparation of Patterned CNT Emitters." In Carbon Nanotube and Related Field Emitters, 23–40. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630615.ch3.
Full textConference papers on the topic "FIELD EMISSION OF CNT"
Anand, Sandeep V., D. Roy Mahapatra, Niraj Sinha, J. T. W. Yeow, and R. V. N. Melnik. "Field Emission Efficiency of a Carbon Nanotube Array Under Parasitic Nonlinearities." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39558.
Full textCalderón-Colón, Xiomara, and Otto Zhou. "Development of Carbon Nanotube Field Emitters for X-Ray Source." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-175998.
Full textLim, Yu Dian, Alexander Avramchuck, Dmitry Grapov, Beng Kang Tay, Sheel Aditya, and Vladimir Labunov. "Field emission characteristics of short CNT bundles." In 2016 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2016. http://dx.doi.org/10.1109/ivec.2016.7561783.
Full textJian Zhang, Yangyang Zhao, Yongjun Cheng, Detian Li, and Changkun Dong. "CNT field emission based ultra-high vacuum measurements." In 2015 28th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2015. http://dx.doi.org/10.1109/ivnc.2015.7225574.
Full textLu, Wenhui, Hang Song, Haifeng Zhao, Hui zhao, Zhiming Li, Hong Jiang, Guoqing Mao, and Yixin Jin. "Experiment Study on Planar-Gate Electron Source with CNT." In 2006 19th International Vacuum Nanoelectronics Conference and 50th International Field Emission Symposium. IEEE, 2006. http://dx.doi.org/10.1109/ivnc.2006.335375.
Full textHan, Jun Soo, Sang Heon Lee, Han Bin Go, Cheol Jin Lee, and Yoon-Ho Song. "Field emission characteristics of CNT film emitters according to emission tip shapes." In 2018 31st International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2018. http://dx.doi.org/10.1109/ivnc.2018.8520061.
Full textYang, Zhan, Masahiro Nakajima, Yajing Shen, Pengbo Wang, Changhai Ru, Yahua Zhang, Lining Sun, and Toshio Fukuda. "Test of A CNT gyroscope based on field emission." In 2013 IEEE 7th International Conference on Nano/Molecular Medicine and Engnieering (NANOMED). IEEE, 2013. http://dx.doi.org/10.1109/nanomed.2013.6766316.
Full textStępińska, Izabela, Halina Wronka, Stanisław Waszuk, Joanna Radomska, Mirosław Kozłowski, Elżbieta Czerwosz, and Florea Craciunoiu. "Field emission from CNT films deposited on porous Si." In XXXVI Symposium on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (Wilga 2015), edited by Ryszard S. Romaniuk. SPIE, 2015. http://dx.doi.org/10.1117/12.2205844.
Full textLiu, Weihua, and Changchun Zhu. "Field Emission Aging Characteristic of Screen Printed CNT Cathode." In 2006 19th International Vacuum Nanoelectronics Conference. IEEE, 2006. http://dx.doi.org/10.1109/ivnc.2006.335480.
Full textHan, Jun Soo, Ki Nam Yun, Sang Heon Lee, Han Bin Go, Cheol Jin Lee, and Yoon-Ho Song. "Field emission properties of triode structure CNT film emitter." In 2017 30th International Vacuum Nanoelectronics Conference (IVNC). IEEE, 2017. http://dx.doi.org/10.1109/ivnc.2017.8051593.
Full textReports on the topic "FIELD EMISSION OF CNT"
Piestrup, Melvin A., Harold E. Puthoff, and Paul J. Ebert. Enhanced correlated-Charge Field Emission. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada337858.
Full textBoyd, J. K., and V. K. Neil. Electron beam brightness with field immersed emission. Office of Scientific and Technical Information (OSTI), December 1985. http://dx.doi.org/10.2172/6369432.
Full textLee, Bo. A knife-edge array field emission cathode. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/515571.
Full textRinzler, A. G., J. H. Hafner, P. Nilolaev, D. T. Colbert, and R. E. Smalley. Field emission and growth of fullerene nanotubes. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/650265.
Full textAng, Lay-Kee. Modeling of Electron Field Emission from Graphene. Fort Belvoir, VA: Defense Technical Information Center, December 2011. http://dx.doi.org/10.21236/ada552737.
Full textThangaraj, Charles. Gated Field-Emission Cathode Radio-Frequency (RF) Gun. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1433861.
Full textOhlinger, Wayne L., and D. N. Hill. Field Emission Cathode and Vacuum Microelectronic Microwave Amplifier Development. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada253846.
Full textOhlinger, Wayne L., and D. N. Hill. Field Emission Cathode and Vacuum Microelectronic Microwave Amplifier Development. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada253847.
Full textJay L. Hirshfield. Rf Gun with High-Current Density Field Emission Cathode. Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/861455.
Full textBussmann, Ezra, Taisuke Ohta, Barbara Kazanowska, George Wang, and Rajan Tandon. Stronger field-emission science via coupling novel nanoscale imaging techniques. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1670519.
Full text